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1 Introduction

Modern drug research integrates information from very
heterogeneous research areas such as chemistry, toxicology,
molecular biology or physiology. The explosion of data in
these diverse fields poses a great opportunity and a formi-
dable challenge. Bioinformatics and Cheminformatics are
the disciplines in charge of producing the necessary com-
putational resources and databases on which the entire re-
search pipeline is based on. Databases hold structured in-
formation about entities such as drugs, proteins/genes and
diseases, together with the description of their relation-
ships, and the experimental information that supports
them; their organized structure makes them easy to query
and facilitates the computational analysis of the results.
However, compiling information in databases, a process
usually requiring manual extraction directly from scientific
publications, reports, or patent files, is significantly limited
due to the cost and effort it requires; and it is obvious that
these difficulties will only increase as the amount of scien-
tific publications continues to rapidly grow. It is difficult to
imagine that in a reasonably near future all relevant infor-
mation will be contained within a database. Even if it
would be possible to have all the basic facts recorded in
databases, scientists will still constantly need to retrieve the
essential details that complement those basic facts; for ex-
ample, the specific experimental conditions in which a
given protein-drug interaction was detected. Therefore, In-
formation Retrieval will remain a requirement for expert
users, hopefully assisted by text mining tools. Furthermore,
beyond the exposition of facts, publications and reports
contain additional information about the interpretation of
the experiments and elaborate reasoning about the com-
bined analysis of results; the results of the intellectual work
are even more difficult to capture and reproduce in struc-
tured repositories, and remain a challenge for information
extraction systems. This complete scenario in the interface
between textual sources and databases is the central moti-
vation behind the development of text mining applications.
The focus of this article is on applications to identify drugs

and chemical compounds in text and characterize their bio-
medical context.[1]

In the domain of drug development, the extraction of in-
formation on drugs and compounds is commonly done in
an effort to establish relationships with other entities, in
particular proteins/genes and disease/symptoms. Relation-
ships extracted from text mining could constitute valuable
information that directly aids the interpretation of the bio-
logical context and the understanding of the underlying
molecular mechanisms. Furthermore, in the very inter-relat-
ed molecular systems, relationships are often essential even
for the interpretation of the properties of the individual
components. Extracting relationships between entities from
text is typically approached as a two-step process: (1) de-
tecting the mentions to the entities in text, and (2) inferring
their relationships based on their distribution in the docu-
ments.

The initial step towards identifying the mentions to enti-
ties in text, known in text-mining as Named Entity Recogni-
tion (NER), is fundamental, and it largely determines the
success of the applications that use it. NER is complicated
by the many ways in which these entities may be men-
tioned and by the complexity of human language. A
number of lexical resources have been developed to cap-
ture the different ways in which an entity can appear men-
tioned in text. Such resources are already effectively used
by text mining applications in the molecular biology
domain for the detection of protein/gene names. Examples
of applications using NER are the discovery of cancer-asso-
ciated genes,[2, 3] the extraction of physical protein interac-
tions[4] or the semi-automatic construction of specialized
data repositories.[5]
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Abstract : Providing prior knowledge about biological prop-
erties of chemicals, such as kinetic values, protein targets,
or toxic effects, can facilitate many aspects of drug devel-
opment. Chemical information is rapidly accumulating in all
sorts of free text documents like patents, industry reports,
or scientific articles, which has motivated the development
of specifically tailored text mining applications. Despite the
potential gains, chemical text mining still faces significant
challenges. One of the most salient is the recognition of
chemical entities mentioned in text. To help practitioners
contribute to this area, a good portion of this review is de-
voted to this issue, and presents the basic concepts and

principles underlying the main strategies. The technical de-
tails are introduced and accompanied by relevant biblio-
graphic references. Other tasks discussed are retrieving rel-
evant articles, identifying relationships between chemicals
and other entities, or determining the chemical structures
of chemicals mentioned in text. This review also introduces
a number of published applications that can be used to
build pipelines in topics like drug side effects, toxicity, and
protein-disease-compound network analysis. We conclude
the review with an outlook on how we expect the field to
evolve, discussing its possibilities and its current limitations.
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It is fair to say that part of the success of the lexical re-
sources in the molecular biology domain is related with
their ready availability, Equivalent resources for chemical
compounds, however, tend to be more restricted, and in
many cases released under a commercial licence, which
partly explains why the recognition of drugs and chemical
compounds has received less attention than the recogni-
tion of entities such as genes and proteins.[6] This trend has
began to change with the recent appearance of free and
openly accessible chemical databases such as PubChem[7]

and Drugbank,[8] which, together with the pressing need
for non-commercial literature mining systems operating in
the chemical/drug field, has promoted numerous efforts

over the last few years. Given its critical importance, this
review will attempt to cover in detail the efforts towards
developing NER in the chemical domain. The discussion
will also extend to other entities relevant to drugs and
chemical compounds, such as genes and proteins, adverse
events, diseases or particular numeric values.

The step following name recognition in a text-mining ap-
plication is usually the identification of relationships be-
tween entities; a common task in what is known as Infor-
mation Extraction. In this article we first describe the main
technical approaches, including those based on machine
learning and Natural Language Processing (NLP). Further on
we critically discuss some relevant current implementa-
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tions, their possibilities and limitations. Finally, in the out-
look section, we present some of the more promising
trends and future developments in the application of text
mining to the chemical and pharmaceutical domain.

2 Named Entity Recognition (NER): a Close
Look Into Drugs and Chemical Compound
Mentions

2.1 The Many Names of a Drug

Chemicals may be referenced in documents in several
ways: using systematic nomenclatures, common or trade
names, database identifiers, InChI strings or even raster
images. Different types of names or references have differ-
ent word morphologies (characteristic features in how these
names are formed). Chemical name morphology directly af-
fects how we approach the task of finding chemicals men-
tioned in text, and even enables determination of their
structure. Thus, an overview on the chemical nomencla-
tures will help our discussion.

2.1.1 Systematic Nomenclatures

Systematic nomenclatures follow precise rules on how
these names are formed (grammars) that describe the com-
pound in terms of its structure. These grammars, when
strictly followed, should allow unambiguous determination
of the chemical structure from their systematic names. The
International Union of Pure and Applied Chemistry (IUPAC)
(http://www.iupac.org/)[9] has been in charge of maintain-
ing the rules of chemical nomenclature since 1892, al-
though there are other guidelines such as the Chemical
Service (CAS) (http://www.cas.org/)[10] index names. Note
that, even though names should un-ambiguously deter-
mine the structures, the IUPAC guidelines allow for some
variability on how names are formed, so several different
correct names may describe the same structure.[11] This fact
coupled with the variability derived from orthographic and
spelling variations, complicates the practical use of the
grammars.[12] Fortunately, the chemical name grammar
shows strong regularities. The basic building blocks of
chemical names, known as the basic name segments (or
terminal symbols in grammar jargon), are very distinct from
normal English. Take for example “benzo” or “methyl”: any
token in text containing such substrings is in great likeli-
hood referring to a chemical entity.

2.1.2 Non-Systematic Nomenclatures

Systematic nomenclatures are cumbersome to read and
write so common names or abbreviations are frequently
used instead. For example, the term “Aspirin” if often fa-
vored over the IUPAC name “2-acetyloxybenzoic acid”. These
common or trivial names are catalogued and linked to their
structure in resources such as PubChem. This is also the

case of drug names. Some of the common names may still
show regularities, e.g. , drug names following the WHOINN
dictionary of stems for non-proprietary names. But these
naming conventions tend not to be as rigorous as the sys-
tematic nomenclatures, and thus do not allow reliable iden-
tification of the chemical structures from their grammars. It
is however possible to match common names against dic-
tionaries of names, whereas systematic names are hard to
catalogue comprehensively into a dictionary due to their
variability.

In some cases, names are constructed with a mixture of
systematic and non-systematic portions, for example “2-hy-
droxy-toluene” and “2-methyl-phenol” are semi-systematic
variants for “1-hydroxy-2-methyl-benzene”. Even if semi-sys-
tematic names present some morphological regularity simi-
lar to fully systematic names, they are difficult to translate
to the corresponding structures.

To get an estimate of the relative use of the different
types of mentions, Kol�rik et al.[13] examined a manually an-
notated collection or corpus of 100 MEDLINE abstracts. Out
of the 1206 mentions found in these abstracts, 391 are
IUPAC and IUPAC-like (systematic and semi-systematic)
names, while 414 are common names, 161 are abbrevia-
tions, and the rest are parts of IUPAC names (49), chemical
family names (99) and other formulas and 49 unambiguous
representations (including sum formulas, SMILES, InChI).
Note, however, that the distribution of names in abstracts
may be very different from the distribution in the full text
of the articles or other types of documents such as patents.
In fact, another study, that in this case uses automated ap-
proach, compares the distribution of different names in ab-
stracts, full text and patents, suggesting a much larger
prevalence of IUPAC names in patents than in MEDLINE en-
tries.[14]

2.2 Methods to Detect Chemical Compound Mentions

Currently, many of the academic text mining applications
focus in the identification of common names, such as
names of marketed drugs, using simple approaches like
dictionary matching (see below). Less frequent is finding
systematic names, which often require more involved ap-
proaches than simple dictionary matching. However, cur-
rent research in chemical NER is now increasingly placing
emphasis precisely on these systematic nomenclatures. The
field is still at an early stage, and thus the number of free
open-source solutions is rather limited.

We classify NER approaches in three categories: diction-
ary based, morphology based, and context based. Some of
the methods presented have been used before for the
identification of mentions to other types of entities; in par-
ticular genes and proteins, for which there is a significant
body of work. The characteristics of chemical names, how-
ever, require particular adaptations to these methods, espe-
cially names following systematic nomenclatures, typically
long multiword terms with large spelling variability and
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subject to frequent misuse, truncation or misspecification.
In fact, the length of the chemical name can vary greatly:
from short acronyms to long multiword expressions span-
ning over several lines. These problems are only aggravated
by the lack of representative publicly available and manual-
ly labeled compound mentions that could be used for
training and evaluating systems.

The following section will describe the different ap-
proaches to chemical NER and discuss their most important
issues.

2.2.1 Matching Text to Dictionary Entries

We use the term “dictionary matching” to refer to a family
of techniques that find mentions in text by comparing it
with a dictionary, or catalogue, of known names. The pro-
cess of identifying the dictionary names in text is called
matching or lookup. Implementing a dictionary matching
technique consists in producing a good quality dictionary
and implementing a matching method.

Devising a dictionary that is both good and comprehen-
sive is perhaps the most critical aspect. Dictionaries can be
manually generated, but in most cases they are generated
automatically from resources such as public chemical data-
bases or thesauri (lists of words grouped together by simi-
larity of meaning, e.g. , synonyms) like the Unified Medical
Language System (UMLS).[15] Different resources may con-
tain different entries; some are centered on drugs, others
on general chemical compounds.[16] It is also a common
practice to build dictionaries by merging several resources.

There are several issues related to working with diction-
aries, not least of which is the practical problem of their
size, specially when including systematic chemical names in
addition to drug and trivial names. These dictionaries can
reach several million entries, one or two orders of magni-
tude larger that the typical dictionary used to capture gene
names. For instance, the jochem joint chemical dictionary
(http://www.biosemantics.org/index.php?page = Jochem)
contains close to 2 million synonyms, while the number for
a typical gene name dictionary would be in the tens of
thousands. Additionally, dictionaries may require extensive
manual curation to maintain them and to remove redun-
dant entries, e.g. names corresponding to common words
or other problematic entries. In many cases heuristics and
statistical properties are used to assist the curation pro-
cess.[17, 18] Dictionaries are effective in identifying names
when these are correctly written; otherwise, it is necessary
to enhance them by including the potential spelling and
orthographic variations. Another option is to use Regular
Expressions instead of exact string matching to capture the
variability directly in the matching process. Another possi-
bility to deal with the variability in chemical names is to
use string comparison metrics such as edit distances like
the Levenshtein distance,[19] a procedure that calculates the
similarity of two character sequences by counting the
number of characters that need to be changed in one se-

quence to transform it into the other. This metrics can de-
termine that the mention ‘8-(p-sulphophenyl)theophylline’
found in text and the dictionary entry ‘8-(p-sulfophenyl)th-
eophylline’ differ only in the character ‘f’ been written as
‘ph’, and thus, conclude that both may actually be equiva-
lent. Implementing a matching strategy using the Levensh-
tein distance, for instance, may be computationally infeasi-
ble for a large dictionary, since each dictionary entry needs
to be compared with all possible substrings of the text. It
may, however, prove useful for exhaustive detection of just
one or a few particular compounds. Furthermore, heuristics
can be used to improve its performance; for example by
first trying to find chemical-like tokens in the text, such as
‘theophylline’ in our previous example (see Section 2.2.2
for a discussion on different strategies on how to do this),
and restrict the matching to only dictionary entries contain-
ing those tokens and to just the immediate context of the
token in text.

Dictionaries are available for different types of entities.
Pharmspresso[20] or PolySearch[21] compile dictionaries for
many different entities which can be downloaded from
their respective online sites. The entities they support vary,
but both include drugs, genes/proteins and diseases. An-
other notable dictionary for drugs and chemical com-
pounds is the Jochem dictionary,[16] which is automatically
produced by merging several lexical resources such as
UMLS, ChEBI, MeSH terms, PubChem or DrugBank. A
corpus of 100 annotated MEDLINE abstracts was used to
evaluate the performance of each of the different sources
used in Jochem dictionary.[13] This evaluation also includes
another freely available dictionary based on ChEBI and
used in the open-source named chemical recognitions
system OSCAR3.[22] This system implements several named
chemical recognition strategies, including one using dic-
tionary matching. In recent work the Jochem dictionary
was compared to the manually curated ChemSpider dic-
tionary.[23] The results of this study suggest that ChemSpid-
er has fewer but higher quality entries resulting in better
precision but lower recall (coverage) than Jochem.

2.2.2 Exploiting Morphological Regularities of Systematic
Names

Systematic nomenclatures are in fact, as described earlier,
grammars that use a finite set of terminal symbols which
roughly correspond to the chemical name segments (e.g.
“benzo” and “methyl”). Note that basic name segments
may span over several grammar terminal symbols, such as
the term ‘tetraphenylene’, where the terminal symbols may
include ‘tetra’, ‘phenyl’, and ‘ene’. Most of these name seg-
ments are very characteristic of chemical names. These se-
quences of characters have a higher probability of appear-
ing inside a chemical name than inside background English
words, thus improving our chances of detecting them. Sev-
eral approaches use a dictionary of chemical name seg-
ments and try to find them in text. This dictionary can be
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built automatically by segmenting chemical names with
manually crafted heuristic rules,[24] or by visually intro-
ducing frequent substrings.[25] There are also official diction-
aries of name segments such as the Registry File Basic
Name Segment Dictionary (http://www.cas.org/ASSETS/
EFF8CA9AA8324FC5A2F0428765287059/regbasicname.pdf),
which can be used to divide a chemical name into basic
name segments (see Table 1). The basic name segment dic-
tionary was used in the segmentation approach presented
by Wilbur et al.[26] In that case, to help capture generic and
trade names, the segment dictionary is expanded to in-
clude a list of other biologically significant segments. Note
that, even though these techniques make use of dictionar-
ies, we do not strictly consider them dictionary-matching
strategies, since they do not deal with the full chemical
names.

Text mining often requires segmenting text into smaller
portions, such as words. This process is called tokenization
or segmentation. Due to the nature of systematic names, it
may be convenient to establish these segments not only
relying on word boundaries, but also taking into account
hyphens, parenthesis, transitions from a letter to a digit
character, etc. (see Table 2). Tokens derived from text seg-
mentation that resemble basic chemical name segments
are easier to recognize since they correlate better with the
underlying chemical entities and have statistical distribu-
tions that differentiate them of other terms.

There are other methods that exploit the statistical prop-
erties of chemical names and do not require explicitly
building dictionaries of name segments. For instance, n-

grams, which are sequences of n consecutive characters ap-
pearing in a token (e.g. “methyl” has three 4-grams:
“meth”, “ethy”, “thyl”), may also have different frequencies
in chemical names and in background English words. This
was exploited in an approach introduced by Wilbur et al. In
this case, a 4-gram sliding window is passed over the
tokens derived from chemical names and over the tokens
derived from the background text, taking counts to estab-
lish the conditional frequencies (see Table 3). A simple stat-
istical model (i.e. Na�ve Bayes model) is used to decide if
the 4-grams derived from a new portion of text belong to
a chemical name or to background text. Na�ve Bayes as-
sumes independence between features; since in this case
they are extracted from overlapping n-grams this assump-
tion is clearly violated. Vasserman[27] corrected it by taking
non-overlapping n-grams, selecting them based on their
discriminative ability. The appropriate number of characters
for the n-grams is estimated to be 4 in both these ap-
proaches. Vasserman also introduces a technique that inter-
polates n-grams from different lengths, an approach that
clearly out-performs the others in his evaluation corpus.

Wren proposed exploiting the conditional frequencies of
character-to-character transitions, which are also different
between chemical names and background text.[28] For ex-
ample, character transitions like ‘x’ to ‘y’ appear in chemical
tokens like ‘ethoxybutyl’ but rarely in background English
text. He compared two systems based on Markov models,
(Markov models use transition probabilities between states,
or, in our case, between characters[29]), one using chemical
names and one using background text. At the end of the
process each token is classified as chemical name or not,
based on the Markov model under which it has the highest
likelihood.

The approaches proposed in this section suffer from two
important limitations. Since they work at a token, n-gram,
or even character level, chemical names end up segmented
into different pieces, and the correct mention boundaries

Table 1. Examples of chemical name segments in the Registry File
Basic Name Segment Dictionary. A segmenting algorithm matching
the leftmost longest segment in a greedy way would make errors,
so the registry includes the correct segmentation for those cases;
like PENTOX, which could incorrectly be segmented as PENTO X.

Segment

HEPT
PHENYL
PENTOX!PENT OX

Table 2. Example tokenization of a chemical name by non-word
characters and digit-letter transitions. Tokenization helps the
named entity recognition systems by offering a smaller and more
granular unit of analysis. In the case of chemical names, some of
these tokens may resemble basic name segments and thus benefit
from their statistical properties.

Tokens in “2-(hydroxymethyl)-6methoxyoxane-3,4,5-triol”

2
Hydroxymethyl
6
Methoxyoxane
3,4,5
Triol

Table 3. Example of 4-gram segmentation for “2-(hydroxymethyl)-
6methoxyoxane-3,4,5-triol”. The second column shows an estimate
of the log odds between the 4-gram appearing in chemical names
and in background English text (titles and abstracts from one thou-
sand PubMed ids randomly extracted from GeneRIF entries of
human genes). This supports the idea that statistics along can help
pinpoint the location of chemical names. Only the top 5 4-grams
are shown. Note the overlap between 4-grams in rows 1 and 2,
and 3,4, and 5; when using these 4-grams as features in a Na�ve
Bayes classifier Vasserman took care of considering only a non-
overlapping subset.

4-grams Log odds

thox 7.55
hoxy 7.55
xyme 5.27
ethy 5.27
oxym 5.12
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must be determined by some other procedure, for example
using heuristic rules (see Kemp and Lynch for an example
of such an heuristic[25]). The other limitation is that the con-
text of the mention, for example the surrounding tokens, is
not used to enhance the process. Both these limitations are
addressed by the context aware systems described below.

As a final note, chemical identifiers such as SMILES and
InChI strings are not being discussed here, since they pres-
ent such strong morphological regularities that their iden-
tification is rather trivial.

2.2.3 Context Aware Systems

Approaches that make use of the context of a mention can
be divided into machine learning models, which employ
statistical properties, and Natural Language Processing (NLP)
techniques or manual rules based on our knowledge of
how natural language is formed.

Machine learning approaches work by examining exam-
ple cases and inferring from them general patterns, and
they thus require training data from which to learn from.
The training data typically consist of portions of text in
which the chemical entities have been labelled. A common
labelling scheme uses the BIO (or IOB) format: Instead of la-
belling each token as being part of a mention of a chemical
or not, the (B)egining, (I)nner, and (O)utside labels are used
to tag the tokens as follows: (B) is used on the first token
starting a mention, (I) any further token in the mention,
and (O) for all other tokens not part of a mention. From
these labels it is easy to determine the boundaries of
chemical name mentions. Some examples of available train-
ing corpora are the 100 MEDLINE abstracts previously men-
tioned,[13] or the corpus developed as collaboration be-
tween the European Patent Office and the ChEBI team
(http://chebi.cvs.sourceforge.net /viewvc/chebi/chapati/pat-
entsGoldStandard/).[30]

A very popular technique introduced for NER in 2001,[31]

and extensively used for these tasks ever since, is Condi-
tional Random Fields (CRFs). CRFs, in their most common
form, linear chain CRFs, are an attractive model because
they consider the label for one token as conditional on the
label of the previous token, a collection of features extract-
ed from the token itself, and other features describing the
surrounding tokens. To each token in the string a collection
of features is assigned, constituting what the CRF learns
from. These features may be very different in nature; for in-
stance, morphological features like the presence of dashes
and parenthesis, or whether the token is included in a dic-
tionary (e.g. a dictionary of name segments). In fact, mor-
phological features have been shown to be the most dis-
criminative features in the identification of gene and pro-
tein names,[32] and are central to many of the machine
learning approaches for systematic chemical names as well.
CRFs have been widely used for the detection of gene and
protein mentions, and, more recently, chemical mentions in
IUPAC and IUPAC-like form[33] or in chemical formulas.[34]

These CRFs very often follow the IOB scheme. Software
packages that can be used to produce CRF systems include
Mallet[35] and CRF ++ [36] Each type of entity to be detected
by CRF requires a particular configuration, especially in the
feature functions used to process the tokens into the algo-
rithm inputs. This configuration may in fact differ greatly
for gene and chemical mentions.

Using a corpus of manually annotated patent docu-
ments, dictionary approaches obtain better results in
matching portions of chemical names, but are outper-
formed by CRFs when complete chemical mentions are
considered.[30] An alternative model to CRF, called Maximum
Entropy Markov Model (MEMM), is employed in OSCAR3 as
a complementary NER strategy to dictionary matching.[37]

The obvious difficulty with these approaches is the need
of training data, the quality of which significantly deter-
mines the success of the approach. Indeed, in most cases
domain experts are required to produce the training data-
sets manually. This is a cumbersome and laborious process,
even if semi-automatic approaches are used to assist the
human experts.[38]

A different family of techniques is based on the use of
linguistic analyses of the text, such as syntactic analysis (see
the literature[39] for a comprehensive overview). Here, the
regularities of the language constructs are used to derive
rules (also called frames, see the literature[40] for an initial
description of this type of systems in biology) that can
complement those derived from statistical analysis with or-
thogonal information. An example of an entity recognition
system that employs these techniques is the MetaMap pro-
gram.[41] This application incorporates NLP techniques to
identify terms from the UMLS thesaurus in text. Segura-
Bedmar et al.[42] classified terms extracted by MetaMap as
mentions to drugs or not by matching them against the
WHOINN dictionary of nonproprietary names. A follow-up
study by the same group[43] implemented a technique to
track mentions to chemicals in anaphoric expressions (ex-
pressions referring to entities mentioned elsewhere in the
text, -typically in a previous sentence- instead of explicitly
naming them again).

We can find an example of a system using manual rules
in Narayanaswamy et al.[44] for the recognition of biological
entities, including names and part of names of chemical
compounds. This system has a list of (functional) words
that help to determine the location of chemical entities in
text, for example words such as ‘Drug’ or ‘Steroid’ that can
also help to classify the mentioned entities.

2.3 Determining Structures for Chemicals in Documents

One of the most useful representations of a chemical com-
pound is via its chemical structure, which is also amenable
to computational analysis. In many applications it is very
important to be able to assign the structures to the chemi-
cals detected in the text. There are three methods for ex-
tracting structures from documents: (1) finding mentions of
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chemicals and identifying the chemical in a database con-
taining structures, such as PubChem; or (2) if the chemical
is represented as a systematic name, perform a name to
structure conversion ; and finally, (3) directly extract struc-
tures from raster images.

2.3.1 Linking Chemical Mentions to Database IDs

Very often in Information Extraction finding mentions to
entities is just the first step; it is usually required that these
mentions are then associated with the actual concepts they
make reference to, thus connecting them to other available
information for them. This task is known as Mention Nor-
malization. For example, the mention of “methylglucoside”
would be followed by the identification of the correspond-
ing PubChem identifier (CID:2108).

For common names, looking for the closest match in a
dictionary may be a good strategy; dictionary entries may
be associated with only one identifier, making this mapping
step straightforward. In general, however, normalization of
entities may be complicated due to differences in spelling
or ambiguity. In the case of gene and protein mentions,
normalization is further complicated by the ambiguous use
of names referring to general classes (i.e. protein family
names) instead of names of specific entities. In this context
normalization is significantly harder than detection. Several
strategies have been devised to approach these problems,
many of them in the context of the BioCreative competi-
tions.[4, 45] These strategies include comparing the context
where the mention was found to the text in database re-
cords describing each gene and protein. These strategies
could also be applied for chemical mentions, although we
are not aware of any publication so far that actually studies
this, at least using non-trivial approaches. Matching of
IUPAC names to dictionary entries is specially complicated,
not only due to the aforementioned coverage problems of
chemical dictionaries, but also because it hard to tell when
similar mentions are spelling variations for the same name,
a very frequent scenario,[46] or are in fact different chemi-
cals.

2.3.2 Name to Structure Conversion

The use of systematic names should, in theory, allow for
unambiguous identification of chemicals and their struc-
ture. This is true for SMILES and InChI representations; and
also for IUPAC names, when the recommendations are rig-
orously followed. Unfortunately SMILES and InChI strings
are not typically used in free text, nor are IUPAC conven-
tions followed strictly in practice (see the literature[47] for an
evaluation of the correctness of mentions used in pub-
lished text compared to automatic naming software).

Cooke et al.[48] introduced the IUPAC nomenclature as a
chemical ‘language’ and described it in terms of Chomsky
grammar types as a context-free grammar. Further chapters
of the same issue[49, 50] attempt at describing the terminal

symbols and the production rules necessary to define the
IUPAC grammar. The IUPAC rules are followed in the litera-
ture[51] to identify chemical names in text, derive their struc-
ture, and classify them in classes.

For the Name = Struct program,[52] a commercial product,
the ‘grammar approach’ is abandoned in favor of rules that
follow IUPAC recommendations; allowances are however
made for considerations on common usage in order to
deal with ambiguity, misspellings, or even creative use of
the nomenclature.

It is notable that the open-source package OPSIN, part of
the OSCAR3 chemistry suite, also performs name to struc-
ture conversion. ACD/Labs offers tools under commercial li-
censes for name to structure conversion, which allow for
batch processing.

2.3.3 Optical Chemical Structure Recognition

Structural information of compounds is often depicted by
means of two-dimensional diagrams. They are commonly
included in journal articles and patents as raster images.[53]

Optical Chemical Structure Recognition (OCSR) attempts to
use pattern recognition to extract the structural informa-
tion from these images so they can be used in cheminfor-
matics tools. This process typically involves the following
tasks:[54] (1) extracting the images from the flow of the
documents and segment atoms and bonds into individual
molecules; (2) determine which elements in the image are
graphics (bond lines) and which are text (atom symbols) ;
(3) identify the positions of elements, directions and length
of bond lines, and determine the type of bond; and finally,
(4) determine the connectivity between atoms and the
number of bonds between them. Some systems such as
ChemReader[54] crosscheck the resulting structure against
physical rules such as bond lengths and angles to verify its
correctness.

Several tools exist that can perform OCSR are reviewed
in the literature,[54] namely Kekule,[55] CLiDE,[53] chemOCR[56]

and the open-source package OSRA,[57] which are compared
against their own development ChemReader.[54]

3 Beyond NER

While identifying mentions to chemicals and deriving their
chemical structure may have interest in its own, it is often
desirable to establish associations between the chemicals
and other entities in the text. These other entities could be
other chemicals, but they could also be entities of other
nature such as proteins, adverse events or, in a more ample
sense, even dosages and affinities.

These entities may be associated in many ways. Consider,
for example, trying to extract mutations in CYP proteins as-
sociated with adverse events after administration of a
chemical. In this case we would like to associate 4 entities :
a mutation, a CYP protein, a drug or chemical compound
and an adverse event. Additionally we might even want to
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add to this list the dosage level and the percentage of inci-
dent, if available. The first step would be to find mentions
to all this entities in the text. We have discussed amply the
subject of finding mentions to chemicals ; the Subsection
3.1 will introduce the problem of identifying mentions to
other types of entities. After the mentions have been iden-
tified they must be grouped in sets of entities that are de-
scribed to be associated in the text (chemicals and their
target proteins, diseases and the main proteins involved,
etc). This step, relationship extraction, has still seen little
development in this area of application; Subsection 3.2 will
introduce some of the basic concepts and present a few
drug research related efforts.

3.1 Recognition of Mentions to Other Types of Entities

Although identification of chemical entities is the central
topic of this review, other entities are no less important,
and identifying them is essential for a complete interpreta-
tion of the textual information. Among these other entities
are description of adverse drug events, diseases and toxicolo-
gy end-points, or, in the biomedical domain, genes and pro-
teins, which are required for the interpretation of the mech-
anism of drug action (e.g. , pharmacodynamics and pharma-
cokinetics).

Adverse event, disease and toxicology end-point identifi-
cation is typically approached using dictionary lookup strat-
egies. These strategies use lexical resources such as the
Medical Dictionary for Regulatory Activities (MedDRA),[58]

The Coding Symbols for a Thesaurus of Adverse Reaction
Terms (COSTART) or, more generally, UMLS.[15]

Gene and protein NER and normalization is a subject of
study that has received ample attention and enjoyed signif-
icant advances thanks to community challenges such as
the BioCreative[6] Most of the successful systems benefit
from the wealth of training data available, and many use
machine-learning approaches such as CRFs, which are espe-
cially popular in this domain. Some examples of CRF-based
systems for the identification of gene and proteins that are
very well known within the community are ABNER[59] and
BANNER.[60]

Some entities that show strong regularities like Single Nu-
cleotide Polymorphisms (SNP) ids (e.g. rs10991377), amino
acid substitutions (e.g. N445T) or numeric values like per-
centages or probability values can be extracted using regu-
lar expressions. Applications like Pharmspresso[20] use a mix-
ture approach of dictionary and regular expressions. In the
case of entities such as genes and proteins regular expres-
sions are derived from dictionary entries; for entities like
SNPs, the application uses custom-built sets of regular ex-
pressions.

3.2 Extracting Relationships

The simplest and most common approach to Relationship
Extraction is to use the co-occurrence of the detected enti-
ties. The rationale of this approach is that if two entities are

mentioned in the same portion of text there is a good
chance they share an association and are directly related.
Co-occurrence may be defined at different levels, e.g. full
document, text sections, paragraphs or sentences.

Document level co-occurrence is also known as co-publi-
cation. It has been used to find connections between
chemical compounds and gene/proteins;[61, 62] or drugs, pro-
teins and diseases.[63, 64] Co-publication is prone to finding
many spurious associations, which grants high coverage
but low precision. A common approach to deal with spuri-
ous associations is to use article counts as a surrogate mea-
sure of confidence on the derived associations. Article
counts may have the drawback of emphasizing well-known
relationships while obscuring others that might be more in-
teresting due to their novelty.

On the other hand, sentence level co-occurrence achieves
a higher precision by restricting the scope of the co-occur-
rence. Sentence co-occurrence has been used in several ap-
plications that link a large variety of entities such as drugs,
proteins, and diseases, and also cell types, mutations, or-
ganisms, etc.[20, 21, 65, 66] An added benefit of this approach is
that the sentence where the co-occurrence occurs serves as
supporting evidence that can be quickly assessed.

A simple enhancement of this scheme, sometimes called
tri-co-occurrence, inspects additional words in the sentence
that inform about the kind of associations, for example the
word “phosphorylates” in the sentence “kinase A was found
to phosphorylate protein B”. This approach has been fol-
lowed to automatically derive typed relationships between
proteins.[67, 68]

Despite its simplicity, the co-occurrence approach has
been successfully applied to engross the list of annotations
in resources such as STITCH and STRING,[69, 70] or to deter-
mine metabolic and pharmacokinetic pathways.[71, 72]

NLP techniques offer more sophisticated means of Rela-
tionship Extraction based on lexical and syntactic analyses.
These techniques can be used, for instance, in template-
matching or rule-based strategies, which have been success-
fully applied to mine relationships for entities such as pro-
teins and genes,[73–75] pharmacogenomics entities,[76] or
drugs and cytochrome proteins.[77, 78] They have even been
used for the extraction of numerical pharmacokinetic
values in,[79] where syntactic analysis was limited to just de-
termining the subjects of phrases which where then used
in a template matching strategy.

4 Applications

One of the more interesting applications of text mining in
this domain is the inference of the mechanisms of action
based on the network of drugs and their phenotype ef-
fects. For example, the similarities of the side effects associ-
ated to a set of drugs have been used to propose relations
between drugs and protein target, assuming that drugs
that share a significant number of side effects will act
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through the same targets. The feasibility of this approach
was established in the literature,[80] based on side effects of
commercial drugs. This work lead to a resource called
SIDER that compiles side effects for approximately 900
drugs.[81]

An alternative strategy is the use of information on re-
ported adverse events instead of the one on side effects.
Information on Adverse Events can be obtained from the
adverse event reporting systems (AERS), where health pro-
fessionals report these adverse events directly, or perhaps
can be extracted from patient generated content, organ-
ized in patient forums and blogs.[82] It has been pointed
out that text mining over patient generated content suffers
from the more colloquial use of language, but, in some set-
tings, they may still provide information that would com-
plement the one provided by health professionals.[83] Addi-
tionally, some studies have suggested the feasibility of
using patient reported Adverse Events in pharmacovigi-
lance.[84]

Another interesting area of application of text mining is
the extraction of toxicological information. The ADME/Tox
domain includes linking drugs to liver toxicities;[85] extract-
ing pharmacokinetic values;[79] or associations between
drugs and cytochrome proteins.[77, 78]

On the biological domain the most demanded applica-
tions are those involved with linking drugs to diseases via
their protein targets. For example, text mining derived
drug-protein and protein-disease associations are part of
the Pfizer discovery pipeline, as reported in a recent arti-
cle.[68] Some online tools that can be used for this purpose
are Pharmspresso.[20] and Polysearch. ,[21] which can detect
associations between various entities. Both tools use sen-
tence level co-occurrence, and consider several other enti-
ties in addition to drugs, gene/proteins, and diseases, such
as cell types, cellular locations, or mutations. Other related
text mining systems are: CoPub,[86] IDMap,[61] CAESAR,[87]

and ENDEAVOUR.[88] CoPub links drugs to diseases through
proteins using co-publication, but uses the MeSH annota-
tions of the articles/abstracts instead of the direct detection
of the entities (NER). IDMap, is a downloadable tool with a
graphical interface devised to investigate the properties of
chemicals and their protein targets; it uses co-publication
to determine chemical-target associations. CAESAR links
genes to human traits, while ENDEAVOUR is a gene-priori-
tizing tool that also incorporates text-mining derived infor-
mation.

Text mining derived associations have been used in gen-
erating network information valuable for -omics analysis of
chemicals in a systems biology context: protein–protein in-
teraction networks,[89] metabolic networks,[71, 90–92] regulatory
networks,[75] and pharmacokinetic pathways.[72] Complete
pathways, regulatory networks or interaction modules gen-
erally cannot be extracted from a single article. Generating
such networks automatically requires the concatenation of
events from multiple documents that share the presence of
common individual bioentities. This makes the procedure

especially cumbersome, as it is currently virtually impossi-
ble for a text mining application to determine whether the
contextual conditions of an event derived from one article
are sufficiently similar to the ones described by another ar-
ticle. Moreover, some of the associations (e.g. gene regula-
tion, enzyme-substrate-product relations) rely on the iden-
tification of the directionality of the relationship. Therefore
most of the automatically generated networks assume
some sort of generalization that does not always satisfacto-
rily describe the constraints of real biological networks.

Additionally, a number of relevant efforts have been
made to extract the parameters corresponding to the bio-
chemical reactions. Rojas et al.[93] used the regularities in
the terminology used to refer to the parameters in the liter-
ature, and Hakenberg et al. applied machine learning ap-
proaches to classify whether documents describe experi-
mentally obtained parameters for kinetic models.[94] A more
fine-grained extraction pipeline for kinetic information ex-
ploiting dictionary and rule based methods to recognize
parameters (KM, Ki, kcat, pH, temperatures) and entities
(enzyme names, EC numbers, ligands, organisms, localisa-
tions) important for reconstructing enzymatic pathways
from PubMed abstract has recently been proposed by
Heinen and colleagues.[95]

Text mining is also used to aid in the creation and anno-
tation of the drug/chemical repositories and databases.[38]

The comparative toxicogenomics database (CTD), which
contains information about diseases, genes/proteins, and
cell functions related to chemicals, has reported the use of
text mining to improve curation efficiency.[96] These text
mining tools range from Information Retrieval systems to
systems that enhance reading experience. Information Re-
trieval systems are used for the identification of pharmaco-
genomics articles,[97] or to help patent searches by annotat-
ing them with MeSH terms.[98] Some even allow structure-
based queries over patent records, like SureChem, an
online site that uses chemical NER and name to structure
conversion. Tools that directly enhance the documents in
the browser are also known as user scripts,[99] like Re-
flect,[100] which offers a browser plug-in that can detect
named chemicals and genes/proteins, and link them to
other databases and bioinformatics systems. SENT[101] ex-
tracts topics discussed in a corpus of literature (for example
articles describing a list of genes specified by the user) as a
succinct list of representative terms. The associated online
interface integrates a literature examination tool that ranks
that corpus of articles by relevance to those particular
topics.

Finally, in the context of personalized medicine one of
the current limitations for adapting medical treatments to
particular patient characteristics is the difficulty in associat-
ing genetic alterations detected in the patient to potential
drug treatments. Part of this information may be in medical
records and medical trials (patient information, drug treat-
ments, genotyping or genomic information), which are par-
ticularly difficult to access and process. One of the applica-

Mol. Inf. 2011, 30, 506 – 519 � 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.molinf.com 515

Text Mining for Drugs and Chemical Compounds

www.molinf.com


tions of text mining in this area is associated to the cura-
tion the PharmaGKB database,[102] where genetic variations
are linked to drug responses.[103, 104]

5 Other Related Text Mining Approaches

Even if we have focused on the basic process of NER and
Information Extraction, there are a number of other text
mining applications that are relevant in the domain of bio-
logical chemistry and drug development. In particular,
those related with Information Retrieval and document cat-
egorization.[105]

Information Retrieval systems are designed to rank large
collections of documents, typically scientific articles, accord-
ing to some criteria defined by the user. The most promi-
nent of such systems is the interface to the search for simi-
lar abstracts in PubMed, based on similarities between dis-
tributions of words.[106] These systems function as part of
the PubMed facilities. PubMed receives around 60 million
user queries each month,[107] and allows queries specifying
fields such as ‘substance name’ or ‘pharmacological action’.
These queries can specify terms appearing in different
fields of the article entry (e.g. title, abstract, authors) or
make used of the MeSH terms, a hierarchical vocabulary of
terms used to index PubMed articles.

Many of the applications in this field are based on Ma-
chine learning algorithms trained with information derived
from documents of interest to the user, Published examples
are the classification of articles relevant to pharmacoge-
nomics[97] or describing drug-drug interactions.[108]

In addition to scientific articles that are extensively pro-
cessed by molecular biology text mining application, other
sources of documents relevant to drug research are patents
and competitive intelligence resources. Indeed, according

to Roberts et al. competitive intelligence resources and pat-
ents second scientific articles in the interest for users with
queries that are mainly on drugs, diseases, and genes.[109]

The evaluation of chemical Information Retrieval engines
has been carried out in a community challenge called
TREC-CHEM, an initiative centered in determining how In-
formation Retrieval methods adapt to patents that contain
chemical names and formulas.[110]

To close the circle, applying NER techniques can be used
to enhance Information Retrieval and document categoriza-
tion systems. For example, systems like Semedico[111] im-
prove retrieval by automatically tagging documents with
terms of different type, including compounds and drugs.
Linking text to chemicals also allows for the formulation of
complex structure-based queries with which to find com-
pounds containing a particular substructure (such as phar-
maco or toxicophores) or computing structure similarity
metrics to a query molecule. Applications like SureChem
offer this functionality to search for patents where chemical
compounds are previously identified using NER.

6 Outlook

Chemical databases and the associated literature extraction
tools have been mainly proprietary, which makes them fun-
damentally different from their counterparts in the molecu-
lar biology field, where the availability of a huge body of
freely available databases and applications has contributed
to a substantial improvement of the related research areas.
Fortunately, the trend has begun to change after substan-
tial efforts to share knowledge and provide open access da-
tabases of chemical interest. Some of the new openly ac-
cessible resources include databases such as DrugBank,
ChEMBL, ChemProt and CTD, together with the develop-
ment of important lexical resources like PubChem and
Jochem, and chemical ontologies like ChEBI (Chemical enti-
ties of biological interest) and the Chemical Information
Ontology (CHEMINF).

Specially promising will be the three-way integration of
chemical information, biological- genomics- experimental
data and pharmacological and medical information, essen-
tial for a better understanding of the relevant properties of
chemical entities in comprehensive biological context. The
combination of information organized in knowledge bases
and Information Extraction techniques is essential to sus-
tain this type of efforts. An initial example of the combina-
tion of information across domains and data sources could
be the reconstruction of metabolic pathways.[112, 113] In this
case it is necessary to merge biological and chemical infor-
mation; combining the knowledge on enzyme activity de-
rived from the description of the function of proteins with
the one on the specific chemical compounds subject to the
reactions and transformations, with the obvious complica-
tions of connecting the substrates and products of consec-
utive reactions.

Table 4. Selected applications.

Name Comments

OSCAR3 and Reflect[19, 95] Finds mentions to drugs and
compounds

OPSIN (OSCAR3) and
name = struct

Name to structure conversion

SureChem (commercial) Structure based searching for au-
tomatically annotated patent
documents

QueryChem[100] Find compounds similar to a
query structure and combines
their names with user defined
terms on a Google query

FACTA + , Polysearch, Pharm-
spresso, CoPub, STITCH and Lit-
miner[63, 18, 17, 62, 101, 102]

Co-occurrence based discovery
for drugs, compounds, and other
entities

ABNER, BANNER and Meta-
Map[38, 57, 58]

Identification of gene mentions
(ABNER,BANNER), diseases, ad-
verse events and other UMLS
terms (MetaMap).

516 www.molinf.com � 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Mol. Inf. 2011, 30, 506 – 519

Review Miguel Vazquez et al.

www.molinf.com


Furthermore, identifying numerical values, such as those
describing the affinity of a compound-protein interaction,
may be of as much importance as identifying the involved
entities themselves. We have found little work on the ex-
traction of numerical values from text for the pharmacolog-
ical domain; one example is the work done by Wang
et al.[79] It seems that mining numerical values would re-
quire some specific considerations. For example, numerical
values are often found in tables; extracting text from tables
can be particularly difficult, especially when processing
documents in unstructured formats such as PDF. Numerical
values may need also to be extracted along with their
units, and these must be understood by the system so that
‘3 wk’ can be recognize as a time span, and as been the
same as ’21 days’. These numerical values are often extract-
ed manually to be included in databases such as
ChEMBLdb (public : https://www.ebi.ac.uk/chembldb/in-
dex.php) or GVKBio (commercial : http://www.gvkbio.com/).
Text mining methods to either extract them automatically,
or to assist manual curation would be desirable.

Text-mining assisted construction of pathway knowledge
bases based on manual validation of automatically extract-
ed facts has been a promising strategy.[5, 114] Despite prog-
ress made by these initial steps, there is still a long way
ahead to integrate pathway reconstruction with informa-
tion about reaction parameters and physiological informa-
tion, in order to enable the modeling of the dynamic prop-
erties of corresponding systems. Text mining will undoubt-
edly be important not only for the extraction of the basic
facts and entities, but for the description of the experimen-
tal conditions that will constrain the corresponding models.

Integration of text mining and high-throughput data
analysis together with biochemical and signalling pathway
databases can also be seen as a novel mechanism for
target discovery and biomarker identification.[115] Current
bottlenecks still reside in the lack of open access systems
for efficiently handling chemical-relevant documents, to-
gether with the limited availability of Optical Character Rec-
ognition (OCR) systems optimized for chemical literature
that can handle scanned PDF files, the common document
format of patents.

A fundamental building block of chemical text mining
systems consists in the detection of chemical compound
mentions. A strategy to improve NER for particular tasks is
to use community and shared task evaluation efforts, as
previously explored for the recognition of genes/protein
mentions in case of the BioCreative assessment[6]). Setting
up text mining evaluation efforts like BioCreative for
chemistry, a kind of ChemCreative could help to promote
both the implementation of new, cutting edge technolo-
gies, as well as independently determining the state of the
art in recognition of compound mentions using a common
Gold Standard evaluation data set. One step in this direc-
tion was taken by CALBC (Collaborative Annotation of a
Large Biomedical Corpus) with the aim of integrating auto-
matically generated annotations of multiple systems for

large text collections, covering also the annotation chemi-
cal compounds.[116]

Following the model of the molecular biology domain
there is also considerable interest in assisting community
annotation efforts through text-mining applications,[117]

building semi-automatically manually validated databases
and online community portals, an endeavour that requires
a critical mass of active contributors. The PubChem data-
base, for instance, allows deposition of new user-provided
compounds after a series of validation steps to ensure cor-
rectness of the compound and avoid redundancy, provid-
ing links to the depositor in the data source field of the
PubChem record, e.g. to the University of Minnesota Bioca-
talysis/Biodegradation Database (UM-BBD) in case of Pub-
Chem compound SID:14709858.

A different level of community collaboration is the asso-
ciation of academic groups, small and medium enterprises,
and pharmaceutical companies (eTOX consortium, see
http://www.etoxproject.eu/) to enable the mining of phar-
maceutical industry legacy toxicoloy reports in the search
of information to complement in silico toxicology predic-
tions and assisting in off-target detection efforts.
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