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Abstract. Identifying chemical-disease relations (CDR) from biomedical 

literature could improve chemical safety and toxicity studies. This paper 

proposes a Shortest Dependency Path Tree (SDPT) to capture the most direct 

syntactic and semantic relationship between chemical and disease. Based on 

SDPT, structured dependency features (SDF), structured phrase features (SPF) 

and flattened dependency features (FDF) are proposed to represent syntactic 

information between two entities, which are all effective for CDR. Experiments 

on the CDR training and developing dataset show that our method achieves 

55.05% F1-score.  
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1 Introduction 

The BioCreative V proposes a challenge task of automatic extraction 

chemical-disease relations (CDR) from the biomedical literature in 

support of new drug discovery and drug safety surveillance. There are 

two specific subtasks: (1) Disease Named Entity Recognition and 

Normalization; (2) Chemical-induced diseases relation extraction. This 

paper focuses on the subtask (2). 

Relation extraction (RE) aims at identifying instances of pre-defined 

relation type in text [1-5]. Generally, machine-learning based RE 

approaches can be divided into two categories: feature-based and 

kernel-based methods. Feature-based methods focus on defining 

flattened features ranging from lexical to syntactic and semantic 

information. Kernel-based methods exploit structured representations 

of instances. Tree kernel [6] is one of the most commonly used kernels, 

which could capture the structured syntactic connection information 

between the two entities. The effective representations of relation 
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instances have been studied [7-9]. Zhang et al. [7] investigate five tree 

spans of a phrase tree for general RE task of ACL, among which the 

Path-enclosed Tree (PT) achieves the best performance. Phrase tree 

represents constituents of neighbours, which is suitable for capturing 

local syntactic information. For two entities over long distance, phrase 

representations will carry noisy and influence the performance of 

relation extraction.  

The chemical and disease entities in a sentence are usually over long 

distance. Dependency structure reflects semantic modification 

relationships of words in a sentence, which compactly represent global 

syntactic information. To grasp global syntactic information connecting 

chemical and disease entities, this paper presents a Shortest 

Dependency Path Tree (SDPT), which could represent the most direct 

syntactic and semantic relationship between two entities. Based on 

SDPT, structured dependency features (SDF), structured phrase 

features (SPF) and flattened dependency features (FDF) are presented 

to represent syntactic information. These features are integrated by 

composite kernel [10]. Experiments on the CDR training and 

developing dataset show that our methods achieve 55.05% F1-score. 

2 Discussion 

In this section, we describe the methods of obtaining syntactic 

information, and present the experimental results on the CDR dataset.  

Methods 

To simplify the CDR problem, we ignore CDR over sentences and only 

identify CDR in a sentence. Each chemical and disease pair in a 

sentence is regarded as a candidate instance. In the following 

subsections, we describe SDPT, SDF, SPF and FDF based on SDPT. 

Besides, we also employ widely used basic features to further improve 

the performance of CDR extraction. 

Shortest Dependency Path Tree (SDPT). 

SDPT is the shortest path sub-tree linking two entities in dependency 

tree. Taking the sentence 1 as an example, there are a chemical entity 

denoted in wave line and four disease entities denoted in underline. The 

chemical entity “fentanyl” is associated with the four disease entities. 
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Sentence 1: Various reported side effects of fentanyl administration 

include chest wall rigidity, hypotension, respiratory depression, and 

bradycardia. 

Fig. 1. Shortest dependency path tree (SDPT) 

For the fragment of dependency tree for sentence 1 shown in Fig.1 

(1). SDPT of the candidate “fentanyl” and “hypotension” is shown in 

Fig.1 (2).  SDPT is the most direct syntactic representation connecting 

the two entities 

Structured Dependency Features (SDF) based on SDPT.  
For the SDPT shown in Fig.1 (2), tree kernel cannot capture 

dependency relation on the arcs (e.g., “dobj” relation between node 

“include” and “hypotension”). To capture dependency relation, we use 

the dependency relation labels to replace the corresponding word and 

PoS pairs on the nodes of original SDPT as shown in Fig.1 (3). And 

then, make the PoS tags as the children of the corresponding relation 

nodes, the fathers of their associated words. 

Structured Phrase Features (SPF) based on SDPT. 

Fig. 2. Structured phrase features (SPF) based on SDPT 

To capture constituents and exclude redundancy of two entities with 

long distance, we propose SPF based on SDPT. For the fragement of 

phrase tree for sentence 1 shown in Fig.2 (1), SPF of the candidate 

“fentanyl” and “hypotension” is shown in Fig.2 (2). SPF is a sub-tree 
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consisting of the words in SDPT (denoted in underline in Fig.2 (1)) and 

their ancestral constituents (denoted in bold).  

Flattened Dependency Features (FDF) based on SDPT. 
FDF based on SDPT contain keyword features and root features: 

 Keyword features:

Trigger: whether SDPT contains any trigger word, e.g. alter, effect.

Negation: whether SDPT contains any negative word, such as not, no.

Trig&Neg: the combination features of Trigger and Negation features.

 Root features:

Position: the root word locates before, between, or after the two

entities.

Context: word, PoS and chunk features in the window [-1, 1].

Basic Features. 

 Entity: word, PoS and chunk of two entities in the window [-3, 3].

 Distance: the number of words between two entities.

 Number of Verbs: The number of verbs before, between and after the

two entities.

Experimental Results 

We use the CDR training and developing dataset [11-12] for training 

and testing respectively. Disease and chemical entity recognition are 

accomplished with tmChem [13] and Dnorm [14-15] toolkits. Berkeley 

Parser
1
, Gdep Parser

2
 and GENIA Tagger

3
 are employed to get phrase

tree, dependency tree and lexical information, respectively. SVM-

LIGHT-TK 1.2 toolkit
4
 is used, which provides polynomial kernel and

tree kernel to capture flattened and structured information respectively. 

Effects of syntactic representation based on SDPT. 
Table 1 lists the performances of FDF, SDF, and SPF derived from 

SDPT. From the results, we can see that adding FDF to basic features, 

the F1-score is improved by 1.15%. The sole SDF with tree kernel 

performs better than complicated basic features. Combination of SDF 

and SPF can further improve the performance. These indicate that FDF, 

1 Available: http://code.google.com/p/berkeyparser/ 
2 Available:http://pepple.ict.usc.edu/ sagae/parser/gdep/ 
3 Available:http://www-tsujii.is.s.utokyo.ac.jp/GENIA/tagger/ 
4 Available:http://disi.unitn.it/moschitti/Tree-Kernel.htm 
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SDF and SPF derived from SDPT are effective for CDR extraction. 

Combining flattened and structured features with composite kernel 

achieves significantly higher F1-scores compared to the sole flattened 

and sole structured features. 

Table 1. Effects of syntactic representation based on SDPT 

Features P% R% F1 % 

Flattened 
Basic 56.22 48.13 51.86 

+ FDF 57.05 49.51 53.01 

Structured 
SDF 58.54 48.32 52.94 

+SPF 58.81 48.72 53.29 

Combined Basic+FDF+SDF+SPF 58.63 51.87 55.05 

Comparision with other structured syntactic representation.  
We compare our SDF with the other structured syntactic representation. 

The Path-enclosed Tree (PT) [7] is adopted for CDR, which performs 

worse than SDF as shown in Table 2. In addition, SDF are extended 

with the dependent nodes of all nodes in SDPT to enrich the context 

information. From Table 2, we can see that the extending SDPT is 

much worse than SDF. This indicates that SDF could provide the useful 

semantic and structured syntactic connecting the two entities. 

Table 2. Comparision with other structured syntactic representation 
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