
Extended dependency graph for
BioC-compatible protein-protein interaction
(PPI) passage detection in full-text articles

Yifan Peng1, Cecilia Arighi1,2, Cathy H. Wu1,2, and K.Vijay-Shanker1

1Computer & Information Sciences
2Center for Bioinformatics & Computational Biology

University of Delaware, Newark, DE 19716, USA
{yfpeng,arighi,wuc,vijay}@udel.edu

Abstract. Protein-protein interaction (PPI) is important in the field
of experimental biology as well as bioinformatics. In BioCreative V, we
participated in the BioC task and developed a PPI system to detect pas-
sages with PPIs in the full-text articles. By adopting the BioC format,
the output of the system could be seamlessly added to the biocuration
tool with little effort required for the system integration. Our PPI sys-
tem utilizes Extended Dependency Graph as an intermediate level of
representation to abstract away syntactic variations in the sentence. As
a result, we only use three basic predicate-argument rules to extract PPI
pairs in the sentences, and two additional rules to detect additional pas-
sages with PPI pairs. Experiments on 20 in-house full-text articles show
that we are able to obtain a recall of 77.8. By using only three basic rules,
experiments on AIMed further confirm that we can achieve a precision
of 91.5 of sentence selection and an F-value of 62.8 of instance selection.
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ing, BioC

1 Introduction

Protein-protein interaction (PPI) extraction detects statements of physical in-
teractions between proteins from biomedical literature. Many efforts have con-
tributed to different aspects of PPI in the bio-text mining community; from
PPI document classification, to PPI or PPI method detection [1, 6, 9, 14, 15]. In
particular, the BioCreative V BioC task (Track 1) proposes to build a frame-
work that allows different text mining tools to be seamlessly integrated into a
pipeline for literature curation of protein interactions (both genetic and physi-
cal interactions) to be evaluated by BioGRID database curators [5]. Our team
participated in this task by contributing in detecting passages with PPIs over
full-text articles.

Full-text articles by nature use various syntactic constructions. These textual
variations can be problematic for PPI systems to account for. A central theme to
this work is the hypothesis that the varied forms of PPI mentions are essentially

30



Jak-2 activated Raf-1

nsubj dobj

arg0 arg1

(a)

Raf-1 was activated by Jak-2

auxpass prep by
nsubjpass

arg1 arg0

(b)

activation of Raf-1 by Jak-2

prep of
prep by

arg1
arg0

(c)

Fig. 1: Sample EDG with an active (a), passive (b), or normalized (c) verb.

due to certain syntactic structural complexities. By capturing regularities un-
derlying these complexities, we can build a system where the extraction patterns
are kept simple.

We have recently proposed a novel text representation, the Extended Depen-
dency Graph (EDG) that abstracts away certain text variations [11]. EDG not
only considers syntactic dependencies between words in a sentence, but also uti-
lizes information beyond syntax to capture different dependencies. In particular,
EDG adds numbered arguments in the dependency graph to provide consistent
argument labels across different textual forms. For example, Fig. 1 shows EDGs
of three text fragments with syntactic edges above the words and numbered ar-
gument edges below. The numbered argument edges, arg0 and arg1, unify the
realization of active, passive and nominalized forms of the verb “activate” for
purposes of PPI detection.

In the BioCreative V BioC task, one contribution of our project is using
EDG to extend the framework for fast development of pattern-based biomedical
relation extraction. This intuition is partially based on our previous work that
leverages syntactic variations in a language to achieve high precision [12], as
well as the work that applies sentence simplification to improve the coverage of
extracted relations [13]. EDG allows us to use only three sets of basic rules to
detect PPI pairs.

Another contribution is proposing a set of task-specific rules to boost recall
of PPI passage detection. In PPI mention detection, the system needs to identify
whether a given protein pair in a sentence has PPI relationship or not. But in
the BioC task, we aim to identify passages mentioning PPIs, and do not need to
extract specific PPI instances. By exploiting this difference, we propose a set of
task-specific rules based on the human PPI annotation samples. After detecting
PPI instances using basic rules, the additional rules extend the boundary of
passages containing PPI, and detect more passages over the full-text article by
utilizing the detected PPI mentions.

We conducted two experiments to test the system. First, one of the authors
(CA) annotated 20 full-text articles. The annotations mark (1) the passages in
abstracts and result sections with PPIs that are newly discovered in the article,
and (2) all unique PPIs in the full-text based on BioGRID. Experiments on
these 20 in-house full-text articles show that we are able to obtain a good PPI
extraction system with a recall of 77.4. Second, we evaluated the system on
AIMed [3]. We obtained an F-value of 75.4 at a precision 91.5 for the detection
of sentences with PPI.

Summarizing our participation in the BioCreative V BioC task, we have (1)
developed a module to find passages with physical PPIs using BioC format [7],
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(2) applied the module for full-text articles, and (3) integrated the module into
the collaborative framework for the BioGRID annotation system. The input of
our module are BioC documents with gene/protein named entity marked and the
output is to add BioC annotation indicating which sentence or block of sentences
contains PPIs. The final whole system proves that our system can be seamlessly
added to the biocuration tool with little effort required for the integration.

2 Methods

2.1 Extended dependency graph

In this paper, we use EDG to represent the structure of the sentence [12]. The
vertices in an EDG are labelled with information such as the text, part-of-speech,
and lemma. If an entity mention spans multiple tokens in a sentence, we merge
their corresponding vertices into one vertex.

EDG has two types of dependencies. The syntactic dependencies are obtained
from CCProcessed dependencies output by applying Stanford dependencies con-
verter [8] on a parse tree obtained by Bllip parser [4]. The other type of de-
pendencies is the numbered arguments, whose idea is based on the guidelines of
PropBank [2]. For the PPI detection task, we use only arg0 and arg1 in EDG.

To create arg0 and arg1 in EDG, we use different syntactic dependencies
obtained from the Stanford typed dependencies. We also detect non-syntactic
relations such as is-a, member-collection, and part-whole and propagate arg0
and arg1 using these relations. More details of EDG construction can be found
at [12].

2.2 Basic predicate-argument rules

EDG abstracts away the syntactic variations in the sentence. Thus by using
EDG, the number of rules to extract PPIs are greatly reduced. In our system,
only three sets of rules are used. The list of different trigger words can be found
at http://www.eecis.udel.edu/~ypeng/bc5bioc/support_materials.html.

1. Protein
arg0←−−− PPI predicate trigger

arg1−−−→ Protein

2. Protein
arg0←−−− PPI noun trigger

arg0−−−→ Protein

3. Protein
prep of←−−−−− process trigger

arg0←−−− indirect trigger
arg1−−−→ Protein

Rule 1 is a set of most basic and strict rules. We use PPI triggers (e.g., asso-
ciate” and “bind”) and post-transcriptional modification triggers (e.g., “acety-
late” and “methylate”) in the system. Because EDG has unified different forms
of predicates in the vertices, we only need to list lemmas of triggers in the rules.

Rule 2 accounts for triggers that are not derived from verbs (e.g., “complex”).
This rule matches the noun phrase such as “[X]protein-[X]protein complex”.

Rule 3 accounts for indirect PPI triggers such as “block” and “mediate”.
Indirect trigger often indicates a biological process whose arguments are not
proteins but some activities of proteins. In our system, the process triggers in-
clude “activity” and nominalization of PPI triggers whose suffixes are “-ion”.

32



To match the basic rules to EDG, we use the subgraph-matching algo-
rithm [10]. For each rule, a subgraph is constructed. Both nodes and edges in the
subgraph are predicates of EDG nodes and edges. The worse-case complexity of
the subgraph-matching algorithm is O(n2kn) where n is the number of vertices
in EDG and k is the vertex degree.

2.3 Non predicate-argument rules to increase the recall

So far, we have discussed EDG with basic rules to detect PPI interacting part-
ners, and then select the corresponding sentences. To conform to the BioCreative
V BioC task, we felt that other sentences that contain the detected protein pairs
might also be the interest of biocurators. For example, if we know that “CP”
and “Rpt1” interact elsewhere in PMID 19412160, then we would like to pick
the sentences such as “In contrast, another group of Rpts, including

::::
Rpt1, Rpt2,

and Rpt5, is proposed to initially assemble free of the
::
CP in the BP1 complex”

in the same document. However, the basic rules in previous section are insuf-
ficient in this case. To pick such sentences, the following two rules are applied
when we find two proteins are known to interact somewhere in the document. It
is noteworthy these rules only boost the recall of passages detection.

Experimental techniques with 2 proteins. To identify new PPIs, experi-
ments are conducted and described in the paper. Such description will be cap-
tured by our system when both the experimental technique and two proteins are
mentioned in the same sentence. In our system, we used 5 technique keywords:
“2-hybrid”, “BIFC”, “cosedimentiation”, “ITC”, and “pulldown”.

Extension with PPI triggers and 2 proteins. In some complicated sen-
tences, the PPI triggers and two proteins are mentioned but there is no direct
edge between trigger nodes and proteins in EDG. This is especially true when
this sentence (S1) is followed by another sentence (S2) where the interaction be-
tween these two proteins has already been detected. The hypothesis is that the
block of sentences is a continuation of the same topic. In such case, we combined
S1 and S1 into one passage.

3 Evaluation and analysis

In the BioC task, 120 articles are provided for the annotation. Since there is
no gold annotation, we randomly chose 20 articles as the test set. One of the
authors (CA), who is an experienced biocurator, annotated the abstract and re-
sult sections. We chose result sections because they describe experimental results
about PPI events. We also got the PPI information for these 20 articles from
the BioGRID database. Note, BioGRID only marks PPIs in the articles, but
does not identify the passages. Table 1 shows the recall of PPI passage detec-
tion. We did not report the precision because the curator only annotated part of
the document and only identified the PPIs that are new in the document. Over
the total 120 full-text articles, our system extracted 15,529 passages with PPI,
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Table 1: Recall on 20 in-house documents (only abstract and result sections).

Section Passages with PPI Unique PPI by BioGRID

Abstract 80.0 –
Results 77.6 –

Total 77.8 74.1

among which 78.7% are from abstracts and result sections. The counts confirmed
that both sections are most important to describe PPIs.

In the second experiment, we applied the relation extraction system on the
AIMed corpus [3], which is commonly used in PPI extraction task and has been
suggested by the task organizers as a training set (for machine learning systems).
Table 2 reports two sets of performance metrics based on how we compare the
system annotation with the gold standard. Both results were obtained by using
only the basic rules (Section 2.2). The first row shows the performance of select-
ing sentences with PPI. We conducted this experiment because the BioC task
is for PPI passage detection rather than the PPI instance detection. Likewise,
we modified the AIMed annotations to indicate which sentence has the PPI. For
the sentence selection task, we achieved a high precision of 91.5. The second
row shows the performance of detecting PPI pairs, which is the traditional PPI
extraction task, thus our results are comparable with other works. We obtained
F-value of 62.8. It is noteworthy that we achieved these results by using just
three basic rules, and the results are comparable with, although slightly lower
than, those of the start-of-the-art systems. We believe that this suggests the
advantages brought out by using EDG. In future, we will include more rules to
improve the performance.

Table 2: Evaluation results on AIMed.

TP FP FN Prec. Recall F-value

Sentence 367 34 206 91.5 64.1 75.4
Instance 552 205 448 72.9 55.2 62.8

4 Conclusion

In BioCreative V BioC task, we developed a PPI system to detect passages
with PPIs in the full-text articles. By using the BioC format, the output of the
system could be seamlessly added to the biocuration tool with little effort. In
addition, we evaluated the PPI system on a set of 20 documents, for passages
with PPIs, as well as the widely used AIMed corpus. Both experiments confirm
that the system is able to achieve high recall for PPI passage detection (∼82 on
20 documents) and high precision (∼90 on AIMed).

The development of our system is based on the semantic dependencies be-
tween entities that is critical for either pattern-based or machine learning sys-
tems. We believe this information is not task-dependent and an enhanced un-
derstanding will contribute to developing systems for various relation extraction
tasks, such as genetic interactions defined in BioGRID in this track.
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