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Abstract. We describe our submissions to the BioCreative V.5 CEMP task for 

chemical named entity recognition in patents. We experimented with improving 

the robustness of the predictions made by TaggerOne ± a biomedical named en-

tity recognition system intended to be generic to any entity type ± through three 

methods. First, we improve the feature representation for out-of-vocabulary 

words with Brown clusters. Second, we improved the generalization of the model 

under cross-domain shifts with adversarial training. Third, we apply an ensemble 

approach. We find all three approaches to improve performance. Our highest per-

formance was 0.8847 F-score. TaggerOne is publicly available at 

https://www.ncbi.nlm.nih.gov/bionlp/tools/taggerone/  

Keywords. Chemical named entity recognition; adversarial training; ensemble 

methods 

1 Introduction 

Chemical patents are an attractive target for text mining due to their im-

portance as a primary source for medicinal chemistry. However patents 

are less formal documents than published articles, and therefore more 

likely to contain noise ± mistakes or even intentional obfuscations ± in 

addition to jargon specific to biomedical chemistry. The recent series of 

shared tasks in chemical text mining at the BioCreative workshops have 

focused on chemical named entity recognition (NER) in both PubMed 

abstracts [1, 2] and chemical patents [3]. 

NCBI developed a pair of machine learning based systems for the 

CHEMDNER chemical named entity recognition task in PubMed ab-

stracts. These systems, tmChem model 1 and model 2 [4], are both based 

on conditional random fields [5] and use a rich feature approach [6, 7]. 

NCBI created an ensemble system for the subsequent CEMP task for 
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chemical NER recognition in patents, taking advantage of the numerous 

open source chemical NER systems created for the previous 

CHEMDNER task [8]. The resulting ensemble had very high perfor-

mance but was of limited practical use due to the significant computa-

tional overhead of obtaining predictions from multiple models and the 

difficulty of simultaneously deploying the various systems. 

Previous work by Sutton, Sindelar and McCallum [9] shows that the 

performance improvements achieved when combining classifiers are 

due, at least in part, to a reduction in weight undertraining. When training 

a single model, the presence of one or more strong features during train-

ing can ³GURZQ�RXW´�WKH�FRQWULEXWLRQ�RI�ZHDNHU�IHDWXUHV��FDXVLQJ�WKHLU�

weights to be too low when the strong feature is not present at test time. 

Ensemble methods address this by emphasizing different subsets of the 

feature space, thus reducing the availability of the highly predictive fea-

tures and making the average of the model predictions more generaliza-

ble. Neural networks address this issue with dropout: a percentage of in-

puts to each layer are randomly dropped during training [10]. In struc-

tured machine learning methods, however, Søgaard [11] suggests train-

ing with an antagonistic adversary: rather than removing features at ran-

dom, remove a randomly selected subset of those that are highly predic-

tive. Søgaard shows that training with an antagonistic adversary is par-

ticularly effective for cross-domain shifts, where the distribution of the 

test data does not match that of the training distribution. 

In NER a primary source of error is vocabulary that was not observed 

during training. Our experiments therefore attempted to address this 

source of error in two primary ways. First, we improve the feature rep-

resentation for out-of-vocabulary words by learning word representa-

tions from a large amount of unlabeled data. Second, since out-of-vocab-

ulary effects are a form of cross-domain shift, we experiment with train-

ing using an antagonistic adversary. We also create an ensemble system 

as a benchmark for the upper limit of the performance that can be ex-

pected. We perform our experiments using TaggerOne, a recently re-

leased system for joint named entity recognition and normalization for 

various biomedical entities [12]. The highly flexible online training al-

gorithm used by TaggerOne makes it ideal for experimentation.  

2 Methods 

TaggerOne is a machine learning based system for joint named entity 
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recognition and normalization [12]. Joint training and inference allows 

the model to use the normalization information to inform the NER com-

ponent, resulting in increased performance for both subtasks. The model 

consists of a semi-Markov [13] structured linear classifier [14] using a 

rich feature approach for NER [6, 7], a supervised semantic indexing ap-

proach for normalization [15, 16]. The model is trained with the online 

training algorithm MIRA (the margin-infused relaxed algorithm) [17], 

and requires the specification of two hyperparamters: the regularization, 

which controls the size of the updates, and the maximum step size, which 

sets an upper bound on the update size. As a semi-Markov model, it per-

forms segmentation and classification simultaneously, allowing one state 

per entity type instead of two states (as in the BIO scheme) or four states 

(as in the BIOEW scheme). Our adaptation of TaggerOne in this manu-

script does not make use of its normalization capability. 

The original TaggerOne feature set includes a wide variety of features. 

At the token level, these features include the token text, stem, part of 

speech, character n-grams, and patterns. Features at the segment level 

include surrounding characters, tokens and whether the segment contains 

unbalanced parenthesis. Some models in this work include a dictionary 

feature containing the chemicals lexicon provided by the Comparative 

Toxicogenomics Database (CTD, http://ctdbase.org/), which is derived 

from the chemical branch of MeSH (https://www.nlm.nih.gov/mesh). 

We slightly augmented this list to include the names of all of the chemi-

cal elements. 

We improved the feature representation for out of vocabulary words 

by leveraging the availability of a large unlabeled text dataset from a 

similar domain, namely, PubMed. Previous work has shown Brown clus-

ters [18] to be useful in NER [19]. In addition, more recent work has 

improved performance by learning a word representation from a large 

amount of unlabeled data [20]. Our experiments employed the Brown 

clusters and the clustered word representation vectors distributed by the 

banner-chemdner tool [21]. Our preliminary experiments showed an im-

provement with Brown clusters for lengths 4, 6, 10 and 20 (data not 

shown), which we adopted for the final experiment. Our preliminary ex-
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periments did not show an improvement for word vector clusters, how-

ever (data not shown), and word vector clusters were therefore not con-

sidered further.  

Figure 1. Description of the individual models used to train the ensemble and the flow of 

data through the system.  Diagram adapted from [8].

Our implementation of antagonistic adversaries [11] selects a subset 

of features at random for each training instance ± the percentage of fea-

tures to select being an additional hyperparameter ± then drops those fea-

tures whose weight is greater than one standard deviation of the mean 

weight for all features. We consider the weight of the feature to be the 

Euclidean length of its weights across all states. Features that are dropped 

have their values set to zero for all feature vectors in an instance and 

across all states. For efficiency, features are selected by first sampling 

from a binomial distribution to determine the number of features that 

should be dropped, then the features themselves are selected randomly.  

We included one ensemble run, using a configuration similar to our 

ensemble for the previous CEMP task but using TaggerOne to combine 

the individual predictions. The ensemble used four systems: tmChem 

model 1 and tmChem model 2 [4], the Wuhan University CHEMDNER 

tagger [22] and banner-chemdner [21]. All systems are open source, 

based on conditional random fields [5] and a rich feature approach. The 

systems in the ensemble were trained using combinations of patent and 

PubMed training data, as described in Figure 1. The output of each indi-

vidual system was then input into TaggerOne as a binary feature, which 
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were the only features used, and TaggerOne was trained using the re-

maining training data. We also included the output of tmChem model 1 

as one submission.  

The initial implementation of TaggerOne instantiated features for all 

instances prior to training, making the memory requirement scale 

roughly linearly with the number of instances. This becomes unaccepta-

ble for very large datasets, and is unnecessary since TaggerOne uses 

online training. Merely instantiating features prior to training, however, 

would cause an unacceptable increase in training time. Instead we used 

separate concurrent processes to perform feature extraction and training. 

This allows TaggerOne to scale to arbitrarily large datasets without in-

creasing the training time or the memory requirement. 

3 Results 

Our five submitted runs consisted of three with TaggerOne alone, one 

with TaggerOne as an ensemble, and one with tmChem model 1. We 

separated two thousand patents from the initial training set as a holdout 

set, and designated the remaining documents as the training set. The 

three runs with TaggerOne alone also included the PubMed abstracts 

from the CHEMDNER task as training data [2]. The TaggerOne ensem-

ble was trained as described in Figure 1. tmChem was trained by com-

bining all available patent data with the PubMed abstracts from the 

CHEMDNER task, as for the runs with TaggerOne alone, but also in-

cluded the chemical annotations from the BC5CDR corpus [23]. The 

value of all TaggerOne hyperparameters, when used, was set by cross-

validation on the holdout set. The four configurations of TaggerOne are 

described in Table 1. 

Table 1. Configuration of the four variations of TaggerOne submitted. 

The Enhanced feature set consists of the Initial feature set plus the dic-

tionary feature from the CTD chemical vocabulary and Brown clusters. 
Run Regular-

ization 

Maximum 

step size 

Adversary Feature set 

TaggerOne-Raw n/a n/a n/a Initial 

TaggerOne-Brown 10.0 0.001 0.00 Enhanced 

TaggerOne-Adversary 10.0 0.001 0.03 Enhanced 

TaggerOne-Ensemble 00.1 0.001 0.10 Ensemble 
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The performance of the five models submitted to the task on our internal 

holdout set are described in Table 2.  

Table 2. Results for the five submitted runs on our internal holdout set. 

The highest value is shown in bold. 
Run Precision Recall F-score 

TaggerOne-Raw 0.8405 0.8630 0.8516 

TaggerOne-Brown 0.8383 0.8739 0.8558 

TaggerOne-Adversary 0.8424 0.8746 0.8582 

TaggerOne-Ensemble 0.8532 0.9150 0.8830 

tmChem model 1 0.8799 0.8623 0.8710 

The official performance of the five models submitted to the task are 

described in Table 3.  

Table 3. Official results for the five submitted runs. The highest value is 

shown in bold. 

Run Precision Recall F-score 

TaggerOne-Raw 0.8639 0.8733 0.8686 

TaggerOne-Brown 0.8641 0.8807 0.8723 

TaggerOne-Adversary 0.8635 0.8795 0.8715 

TaggerOne-Ensemble 0.8439 0.9297 0.8847 

tmChem model 1 0.8731 0.8765 0.8748 

4 Discussion 

We first note that the official results are generally higher than the results 

on our internal holdout set. We note that while TaggerOne is intended to 

work well for any biomedical entity type, its performance is nearly as 

strong as tmChem, which is specifically dedicated to chemical NER. We 

VHH�WKDW�XVLQJ�7DJJHU2QH�³RXW�RI�WKH�ER[´�± without setting or optimizing 

hyperparameters ± results in performance that approaches the optimal 

configuration. Alternately, adding Brown clusters improved perfor-

mance for both the holdout and test sets. Adversarial training helped in 

the holdout set, but slightly hurt in the test set, possibly due to the differ-

ence in the holdout and test sets causing the adversarial training hyperpa-

rameter to be set to a suboptimal value. The ensemble provided the high-

est performance. We found adversarial training to help significantly with 

the ensemble configuration in our preliminary experiments (data not 
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shown); achieving this performance required the adversarial training hy-

perparameter to be set to a relatively high value. The strong performance 

by tmChem is primarily due to high precision.  

5 Conclusion 

We have explored several methods of improving the robustness of pre-

dictions for chemical named entity recognition in patents. We have 

shown that improving the feature representation for out-of-vocabulary 

words (via Brown clusters) improves performance. Adversarial training 

improved performance on the holdout set and may be worth exploring 

further. The highest performances were obtained by the dedicated tool 

for chemical NER, tmChem, and the ensemble approach with Tag-

gerOne.  
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