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 Preface 
Welcome to the BioCreative VI workshop which is being held in Bethesda MD, USA on October 
18-20, 2017. On behalf of the Organizing Committee, we would like to thank you for your
participation and hope you enjoy the workshop.

The BioCreative (Critical Assessment of Information Extraction systems in Biology) challenge 
evaluation consists of a community-wide effort for evaluating text mining and information 
extraction systems applied to the biological domain (http://www.biocreative.org/). Its aim is to 
promote the development of text mining and text processing tools which are useful to the 
communities of researchers, publishers, and  database curators in the biological sciences. 
The main emphasis is on the comparison of methods and the community assessment of 
scientific progress, rather than on the purely competitive aspects. 

The first BioCreative was held in 2004, and since then each challenge has ensure the active 
involvement of the text mining user community in the design of the tracks, preparation of corpus 
and the testing of interactive systems.  BioCreative VI consists of five tracks:

Track 1: Interactive Bio-ID Assignment for innovations in Biomedical Digital Curation. Organizers: 
Lynette Hirschman, Cecilia Arighi, Thomas Lemberger, Robin Liechti and Cathy Wu. The Bio-ID 
track explores the ID assignment to selected bioentities both at the pre- and post-publication , 
using the SourceData framework as a real world use case.

Track 2: Text-mining services for Kinome Curation. Organizers: Julien Gobeill, Patrick Ruch and 
Pascale Gaudet. This track focuses on literature triage (selection of relevant articles for curation), 
a basic task performed by virtually all curated molecular biology databases. More specifically on 
triage for both Protein-Disease and Protein-GO annotations related to human kinases.

Track 3: Extraction of causal network information using the Biological Expression Language 
(BEL). Organizers: Juliane Fluck, Sumit Madan and Justyna Szostak. BEL track focuses on 
automatic extraction of biological network information, one of the most desired and most complex 
tasks in biological and medical text mining, represented in Biological Expression Language (BEL).

Track 4: Mining protein interactions and mutations for precision medicine. Organizers: Rezarta 
Islamaj Dogan, Andrew Chatr-aryamontri, Sun Kim, Donald C. Comeau, Zhiyong Lu. This track 
aims to bring together the biomedical text mining community in a new challenge for precision 
medicine, focusing on identifying and extracting protein-protein interactions affected by mutations 
described in the biomedical literature. 

Track 5: Text mining chemical-protein interactions. Organizers: Martin Krallinger, Alfonso 
Valencia, Analia Lourenço. This track focuses on chemical-protein interactions that might be of 
relevance for precision medicine as well as for drug discovery and basic biomedical research.

We would like to thank all participating teams, panelists, all the chairs, sponsors and committee 
members. 

Organizing Chairs 
Cecilia Arighi, University of Delaware, USA 
Cathy Wu, University of Delaware and Georgetown University, USA
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Keynote 1: Towards a future of data-powered health 

Patricia Flatley Brennan, RN, PhD 
Director 

National Library of Medicine 

The National Library of Medicine, charged by the NIH to become the hub of data science, will 
launch its new strategic plan later this fall.  NLM will accelerate its investments in advanced data 
management and stimulate new development in data science methodologies. In addition, NLM 
will explore new ways to reach out to its stakeholders in the scientific and clinical community, and 
place new emphasis on direct-to-patient resources that will bring the power of data science in to 
the everyday health lives of people.  Expansion of our university-based training programs in 
medical informatics with new data science workforce development programs will foster the 
development of a scientific, clinical and library science workforce capable of leveraging data-
driven science into new discoveries for health.  Key to our future is embracing the tenets and 
practices under the open science umbrella, creating an infrastructure that supports data sharing, 
provides incentives for participation, and monitors the use and impact of these strategies in 
achieving health for all.  
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Keynote 2: Text mining in precision medicine: opportunities and challenges 

Hongfang Liu, PhD 
Professor Biomedical Informatics 

Mayo Clinic 

The promise of precision medicine is to enable medical practitioners to make better clinical 
decisions through incorporating individual variability in genes, environment, and lifestyle for 
each person. The anticipation of precision medicine is to increase prevention and prediction of 
disease, enable earlier disease intervention, improve targeted therapies, reduce side effects, and 
therefore reduce healthcare costs with better patient outcomes. A huge amount of information 
related to precision medicine is buried in text. Text mining techniques such as information 
retrieval or natural language processing (NLP) play a vital role in advancing precision medicine 
research and delivery. In this talk, we will first review literature and various activities in the text 
mining community for precision medicine. We will then introduce the precision medicine 
activities at Mayo Clinic. Some of our ongoing text mining efforts in contributing to the text 
mining community and enabling the use of text mining techniques for advancing precision 
medicine research and delivery institutionally will be discussed. Challenges faced in delivering 
text mining solutions for precision medicine will be discussed.  
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Panel: Innovation on Digital Curation 

Natural language processing to enhance accessibility to knowledge in RegulonDB 
Julio Collado-Vides, Center for Genomic Sciences, UNAM, Mexico 

Abstract 
The ultimate goal of curated databases is to facilitate access to data, information and knowledge. 
Data and information are usually modeled as objects or tables as part of the structured component 
of a database. Knowledge can be practically defined as all the additional statements in published 
journals that because of different reasons (limitations in the database modeling, as well as the rich 
expression of correlations, and interpretations in written language) are present in original 
publications but not in the structured items in databases because they are hard to curate and encode. 
I will present progress on how we have used natural language processing (NLP) to address 
knowledge encoding in RegulonDB where we have gathered for more than 20 years information 
on transcriptional regulation and operon organization in E.coli K12. We are working on NLP 
implementations both at the curation front as well as at the users front. 

Acknowledgement: This project is supported by NIH-NIGMS grant number RO1GM110597 
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Panel: Innovation on Digital Curation 

Data transparency in scientific publishing 
Thomas Lemberger, EMBO 

Abstract 
Scientific progress depends on efficient sharing of reliable research findings. This implies 
transparency and openness, which make the scientific process traceable and accelerate the 
dissemination of research and thus the pace of scientific discovery. But is also requires critical 
evaluation and quality control steps to assess whether new claims are supported by evidence and 
represent true novel discoveries. 

There are inherent tradeoffs between the need for immediacy and openness, the necessity of a 
scalable quality control process and the essential role of trust based on the responsible conduct of 
research by scientists. 

In the life sciences, scientific journals disseminate peer-reviewed research on a large scale (more 
than 1 million articles per year). Moving scientific publishing towards more transparency raises 
important questions. How can journals add transparency to the peer-review and the editorial 
selection process? How can data integrity verifications be conducted in a scalable way? How will 
new technologies help to make published data and methods more discoverable and reproducible? 

The rise of large-scale data mining and artificial intelligence will undoubtedly open new avenues 
in the way science is shared and published. Editors may transform into ‘knowledge architects’ 
while journals will become interoperable platforms that are readable both by machines and 
humans. As we may transition towards a quasi-immediate open sharing of data, it is also crucial 
to remember that costly human expertise, creativity and time-consuming critical scrutiny 
irreplaceably remain at the heart of the scientific enterprise. 
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Panel: Innovation on Digital Curation 

Text Mining for Improving the Prioritization, Curation, and Integration of Knowledge for 
Clinically Relevant Variants 

Zhiyong Lu, NCBI, NLM, NIH 

Abstract 
Understanding the associations of genomic variants with diseases and conditions and assessing 
their clinical significance is critical for genomic research precision medicine. Despite significant 
efforts in expert curation, information about most of the 154 million dbSNP Build 149 reference 
variants (RS) remains unknown. On the contrary, a wealth of human knowledge about the variant 
biological function and disease impact is buried in unstructured literature data. Previous studies 
have attempted to harvest and unlock such information with text-mining techniques but are of 
limited use in practice.  

I will first present a new text-mining method (tmVar 2.0) for extracting variant mentions in the 
literature and subsequently normalizing them to standardized database identifiers, followed by a 
large-scale analysis of text-mined results vs. curated data from existing databases [1].  

Next, through several real-world use cases (e.g. [2, 3]), I will demonstrate that our approach can 
identify high impact variants from publications and that our results can be combined with existing 
data to prioritize and rank the variants by various attributes (e.g. functional consequence and allele 
frequency). I will conclude by summarizing the opportunities and challenges of using text mining 
for the manual curation and interpretation of variation effects on biological functions and diseases 
to enrich our current knowledge. 

References: 

[1]: Wei C-H, Phan L, Feltz J, Maiti R, Hefferon T, Lu Z. tmVar 2.0: Integrating genomic variant 
information from literature with dbSNP and ClinVar for precision medicine. Bioinformatics (Oxford, 
England). btx541. https://doi.org/10.1093/bioinformatics/btx541 

[2]: Poux S, Arighi CN, Magrane M, Bateman A, Wei CH, Lu Z, Boutet E, Bye-A-Jee H, Famiglietti ML, 
Roechert B, UniProt Consortium. On expert curation and scalability: UniProtKB/Swiss-Prot as a case 
study. Bioinformatics. 2017 Jul 13:btx439. 

[3]: Singhal A, Simmons M, Lu Z. Text Mining Genotype-Phenotype Relationships from Biomedical 
Literature for Database Curation and Precision Medicine. PLoS computational biology. 
2016;12(11):e1005017. doi:10.1371/journal.pcbi.1005017. 
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Panel: Innovation on Digital Curation 

How can text mining scale to meet diverse and precise curation needs? 
Jo McEntyre, EMBL-EBI 

Abstract 
Expert curation is critical to data quality and reuse in the life sciences. Without question, curation 
accelerates access to research results, synthesizing data from thousands of labs into records that 
can be digested straightforwardly by humans and machines alike. Typically, curation involves 
filtering through masses of potentially useful research articles, identifying the most critical ones 
and then extracting key information, usually placing this into the context of a knowledgebase. We 
are interested in exploring how text mining can support such curation efforts, and furthermore, 
how we can take a more infrastructural approach to this challenge. The typical working 
relationship between a group of curators with specific interests and a text mining group that strives 
to support those precise needs will not scale as we strive to meet the increasing demand for quality 
curation. Furthermore, a siloed way of working means that we may miss collaborative curation 
opportunities. At Europe PMC, we are exploring how to combine text-mining, open access content, 
indicators of scientific quality and curator feedback on the Europe PMC platform. The goal is to 
engage the text mining community and curators to contribute open annotations, which, in the 
context of the rich metadata available in Europe PMC, may support article prioritization systems, 
or scan-reading tools for ascertaining the quality of individual papers (e.g. via the SciLite 
application). A new APIs for retrieving all annotations will shortly be released to encourage 
distribution and reuse in other contexts. Feedback on text-mined entities and relationships, with a 
view to improving algorithms is also desirable, from curators or other knowledgeable readers. 
Finally, to improve integration between the literature and data resources, we have developed a 
deep linking mechanism that enables precise linking between curated articles and data resources.
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Track 1
Bio-ID Assignment 

Bio-ID
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Bio-ID Track Overview 

Cecilia Arighi1, Lynette Hirschman2, Thomas Lemberger3, Samuel Bayer2, Robin Liechti4, Donald Comeau5, 
Cathy Wu1

1Dept. of Computer and Information Sciences, University of Delaware, Newark, DE, USA 
2Information Technology Center, The MITRE Corporation, Bedford, M, USA 

3EMBO, Heidelberg, Germany 
4SIB, Lausanne, Switzerland 

5NCBI, NIH, Bethesda, MD, USA

Abstract— The Bio-ID track focuses on entity tagging and 
ID assignment to selected bioentity types, with the aim of 
facilitating downstream article curation both at the pre- 
and post-publication stages.  The task is to annotate text 
from figure legends with the entity types and IDs for taxon 
(organism), gene, protein, miRNA, small molecules, 
cellular components, cell types and cell lines, tissues and 
organs.  The track draws on SourceData annotated figure 
legends (by panel), in BioC format, and the corresponding 
full text articles (also BioC format) provided for context. 
Six teams submitted annotations: two teams submitted 
results for all 6 entity types; two teams submitted results 
for organism only; one team submitted results for miRNA 
and organism; and one team submitted results for small 
molecules. Mention level F-measures were 0.8 or better for 
cell type, species and gene-or-protein; however, micro-
averaged normalized F-measure was significantly lower: 
0.76 for species, 0.65 for cell type and below 0.6 for the 
other entity types. A subsequent experiment will 
investigate whether such systems can speed expert 
curation. 

Keywords—bioentity extraction; normalization; figure captions 

I. INTRODUCTION

Innovations in biomedical digital curation have emerged as 
a critical topic to address sustainability of biological databases 
and research resources. Digital curation is defined as “the 
active management and preservation of digital resources over 
the lifecycle of scholarly and scientific interest, and over time 
for current and future generations of users” (1). In particular, 
there is a recognition that data curation needs to be integrated 
throughout the research lifecycle, without having to wait for 
curation by biocurators until after publication, as is the current 
practice for curated databases. While capturing knowledge of 
researchers at the time of data generation and publishing may 
enhance efficiency, there are significant barriers to moving 
curation “upstream.” It is well recognized that the adoption of 
common database identifiers (IDs), controlled vocabularies 
(CVs) and ontologies facilitates data integration and re-use; 
however, it is nontrivial to extract IDs, CVs and ontological 
terms from the free texts of the scientific literature. New 
methods and tools need to be developed to support more 

effective and consistent curation at the time of paper 
submission. 

The Bio-ID track addresses these needs for Innovations in 
Biomedical Digital Curation (2). Publications are one of the 
main vehicles for dissemination of experimental results. 
Researchers have new ideas, conduct experiments, write up 
their results summarizing those experiments, submit them to a 
journal and, if accepted after peer-review, the articles are 
disseminated in public literature databases. Publications are 
also the primary source of data for knowledgebase curators, 
who extract and summarize the relevant data in standard 
formats. While researchers use both the literature and 
knowledge bases, the latter offer efficient platforms for 
querying, given the linkage of data in literature to database 
objects. Then new ideas/hypotheses are generated to start a 
new cycle. Currently, there is a bottleneck in data re-use as 
curators spend time identifying bioentities in publications and 
linking these entities into their databases. We hypothesize that 
curation would be facilitated if articles were preprocessed to 
link the key bioentities to their appropriate biological 
knowledge bases, prior to publication (benefitting publishers) 
and prior to curation (speeding the downstream curation 
process); we refer to this as bio-ID assignment. 

II. THE BIO-ID TRACK

The Bio-ID track focuses on entity tagging and ID 
assignment to selected bioentity types, with the aim of 
facilitating downstream article curation at both the pre- and 
post-publication stages.  This track builds on the SourceData 
project (3) as well as previous BioCreative experiments, 
including the interactive tracks (IAT), earlier 
gene/protein/chemical extraction tracks, the BioC interchange 
format and the BeCalm framework (http://www.becalm.eu/). 
The track is designed to foster the development of an 
integrated and interoperable workflow of multiple text mining 
tools for real-world testing in pilot publishing frameworks.  

The track consists of two phases: 1) a batch phase, where 
the task is to annotate text from figure legends with the entity 
types and IDs for taxon (organism), gene, protein, miRNA, 
small molecules, cellular components, cell types and cell lines, 
tissues and organs; and 2) an interactive annotation phase, 
where curators can make use of the system-supplied 
annotations, to determine whether this speeds the curation 

This work was supported under NIH grant 5R01GM080646-11S1 and 
NIH R13 GM109648.   
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process.  This report describes the batch testing results. 
Experiments on the interactive annotation phase are now 
underway.  

III. DATA
 Training materials were drawn from annotated figure panel 

legends from SourceData (3). SourceData is working with 
publishers and authors to create machine-readable descriptions 
of underlying data in figures and figure legends. By referring to 
established public databases of biological terms, the specific 
biological entities, their roles as target, intervention or outcome 
measure in each paper can be consistently identified. 
SourceData (TL, RL) made available a large set of curated 
figure panel legends for the BioID track; the SourceData team 
made these data sets available “as is”, to provide a “public” 
data set for training and a “private” (not previously released) 
reference data set for testing system performance.  

The track organizers (DC, SB) converted these annotated 
panel captions into BioC format, which were provided to 
participants, along with the corresponding full text articles 
(also BioC format) for context.  Participants participated by 
submitting annotations for one or more of the bioentity types, 
in BioC format for the set of captions.   

A. Bio-ID Training and Test Data Sets
The training data set consisted of 13,573 annotated figure

panel captions corresponding to 3,658 figures from 570 full 
length articles from some 22 journals, for a total of 102,717 
annotations. Table 1 shows the distribution of entity types 
across the training corpus.  The test data set consisted of 4,310 
annotated figure panel captions from 1,154 figures taken from 
196 full length journal articles, with 30,286 annotations in 
total.  This corresponds to roughly 6+ figures/document and 3-
4 panels per figure with some 7 annotations per panel caption.  

B. Data Set Content
The training data contains a set of files in BioC format.

Each file consists of a collection of figure captions for a given 
article annotated by SourceData curators. The name of the file 
corresponds to its PubMed Central ID and the corresponding 
full-text article is provided separately. Within a BioC file, 
each <document> element contains the annotation for each 
individual figure panel within the article; the <id> given is 
made up of the PMCID followed by the Figure_number-panel 
(e.g., <id>5048346 Figure_1-A</id>), as shown in the 
example in Fig. 1.   

Note that the text for the panel may consist of 
discontinuous text derived from the Figure caption; it may 
also include legends from several panels.  

C. Annotation Guidelines
Below are important considerations of the curation practice

(extracted from the SourceData definitions for curators by 
Thomas Lemberger): 

• The SourceData description of the data presented in
scientific figures specifies the entities that are relevant to the 
scientific meaning of the data. To be tagged by curators, a 
figure panel must report experimental data. Panels that present 
schematics, computational simulation results, overviews  and 
workflows are not tagged. 

• In the text of a relevant panel legend, all mentions of
terms that correspond to entities types on Table  2 are tagged. 

• Entities are assigned to only one entity type of those
listed in Table 2. 

• In general, generic terms referring to broad classes of
biological components (e.g. 'proteins', 'cells', 'animals') are not 
be tagged unless they refer to the object of an assay. 

[<document> 
    <id>5048346 Figure_1-A</id> 
    <infon key="sourcedata_document">2225</infon> 
    <infon key="doi">10.15252/embj.201694885</infon> 
    <infon key="pmc_id">5048346</infon> 
    <infon key="figure">Figure 1-A</infon> 
    <infon  
key="sourcedata_figure_dir">Figure_1-A</infon> 
    <passage> 
      <offset>0</offset> 
      <text>A. The localization of NSUN3 was analysed in 
HEK293 cells stably expressing NSUN3-GFP (green). 
NSUN3-GFP and staining with a Mitotracker (red) are 
shown separately and in an overlay with DAPI to indicate 
nuclei. The scale bar represents 5 m.</text> 
      <annotation id="1"> 
        <infon key="type">Uniprot:Q9H649</infon> 
        <infon key="sourcedata_figure_annot_id">1</infon> 
        <infon 
key="sourcedata_article_annot_id">1</infon> 
        <location offset="23" length="5"/> 
        <text>NSUN3</text> 
      </annotation> 

… 
Fig. 1. Example of BioC training data file 

TABLE 1 DESCRIPTION OF TRAINING DATA BY ENTITY TYPE 

Entity Type # articles w 
entity 

Total # 
by entity 
type 

# 
unique 
by 
entity 
type 

Protein/Gene  
(561 articles) 

UniProt (548) 30211 2833 
NCBI gene 
(537) 

21766 2451 

miRNA 9 167 13 
Small molecules   
(513 articles) 

ChEBI (506) 9869 786 
PubChem 
(134) 

700 140 

Cellular 
component 

482 7310 376 

Cell types and 
cell lines 
(482 articles) 

Cellosaurus 
(351) 

5783 230 

Cell Ontology 
(300) 

4638 217 

Tissues & 
organs 

316 5870 459 

Organisms & 
species 

454 7952 147 

15

http://bioc.sourceforge.net/


• Some terms, such as those referring to proteins or genes,
can be appended with prefixes or suffixes that indicate a post-
translational modification, a mutation or other variations of the 
actual base term. In such cases, prefixes or suffixes are left out 
and only the base term is tagged (e.g., in text describing a 
mutant of B-RAF  'B-RAF(V600E)', only B-RAF is tagged; 
similarly with p-AKT1 that designates the phosphorylated form 
of AKT1, only AKT1 is tagged).  

• In other cases, a prefix is added to an entity to denote a
species origin, in which case the prefix should be kept (e.g., 
dMyc to denote the homolog in Drosophila of Myc) 

• Some components are engineered by assembling or
fusing multiple sub-components; these are tagged individually. 
For example, the term 'RAS-GFP' referring to a fusion protein 
between GFP and RAS is annotated with two tags: 'RAS' and 
'GFP'. 

D. Special considerations for the BIO-ID track
• Participating teams can provide annotation for one or

more types of those described in Table 1. 

• For this track, the gene/protein type can be treated
interchangeably (i.e., all proteins and gene mentions can be 
linked to NCBI gene and/or UniProt identifiers). 

• Some entity types, like small molecules, have more than
one resource listed; however, one of the resources is 
considered primary. To help with training and comparison, we 
provide mappings, to the extent possible, between identifiers of 
the same entity type.  However, the best practice would be to 
look up the entity in the preferred resource, and if it cannot be 
found, then look it up in the secondary resource.  

• In particular, for UniProtKB, UniProtKB/Swiss-Prot
(reviewed) entries should be linked whenever possible; 
TrEMBL (unreviewed) entries should only be linked when no 
corresponding Swiss-Prot entry is available. 

IV. SCORING

The scorer reports scores at three levels: the individual 
caption level, the document level, and the corpus level. At the 
last two levels, scores are aggregated per bioentity type from 
the previous level. Scoring is done both at the mention level 
(every occurrence of a bioentity is tagged for its type) and at 
the normalized identifier level, where the set of unique 
identifiers in a caption are compared to the reference set of 
identifiers from SourceData.     

Mention level annotations are divided into two classes: the 
first class consists of annotations which are linked to a 
biological resource (the “normalized annotations”, e.g., in Fig. 
1, “NSUN3” is annotated with “Uniprot:Q9H649”). The 
second class consists of annotations that are associated with an 
entity type, but not linked to a biological resource, for 
example, in the text “GFP is green and Calbindin staining is 
red.”, “GFP” is tagged as “protein:GFP” which labels GFP as 
a protein, but does not link it to an identifier in a specific 
resource.     

The scorer reports mention level scores in 4 conditions: 
Score Types All Entities Normalizable Only
Exact Match Any Exact Norm Exact
Overlapping Match Any Overlap Norm Overlap
Exact span match requires that the span (in byte offset) match 
exactly against the SourceData reference standard; span 
overlap relaxes this condition to allow a match if the span 
overlaps with the reference annotation at all. This means that 
the “overlap” score will be greater than or equal to the “exact” 
score.   The scorer computes mention-level recall/precision/f1-
measure for each of these four conditions.   

The scorer also computes recall/precision/F1-measure on 
the normalized IDs which are found, both micro-averaged 
over the corpus and macro-averaged by document. For the 

TABLE 2 ENTITY TYPES WITH CORRESPONDING RESOURCES FPR LINKAGE (NORMALIZATION) 

Entity Type Resources Example infon key=”type” Generic infon 
key=”type” 

Protein UniProt Uniprot:Q9H649 Uniprot:<Accession> 
Gene NCBI gene NCBI gene:4137 NCBI gene:<ID> 
miRNA Rfam Rfam:RF00076 Rfam:<ID> 
Small molecules ChEBI (primary) CHEBI:15996 CHEBI:<ID> 

PubChem (secondary) PubChem:5717066 PubChem:<id> 
Cellular component GO cellular component GO:0005886 <GOID> 
Cell types and cell lines Cellosaurus (primary) CVCL_U985 <accession> 

Cell Ontology (secondary) CL:0000540 <CLID> 
Tissues & organs Uberon Uberon:UBERON:0002048 Uberon:<UBERONID> 
Organisms & species NCBI Taxonomy NCBI taxon:10090 NCBI taxon:<ID> 

Sources: All ID sources are publicly available: 
UniProt: www.uniprot.org  NCBI gene: https://www.ncbi.nlm.nih.gov/gene 
Rfam: http://rfam.xfam.org/  ChEBI: https://www.ebi.ac.uk/chebi/ 
PubChem: https://pubchem.ncbi.nlm.nih.gov/  Gene ontology: http://geneontology.org/ 
Cellosaurus: http://web.expasy.org/cellosaurus/ Cell Ontology: http://obofoundry.org/ontology/cl.html 
Uberon: http://uberon.github.io/ NCBI Taxonomy: https://www.ncbi.nlm.nih.gov/taxonomy 
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comparison of results, we report here on exact and overlap 
matching against all annotations for mention level scoring; 
and micro-averaged scoring for the normalized identifiers.   

V. RESULTS 
A total of six teams participated.  Two teams provided 

annotations for all six entity types; two teams provided 
annotations for species only; one team did small molecules 
only, and one team did miRNA (not scored) and species.  The 
results for the top scoring runs are shown in Table 3, along 
with the number of teams and runs for each bioentity type. The 
top scores were selected based on the top F1 score for the 
“Overlap All” computation for the mention level score.  The 
micro-averaged F1 was used to rank the normalization scores.   
The set of scores (all types of mention level scores plus micro-
averaged normalization scores) for all runs is shown in the 
Appendix; the high score in each category is highlighted with a 
green background.   

The highest performance was achieved for 
organism/species, which also had the most participating teams 
(see Table 3 and Figs. 2 and 3). Fig. 4 shows the results (at 
both mention level and normalization) for gene/protein as well 
as organism.  Determining the species is a necessary step to 
determine a correct gene or protein identifier, since these are 
dependent on species.  However, the species may not be 
explicitly mentioned in the figure caption, making it necessary 
to use the full text to determine the species or organism for 
each experiment. We see that the species scores are quite high 

(both for mention level and normalized micro-average – grey 
and gold stars). For gene/protein mention, the “Any Overlap” 
scores (black triangles) are also quite good, but the “Norm 
Overlap” scores (green triangles) are less good, and the micro-
averaged gene/protein normalization scores (red triangles) are 
much worse – indeed Fig. 3 shows that results for gene/protein 
normalization are the lowest among the bioentities.  One issue 
is that correct normalization requires stripping of complex 
prefixes and suffixes from gene names – a challenging task. A 
second issue is that only two teams tackled the gene/protein 
task – and these were not the high-scoring systems for species.  
The results suggest that progress is being made at the mention 
level, but that gene/protein normalization remains challenging.     
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TABLE 3 TOP SCORING RUNS BY ENITYT TYPE FOR MENTION F1 SCORE  (“OVERLAP ALL”) AND MICRO-AVERAGED NORMALIZATION F1 

Entity Type 

Mention - All Overlap Normalization Micro Avg # 
Teams 

# 
Runs Team P  R  F1 Team P R F1 

cell_type_or_line 407 0.84 0.76 0.80 422_2 0.78 0.56 0.65 2 3 
cellular_component 407 0.73 0.55 0.63 422_2 0.55 0.45 0.49 2 3 

gene_or_protein 407 0.83 0.84 0.83 407 0.47 0.34 0.40 2 3 
organism_or_species 407 0.88 0.83 0.85 393 0.66 0.88 0.76 5 9 

small_molecule 407 0.80 0.60 0.69 422_2 0.59 0.47 0.52 3 5 
tissue_or_organ 407 0.79 0.63 0.70 407 0.53 0.49 0.51 2 3 

miRNA 386 not scored   not scored 1 1 
 

 
Figure 2: Best Mention Level Scores (Any Overlap) for Entities 
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Figure 3: Best Normalized Scores (Micro-Averaged) for Entities 
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Abstract—The detection of organism mentions in scientific 
literature facilitates researchers with the ability to find relevant subsets 
of papers based on species-specific queries. Furthermore, most 
biological articles will describe pathways or regulation information in 
figure captions to enhance the understanding of experimental results. 
The extraction of miRNA and organism from figure captions is useful 
in characterizing the research studies. In this study, we adopted openly 
available organism recognition tools and our statistical principle-based 
miRNA recognizer for identifying organism and miRNA mentions in 
figure captions of an article. The miRNA recognizer is extended by 
generating scores for matched slots and indexes for matched terms to 
normalize recognized miRNAs to identifiers in the Rfam database. We 
study the performance of the existing tools in recognizing terms in 
figure captions and the challenges remained to address by evaluating 
them on the BioCreative VI Bio-ID dataset. We believe the Bio-ID 
corpus provide a nice starting point for evaluating the performance of 
miRNA normalization system. In the future, we would like to 
undertake more comprehensive evaluation of existing tools for 
extraction of organism/species and would like to enhance the 
consistency and comprehensiveness of miRNA annotations in the 
dataset. 

Keywords—biomedical text mining; organism; micro-RNA; 
statistical principle-based approach 

I. INTRODUCTION

The term organism is used to represent an important class of 
entities frequently mentioned in biomedical literature. 
Normalizing organism terms mentioned in literature to database 
records, such as NCBI taxonomy can be used for disambiguating 
biomedical entities such as mutations, proteins or genes [1]. 
Primarily, organism names are based on a well established 
hierarchical nomenclature conventions developed from the 18th 
century. However, the recognition of taxonomic groups in 
biomedical texts such as PubMed articles present a number of 
issues and challenges. Especially, there is a great degree of 
ambiguity in the way taxonomic information is expressed in 
biomedical literature. Large numbers of abbreviations of species 
names and use of common English names instead of Latin 
names are the primary reasons for this ambiguity. The use of 
acronyms, which can be both species specific and species 
independent, also pose a challenging problem for information 

* Corresponding author

extraction tasks. Lastly, incorrect spellings are often an issue 
with biomedical texts.   

MicroRNAs (miRNAs) have become one of the hottest 
subjects in science and medicine recently. The first formal 
recognition of miRNAs was ten years ago. Since then miRNAs 
have been found to have a critical role in regulating many 
physiological processes and pathological processes. Numerous 
miRNAs and their associated targets have been identified by 
bioinformatics tools [2-4] and high-throughput sequencing [5-7]. 
Therefore, the demand of recognizing miRNAs mentioned in 
literature is increasing. miRNAs are evolutionary-conserved 
small non-coding RNA molecules that post-transcriptionally 
regulate gene expression by base-pairing to messenger RNAs 
(mRNAs). Many freely available, web-based miRNA-related 
database systems have been developed for researchers to 
retrieve miRNAs and their target genes. For instance, 
miR2Disease is a manually curated database, providing a 
comprehensive resource for miRNA deregulation in various 
human diseases [8]. miR2Disease provides researchers with 
information such as miRNA-disease relationships and 
experimentally verified miRNA-target genes, as well as 
references to the relevant biomedical literature. Similarly, the 
miRWalk  database provides predicted and validated miRNA 
binding site information related to miRNAs in humans, mice and 
rats [9].   

Information extraction methods can be employed to extract 
organism and miRNA related information. The  identification of 
these two entities can facilitate taxonomy-aware information 
extraction in construction of valuable knowledge bases such as 
miRWalk and miR2Disease. In addition, these methods can also 
be used to enhance the index created by search tools for 
retrieving more relevant literature using species-specific and 
miRNA-related keywords. Furthermore, most biological articles 
will describe pathways or regulation information in figure 
captions to enhance the experimental results. The advantages of 
extracting miRNA and organism from figure captions can 
capture the most important and real data. With this in mind, we 
assessed the current automated information extraction methods 
available to extract organism information from figure captions 
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We also extended our previous miRNA recognition method [10] 
by developing a method for normalizing recognized terms to the 
Rfam database. 

II. METHODS 

A. Dataset 
We used the dataset released by Bio-ID track for our 

research purpose. The dataset was prepared as part of the EMBO 
SourceData project2, which consisted documents in BioC [11] 
format with number of figure captions from full-length articles 
along with the annotations for multiple bio-entities. Organisms 
and miRNAs are two of the entity types annotated in this dataset 
and the annotations includes their spans in figure captions and 
their corresponding database IDs. This dataset was used to 
assess the performance of several current openly available tools. 
We employed these tools for extract organism/species 
information from figure captions to understand the complexity, 
issues and challenges involved in that.  

B. Species Entity Recognition and Normalization 
For recognition and normalization of organism/species 

entities we consider SR4GN [1], ORGANISM/SPECIES tool 
[12], and NCBO Annotator [13]. After studying their 
performance on the training set, we decided to use the SPECIES 
tool for processing the test set of the Bio-ID track.  

The SPECIES tool identifies and normalizes species entities 
using dictionary look-up approach. This tool employs NCBI 
Taxonomy for dictionary look-up. A minor post-processing 
enhancement was developed in this work. The enhancement 
primarily involved selection of top 10 entities with highest 
frequency observed in the training set. Once these entities are 
identified, they are checked against the output (on the test set) 
from SPECIES tool where an entity is observed with no NCBI 
taxonomy ID assigned.  Should there be any such entity, NCBI 
taxonomy ID is assigned based on the top 10 entities list 
prepared earlier. This process was mainly employed to improve 
the performance but also at the same time limit the number of 
false positives that may creep in because of this post processing 
enhancement.   

C. miRNA entity Recognition and Normalization 
Rule-based and machine learning-based approaches are two 

popular methods used in the task of miRNA recognition, which 
have been applied to public miRNA databases, such as 
miRCancer, miRSel [13, 14] and TarBase [15, 16]. However, 
rule-based approaches require explicit rules developed by 
domain experts, which are not flexible enough to cover all 
variations, such as the insertion, deletion or substitution (IDS) 
of words appearing in the entities, phrases or sentences. On the 
other hand, machine learning models can learn the implicit 
patterns automatically, but the model cannot be easily 
interpreted by humans. We have proposed the statistical 
principle-based approach (SPBA) for miRNA recognition to 
deal with the drawbacks of the above approaches [10]. In general, 
SPBA can automatically extract labeled sequences, combine 
them into more representative principles through the observation 
of dominated principles, and employ a partial matching 

2 http://sourcedata.embo.org/ 

algorithm to harness the advantages of both rule- and machine 
learning-based approaches while surpassing their limitations. 
The performance of the SPBA-based miRNA recognition is 
evaluated on the corpus annotated by Bagewadi, Bobić, 
Hofmann-Apitius, Fluck and Klinger [14]. The evaluation 
achieved a 0.988 F-score, 0.986 precision (P) and 0.991 recall 
(R), which outperformed the traditional rule-based methods. 
However, this method only considers the recognition task. In 
this study, we extended the existing method to support the 
normalization process that can link  recognized miRNA 
mentions to identifiers in the Rfam database, a database of non-
coding RNA families and other structured RNA elements. The 
details of SPBA is described in the following subsection.  

D. Knowledge Construction for miRNA Recognition 
Our SPBA-based method used a collection of principles 

generated from the training phase to match the content. If the 
content can be matched with a compiled labeled sequence, the 
corresponding entity is determined. The training phase of SPBA 
consists of three main steps. The first is knowledge construction. 
In case of miRNA recognition, we represent the knowledge 
related to miRNA through semantic slots and principles semi-
automatically. Following is the principle generation step, in 
which slots are assembled and summarized by observing the 
arrangement of principle slots which can accomplish the target 
task. Lastly, a flexible principle matching algorithm allowing 
insertion/deletion/substitution is applied to extract the 
information represented by the compiled principles in 
unstructured text. Fig. 1 illustrates a simplified example of how 
the knowledge was constructed for representing a miRNA in 
SPBA under the principle-slot scheme. More precisely, the 
knowledge is constructed in a hierarchical structure.  

In the knowledge representation of SPBA, the root node is 
usually the name of a domain or a subject. In Fig 1. the root node 
is “miRNA” indicating that the structure represents the 
knowledge for miRNA names. The first child node of a root 
node is usually the “SLOT” node, under which we can define 
the fundamental slot for miRNA. Albeit the heterogeneous 
writing styles, some common contents can be found among 
miRNAs, which form the backbone of miRNA’s slots. For 
instance, both the miRNA “cel-miR-123-5p” and “hsa-
microRNA-24-3P” consists of a species (cel and hsa), the 
indicating word “miRNA” and a hairpin that possess unique 
feature in representing a miRNA. Hence, they can be designated 
using the following combination of slots 
“[Species][miRNA][order][Hair-pin]”. Here we use brackets to 
enclose a slot name for representing a slot. For example, 
“[Species]” is a slot that encodes the species in which the 
miRNA appears. “[miRNA]” is the slot representing the word 
indicating an occurrence of a miRNA name.  

The last two slots can be further generalized into one slot, 
“[Suffix]”, which can be used to differentiate distinctive types 
between miRNAs (e.g., has-let-7a-2-3p). Therefore, they are 
organized in a hierarchical structure as showed in Fig 1 (3: 
[Suffix] → SLOT → [Hair-pin]). For each slot, a list of terms 
that could be written in literature are collected and listed under 
that slot. For instance, the instances of the “[Species]” slot are 
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tri-grams, such as “hsa” and “cel”. The indicating words 
for [miRNA] include “mir”, “let”, “lsy”, “micro RNA”, etc. 

E. Principle Matching 
During the principle alignment procedure, we score those 

possible candidate principles based on matched slots, slot 
relations and insertions. Each exactly matched slot gets a score 
of 4. If there are insertion/deletion/substitution in the string, the 
scoring mechanism will assign scores accordingly. We calculate 
the score of an insertion by gathering its left (resp. right) bigram 
statistics with its neighboring left (resp. right) slots in the 
training set. The bigram frequency gives a way to assign the 
insertion scores, which usually fall in the ranges, -(∞), -2, -1, 0, 
1, and 2. Deletions are assigned a score of -(∞), -2, -1, or 0. A 
substitution is either a partial match or a category match of the 
slot, which is usually assigned a score of 1 or 2. The final score 
of a principle is the sum of all the scores of this principle. The 
length of a principle, which means the number of slots of a 
principle, is used as the threshold to determine whether this 
principle is matched or not. Finally, the longest principle or a 
principle which contains the most slots will be considered as 
matched. In other words, the principles will be ignored if the 
final score closes to -(∞). 

 
Fig. 1. Knowledge represented for miRNA in SPBA. 

F. Principle-based Normalization 
For normalization, we first downloaded the family file from 

ftp://ftp.ebi.ac.uk/pub/databases/Rfam/CURRENT/database_fil
es. We extracted the following columns to compile the lexicon 
for normalization:  

 The first column: the family accession number (e.g. 
RF00994). 

 The second column: the family id (e.g. mir-1255) 

 The fourth column: the family description (e.g. 
microRNA mir-1255) 

We then used the generated principles to match all columns 
contained miRNA names. During the principle matching 
process, we scored the matched slots based on the matched 
principles over all entries in the compiled lexicon and built 
indexes for each slot. Therefore, each slot will associate with all 
possible corresponding grounding entries in our lexicon along 
with a matching score.  

After the principle matching step, we were able to recognize 
possible miRNA mentions. For a recognized miRNA mention, 
the indexes of its matched slots were used to retrieve all possible 
grounding in the Rfam database. We then used the associated 
score to select the normalization ID. 

III. RESULTS 

A. Entiy Recognition Performance on the miRNA Interaction 
Corpus 
We first report the performance of the developed miRNA 

recognizer on the corpus annotated by Bagewadi, Bobic, 
Hofmann-Apitius, Fluck and Klinger [15]. This corpus only 
contains annotations for the spans of miRNAs that appeared in 
literature. Therefore, we can only estimate the entity recognition 
performance. They distinguished their annotations for miRNA 
into two types: specific-miRNA (e.g. has-miR-124b), and non-
specific-miRNA (e.g. microRNAs or miRNAs). In our 
evaluation, we only focused on the specific-miRNA type. 

TABLE I.  ENTIY RECOGNITION PERFORMANCE ON THE MIRNA CORPUS 

 Training set Test set 

Precision 0.994 0.986 

Recall 0.9902 0.991 

F-score 0.992 0.988 

 

As shown in Table I, our tool can achieve a precision (P) of 
0.994, recall (R) of 0.9902, and F-score (F) of 0.992 in the 
training set. Moreover, the performances in the test corpus are a 
precision of 0.986, recall of 0.991, and F-score of 0.988.  

B. Entity Normalization Performance on the Bio-ID corpus 
Table II shows the performance of normalization on the 

training set of the Bio-ID track. We report the performance in 
terms of micro-Precision, Recall and F-measure under the 
overlapping mode. We observed that the extended methods 
achieved recall of 0.865 on the training set but a very lower 
precision of 0.253 resulting in a frustrated F-score of 0.373 on 
the Bio-ID dataset. Although miRNA was annotated in the Bio-
ID corpus, the test set was not. Thus, we cannot report our 
performance on the test set. After analyzing the errors on the 
training set, we observed that the majority of the errors are due 
to inconsistent annotations. For instance, U2 (Rfam:RF00004) 
mentioned several times in the Figure 4 of the article 
(PMC4801943) was not annotated in the corpus. However, our 
method recognized and normalized that entity.  
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Table II also shows the performance of the three off-the-
shelf organism/species identification tools on the training and 
test sets. The performance was evaluated under overlap setting 
only for normalization component of the tools. We can observe 
that NCBO annotator had the best R but a very low P. The 
SPECIES tool achieves the best F-score. Therefore we selected 
SPECIES tool as a baseline system to study its performance on 
the test set. The SPECIES tool was  employed under two 
different settings (Run 1 and Run 2). Under the Run 1 setting, 
the tool was executed on the Bio-ID corpus with default 
configuration. In Run 2, the post-processing enhancement 
described in the Methods section was applied. The performance 
of SPECIES tool in Run 1, with default configuration is better 
than Run 2, where the post-processing enhancement didn’t 
impact R but decreased the overall F-score. 

TABLE II.  NORMALIZATION PERFORMANCE  

Configuration 
Train set Test set 

P R F P R F 
miRNA 0.253 0.865 0.373 n/a n/a n/a 
NCBO 
Annotator 0.061 0.920 0.118 n/a n/a n/a 

SR4GN 0.468 0.382 0.419 n/a n/a n/a 

SPECIES-Run1 0.670 0.476 0.557 0.677 0.580 0.625 

SPECIES-Run2 0.460 0.481 0.471 0.432 0.580 0.495 

IV. CONCLUSION 
In this study, we presented performance assessment of 

miRNA and organism information extraction tools with focus 
on normalization aspect, using two different datasets. We 
believe the results presented in this study provide a good starting 
point for evaluating the performance of miRNA and organism 
entity recognition and normalization system. In future, we 
would like to improve the manual annotations in these two 
datasets. Specifically, we would like to enhance the consistency 
and comprehensiveness of the miRNA annotations. 
Additionally, we would also like to undertake more 
comprehensive evaluation of existing tools for extraction of 
organism/species and miRNA related information.  
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Abstract—We approach the BioCreative VI Track 1 task of 
biological entity identification by focusing on named entity 
recognition (NER) and linking tagged entities to standard 
database identifiers. For this task, we apply recent neural NER 
techniques of combining bi-directional long short term memory 
(BLSTM) network layers with conditional random fields (CRFs) 
to the biomedical domain. We then use context words, dictionary 
lookups, and external biological knowledge bases to match 
tagged biological entities with corresponding identifiers. Our 
system predicts cell types and cell lines, cellular components, 
organisms and species, proteins and genes, small molecules, and 
tissues and organs. 

Keywords—named entity recognition; NER; bi-directional 
LSTM; conditional random fields; CRF; dictionary lookup 

I. INTRODUCTION

In Track 1 of the BioCreative VI tasks, we are asked to 
automatically identify biological entities in biomedical text and 
link them to their standard database identifiers (e.g., UniProt 
ID for proteins and genes, ChEBI ID for small molecules, etc). 
Given biological entities annotated with identifiers in figure 
captions from 570 full-length articles as training data, we need 
to recognize and link biological entities in figure captions from 
196 unseen articles to identifiers. Precision, recall, and F-
measure at the caption, document, and corpus level for 
different entities are calculated. Additionally, there are also 
distinct scores for strict versus overlapping entity boundary 
matches, and for measuring across all annotations (i.e., 
including entities linked to a generic term such as “protein” 
and entities linked to a standard database identifier) versus just 
normalized entities (i.e., only entities linked to an identifier). It 
is useful to work with figure captions because sentences in 
captions describe figure objects, which are often the biological 
entities of interest. Also, extracting textual information from 
figure captions allows us to potentially link the textual data 
with figure data. Having methods to automatically extract and 
ground entities would be beneficial to the progression of 
research in scientific communities. 

We train a CRF-based model [4] using NERSuite [3] as an 
NER baseline and compare it to the neural model. Although we 
are exploring different neural NER architectures, time 
constraints dictate that we use the LSTM-CRF architecture 
described in [5] as the NER model in our task submission. Our 
entity grounding component is based on dictionary and API 
lookups, and we apply some heuristics to more accurately 
segment entities for grounding. 

II. PREPROCESSING

We do as little preprocessing as possible to keep this 
component of the pipeline simple, generalizable, and easy to 
re-assemble into the BioC output format. For each caption 
paragraph, we use the NTLK (http://www.nltk.org/) sentence 
tokenizer to extract individual sentences, and then split each 
sentence on whitespace into “words” that we attach annotations 
to in the CoNLL format. Note that although we refer to the 
tokens divided by whitespace in a sentence as “words”, these 
“words” can contain varying amounts of punctuation and are 
not necessarily well-formed English words. If the last byte in a 
sentence is “.”, “?”, or “!”, we separate it into an additional 
“word”. NERSuite takes a file with one sentence per line as 
input, while the neural NER model takes data in the CoNLL 
format as input. Both models output a tag for each “word” in 
the IOB format [7]. Our simple data tokenization into “words” 
and “word”-level tags means that there could potentially be 
multiple ground truth entities and entity types in one model-
tagged entity or extraneous characters in model-tagged entities. 
If there are multiple annotations for a “word”, we take the first 
annotation of an entity the word belongs to as the ground truth, 
and ignore all subsequent annotations that include this “word”. 
We take sentences from a random 80% of the 570 articles to 
form the training set, sentences from 10% of the articles to 
form the development set, and sentences from the remaining 
10% of the articles to form the test set.  

TABLE I. DISTRIBUTION OF ANNOTATED ENTITY TYPES IN TRAINING, 
DEVELOPMENT, AND TEST SETS 

Entity type Training set Dev set Test set 

gene_or_protein 39,190 
(54.41%) 

4,312 
(50.73%) 

4,945 
(57.71%) 

small_molecule 8,602 
(11.94%) 

1,324 
(15.58%) 

857 
(10.00%) 

cellular_component 5,970 
(8.29%) 

530 
(6.24%) 

617 
(7.20%) 

cell_type_or_line 8,116 
(11.27%) 

966 
(11.36%) 

937 
(10.94%) 

tissue_or_organ 4,638 
(6.44%) 

538 
(6.33%) 

651 
(7.60%) 

organism_or_species 5,511 
(7.65%) 

830 
(9.76%) 

561 
(6.55%) 

Total 72,027 
(100.00%) 

8,500 
(100.00%) 

8,568 
(100.00%) 

Table 1 shows that a little more than half of the annotated 
entities across the training, development, and test sets are 
gene_or_protein.  

This work was supported in part by the DARPA Big Mechanism program 
(W911NF-14-1-0364). 
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III.  NAMED ENTITY RECOGNITION 

A.   NERSuite 
We train a CRF-based baseline using NERSuite, so that we 

may compare the effects of our neural NER approach with a 
more standard CRF model. NERSuite is a toolkit that uses 
features derived from a tokenizer, part-of-speech tagger, 
lemmatizer, chunker, and optionally, dictionaries, as input into 
a CRF model. For our baseline model, we use all of the 
standard features except dictionaries to train NERSuite on our 
training and development set; we report results on the test set. 

B.   BLSTM-BLSTM-CRF 
1)  Related work: In recent years, a popular model for NER 

has been to derive character embeddings from a BLSTM or 
CNN model, combine the character embeddings with word 
embeddings and feed the concatenated result into another 
BLSTM layer. Some works additionally include a CRF layer 
that takes the output of the BLSTM layer as input. Chiu et 
al. [2] feed character embeddings and additional character 
features into a convolutional neural network (CNN) layer, and 
then concatenate the extracted character representation with 
word embeddings and additional word features to feed into a 
BLSTM layer. The BLSTM output is then forwarded to output 
layers to predict the best sequence of tags for a sentence. 
Lample et al. [5] concatenate word embeddings and BLSTM-
extracted character embeddings to feed into a BLSTM layer, 
and then feed the BLSTM output to a CRF layer. Ma and 
Hovy [6] input character embeddings into a CNN layer, and 
then concatenate the extracted character representation with 
word embeddings to forward to a BLSTM and then CRF 
layer. 

In our submitted model, we use the architecture shown in 
Fig. 1 and described in [5]. 

 

Fig. 1.   This figure is taken from [5]. We apply their network with minor 
changes to the BioCreative dataset. 

2)  Word embeddings: Many previous works report that 
using pretrained word embeddings instead of randomly 
initializing word embeddings can significantly help increase 
NER scores. In our model, we use word embeddings 
pretrained on a combination of all abstracts from PubMed, all 
full-text from PubMed Central (a collection of open access 

documents from PubMed), and a Wikipedia dump 1 . We 
observe that these pretrained word embeddings boost the 
scores across all biological entity types significantly. 

3)  Character-based representation: To derive a character-
based representation of words, we randomly initialize a 25-
dimension vector for each character and input it to a BLSTM 
layer with a 25-dimension hidden layer. We assume, similarly 
to [5], that the hidden layer values of the last character in a 
word encode the character-level context of the entire word in a 
forward LSTM pass. Thus, we concatenate the hidden values 
of the last character in a word in the forward LSTM pass with 
the hidden values of the first character in a word in the 
backward LSTM pass to create the character-based 
representation of the word. 

4)  BLSTM-CRF with final word representation: To create 
an informative word representation, we concatenate the word 
embedding of a word with the character-based representation 
of the word. The final word representation is then input into a 
dropout layer, where half of the values from the word 
representation are dropped in training. Next, the word 
representations are input into a BLSTM layer with a hidden 
dimension of size 200. Similarly to the character-based 
BLSTM, we concatenate the hidden values of the last word in 
a sentence in the forward LSTM pass with the hidden values 
of the first word in a sentence in the backward LSTM pass to 
form the layer output. We then pass the output to a hidden 
layer to shrink the vector dimension back down to size 200, 
and use another hidden layer to shrink the vector to a 
dimension equal to the number of unique NER tags in the 
training data using the IOBES annotation scheme. In our 
training data, there are 25 such unique NER tags. The NER 
model internally uses the IOBES scheme, which also keeps 
track of singleton annotations and the end tokens of 
annotations; the final model output uses the IOB scheme. 
Lastly, we pass the 25-dimensional output vector to a CRF 
layer, where the CRF will use the BLSTM output vector and 
transition scores between a pair of tags to maximize the 
probability of the groundtruth tag sequence in training. 

5)  Parameters: The pretrained word embeddings are 200-
dimensional vectors, so we use a 200-dimensional hidden 
layer in the word BLSTM. Lample et al. [5] use 100-
dimensional vectors trained on news corpora and a 100-
dimensional hidden layer in the word BLSTM. The first 
hidden layer uses a tanh activation function, and the second 
hidden layer uses a sigmoid activation function. We use 
stochastic gradient descent with a learning rate of 0.01 as the 
optimization function. 

IV.  POSTPROCESSING 
Before passing on tagged entities to be linked to identifiers, 

we strip all punctuation in the string "!\"#$%'()*+,-
./:;<=>?@[\\]^_`{|}~" recursively from the beginning of the 
tagged entity. We also strip all punctuation in the string 
 

1    The details of the pretrained word embeddings are at 
http:/bio.nlplab.org/. 
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"!\"#$()*+,-./:;<=>?@[\\]^_`{|}~" from the end of the tagged 
entity. This does not completely remove all extraneous 
characters from tagged entities, nor does it remove only 
extraneous characters, but it works as a simple heuristic2. We 
attempt to find multiple proteins or genes that exist within a 
larger entity tagged as a protein or gene, but otherwise we do 
not further address the problems of multiple entities or entity 
types in a tagged entity in this work. 

V.   GROUNDING 

A.   Contextual dictionary 
For annotated entities that are part of a larger word in the 

original sentence (e.g., “Tau” in “EcrTgTaumouse”), the words 
around the entity (“EcrTg” and “mouse” in the previous 
example) can be useful context words for linking to a standard 
identifier. We create a dictionary that maps all annotated 
entities that occur in the 570 training documents to the list of  
identifiers that entities have been linked to. Additionally, for 
each (entity, identifier) pair, we create a list of all the context 
“words” that are known to be associated. For example, for the 
entity “Tau”, we could have the associated identifiers: “NCBI 
gene:17762” and “NCBI gene:4137”. We further note that 
when “Tau” is linked to “NCBI gene:17762”, the context 
words “EcrTg” and “mouse” are used. When “Tau” is linked to 
“NCBI:4137”, the context words “EcrTg” and “human” are 
used. We do not weight context words based on how often they 
occur for an (entity, identifier) pair; this is left for future work. 
For each tagged entity that our NER model finds, we first 
check if the entity is in this contextual dictionary. If so, we link 
the entity to the known identifier that shares the most 
contextual words with the sentence the entity belongs to. 
Taking our example above, if the sentence were “Tau 
composition in ECrTgTau and control mouse lines 
investigated,” the identifier “NCBI gene:17762” would have 
more context words in common with the words in the sentence 
and thus be assigned. Our intuition is that context words are 
strong indicators of species and other differentiating factors 
between identifiers of entities with the same surface forms.  

B.   Searching external knowledge bases 
Table 2 shows the knowledge bases, API sources, and 

generic labels associated with each entity type. If we do not 
find a tagged entity in the contextual dictionary, we try to 
search for it in the appropriate external knowledge base. All 
searches for the submitted model were done on Aug.  22, 2017.  

For proteins and genes, we use UniProt’s official API3 to 
search for entity identifiers. We use NCBI’s Entrez tool to 
search the “taxonomy” database for identifiers for organisms 
and species [8]. For the rest of the entities, we use AmiGO, 
which is  a collection of tools for searching the Gene Ontology 
database as well as knowledge bases for a few other ontologies 
[1]. We assign the first identifier match found in the 
appropriate knowledge base through the API source. If no 
matches are returned, and if the entity type is not  

 
2    These punctuation strings are the ones we used in the submitted 

model, but have since been revised.  
3    http://www.uniprot.org/help/api 

gene_or_protein, we assign the entity to its generic label. 

C.   Further heuristics for proteins and genes 
Proteins and genes have the most number of samples out of 

all the annotated biological entity types and also numerous 
variations in surface forms. For example, proteins “Tau”, 
“MAPT”, “MAPTL”, and “MTBT1” are all synonyms. In 
contrast, the cellular component “ribosome” has synonyms 
“ribosomal RNA”, “free ribosome”, and “membrane bound 
ribosome”, which are more similar to each other in surface 
form. We manually review some examples of proteins and 
genes in the training data and devise the following heuristic: 

•   If the complete tagged entity is not found through 
searching the UniProt API: 

o   If there is whitespace in the tagged entity, 
split on the whitespace 

o   Else if there is a forward slash “/” in the 
tagged entity, split on the “/” 

o   Else if there is a dash “-” in the tagged entity, 
split on the “-” 

o   Else if there is a semicolon “;” in the tagged 
entity, split on the “;” 

•   Search each split entity through the UniProt API. If 
identifiers are found, link the entity to the first found 
identifier. If no identifiers are found or if there are no 
whitespace, “/”, “-”, or “;” characters in the entire 
entity, just assign the generic label “protein”.  

TABLE II.    SOURCES OF INFORMATION ACROSS ENTITY TYPES 

Entity type Knowledge 
base API source Generic 

labels 
gene_or_protein UniProt UniProt protein 

small_molecule ChEBI AmiGO molecule 

cellular_component GO AmiGO subcellular 

cell_type_or_line CL AmiGO cell 

tissue_or_organ Uberon AmiGO tissue 

organism_or_species NCBI taxon Entrez (db: 
taxonomy) organism 

 

TABLE III.    PRECISION, RECALL, AND F1 SCORES ACROSS ENTITIES FOR 
DIFFERENT NER MODELS 

Entity type 
NERSuite BLSTM-BLSTM-CRF 

P R F1 P R F1 

gene_or_protein 76.09 79.83 77.91 86.52 88.37 87.43 

small_molecule 72.77 60.13 65.85 77.07 66.28 71.27 

cellular_component 73.57 70.07 71.78 79.30 65.80 71.92 

cell_type_or_line 67.60 62.59 65.00 76.85 65.53 70.74 

tissue_or_organ 68.34 49.26 57.25 70.58 58.22 63.80 

organism_or_species 61.89 65.08 63.44 72.59 75.04 73.79 

overall 73.36 71.90 72.62 82.25 78.87 80.53 
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TABLE IV.    PRECISION, RECALL, AND F1 SCORES ACROSS ENTITIES FOR SUBMITTED BIOLOGICAL ENTITY IDENTIFICATION MODEL

 

VI.  RESULTS AND CONCLUSIONS 

A.   NER results 
Table 3 shows the results of the NERSuite model and the 

results of the BLSTM-BLSTM-CRF model. Both models were 
trained on the training and development sets and scores are 
reported for the test set. The BLSTM-BLSTM-CRF model 
using word embeddings pretrained on the biomedical domain 
does significantly better than the NERSuite model across all 
entity types. Our earlier experiments showed that for certain 
entity types, the BLSTM-BLSTM-CRF model with randomly 
initialized word embeddings performs comparably or worse 
than a CRF model when trained on the BioCreative data. This 
result emphasizes the significance of word embeddings 
pretrained on domain-specific data. We are in the process of 
experimenting with other neural architectures and are seeing 
promising results. Given that neural models often rely on a 
large amount of data to generate accurate results, and 
biomedical NER annotations need to be done by experts, we 
think distant supervision techniques may be especially helpful. 
Our manual error analysis indicates that better tokenization 
schemes might help the model better detect the boundaries of 
an entity. Also, our model tags entities at the word level, but 
the task evaluates entities at the byte level, so a model that tags 
at the byte level may be more suitable. 

B.   Submission results 
In Table 4, we list the scores under various evaluation 

conditions for the unseen test set.  The first four conditions 
evaluate the NER model, and the last two conditions evaluate 
grounding tagged entities to identifiers. As expected, the scores 
are higher when evaluating span overlap entity matches versus 
strict span entity matches. Interestingly, all entity types have 
higher F1 scores when evaluating span overlap match for all 
annotations versus for normalized annotations only. This 
indicates that our NER model is better at detecting non-
normalized entities across entity types. 

In this work, we focus on experimenting with state-of-the-
art NER techniques applied to the biomedical domain. We do 
not spend a comparable effort on grounding techniques, though 
we are working to improve them. We observe that the  

 

grounding method in our submitted model performs the best on 
organism_or_species and cell_type_or_line, does ok on 
small_molecule, cellular_component, and tissue_or_organ, 
and performs poorly on gene_or_protein. One reason the 
normalization performance of gene_or_protein entities is poor 
is because we use a limited context to ground entities. Similar 
genes and proteins of difference species often have the same 
surface forms, and the only way to accurately ground the genes 
and proteins is to infer the species from the textual context. 
Another explanation for the poor normalization performance is 
that genes and proteins have the most variations in surface 
forms; there are relatively fewer ways to refer to organisms and 
species, for example. From a manual evaluation of our 
grounding method, we observe that better organism modeling 
would help  improve the normalization scores. Also, the simple 
heuristics for segmentation seem to help us more accurately 
extract short protein and gene entities, but we often make more  
errors grounding shorter proteins and genes. For future work, 
we would explore using more contextual evidence to assign 
entity identifiers. 
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for norm. 

annotations only 

Micro-averaged 
scores for 

normalized IDs 

Macro-averaged 
scores across 
captions for 

normalized IDs  

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 
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Abstract—Name entity recognition is a key step in a biomedical 
text mining task. This becomes more critical and challenging due to 
the availability of huge amount of biomedical literature. To recognize 
and identify species become difficult for the domain experts due to 
the vagueness of the abbreviated term used for model 
organisms/strains. In this study, we present our species recognition 
tool─SPRENO (Species Recognition and Normalization) developed 
for recognizing organism terms mentioned in figure captions. 
SPRENO is an extension of our previous species recognition tool 
developed for the BioCreative V BioC task. We developed new 
algorithms optimized for normalizing organism terms mentioned in 
figure captions, which consider the contextual information from the 
corresponding full text. Furthermore, two disambiguation methods 
are developed to determine the ID of ambiguous organism mentions. 
One is based on the majority rule to select the ID that has been 
successfully linked to previously mentioned organism terms. Another 
is a convolutional neural network model trained by learning the 
context and the distance information of the target organism mention. 
We participated the BioCreative VI BioID task and submitted three 
runs for the assessment of the developed tool. The best micro F-
scores achieved by SPRENO on the test set are 0.776 (entity 
recognition) and 0.755 (entity normalization). 

Keywords—Named entity recognition, organism normalization, 
convolutional neural network 

I. INTRODUCTION 
The unprecedented growth in biomedical literature 

necessitates perpetual reformations of automated text mining 
tools which can correctly extract individual or multiple 
biomedical entities (e.g. gene/gene products, organism etc.) 
and transform orderly. However, the complexity of the 
dynamically changing terminology for the same bio-entity has 
emerged as a  challenging task for the bio-curators. 
Recognizing bio-entities manually demonstrates high detection 
accuracy but is time-consuming and labor intensive. It provides 
us a lot of scope for the researchers to develop automated 
annotation tools.  

The primary task of biomedical text mining is named entity 
recognition (NER) and normalization of the entity. NER tools 
are developed to ascertain biomedical entities such as the 
mentioned species, gene and gene products in biomedical 
literature. To facilitate downstream tasks, it is very important 

to accurately recognize those entities and associate them with 
their corresponding database/ontology IDs [1]. As one of the 
participants in the BioCreative VI Bio-ID assignment track, we 
extended our previous species recognition tool [2] for 
recognizing organism terms mentioned in figure captions. 
Comparing with the recognition of species terms mentioned in 
abstracts or full texts, which have been studied in previous 
works [3, 4], the process of recognizing terms described in 
figure captions is challenging owing to the absence of specific 
criterion, unique terminology, and unexplained abbreviated 
words. The ambiguous nature of the abbreviated terms requires 
a strategy to process full text to find the full term which makes 
exceedingly tough for the domain expert to identify organisms 
and link them to their unique taxonomy IDs. For example, the 
abbreviated term SIN may stand for Sindbis virus or the same 
term in gene ontology referring to Sex-lethal interactor gene 
(Drosophila melanogaster).  

Another challenge that was encountered during the  
recognition of  organism terms in the BioID task was the 
identification of strains. Authors use specialized terms of 
strains/model in figure captions to describe their experimental 
observations. For example, the terms of inbred strains of the 
mouse include C57BL/6J, R6/2, DBA/2J etc. Aside from the 
organism tagger developed by Naderi, Kappler, Baker and 
Witte [5], those strain mentions cannot be recognized by most 
of the current openly available tools. 

In this paper, we present our new species recognition tool, 
SPRENO (Species Recognition and Normalization). We 
extended the lexicon used by our previous species recognition 
tool by including organism terms and common terms used to 
refer to strains or models. We also developed new algorithms 
optimized for normalizing organism terms mentioned in figure 
captions, which consider the contextual information from the 
corresponding full text. Finally, disambiguation methods based 
on the majority rule  and the convolutional neural network 
(CNN) were developed to determine the ID of ambiguous 
organism mentions. 
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II. METHOD 

A. Lexicon Extended with Terms of Strain/model 
As mentioned in the previous section, the lexicon used by 

our previous species recognition tool only includes species 
terms, as well as prefixes in a gene name, which can refer to 
the species. At present work we extended the lexicon by adding 
the terms used for organisms, common terms and abbreviations 
used for strains/model organism. Table 1 summarizes the 
resources used in this work. 

TABLE I.  RESOURCES FOR STRAIN/MODEL TERMS 

Source Organism 
http://www.informatics.jax.org/inbred_strains/mouse/
STRAINS.shtml 

Mouse 

http://www.criver.com/find-a-model Mouse 
http://gcm.wfcc.info/speciesPage.jsp?strain_name=La
ctobacillus%20acidophilus#specTopgcm.wfcc.info 

Lactobacillus 
acidophilus 

https://gold.jgi.doe.gov/organisms?Organism.Domain
=BACTERIAL&Organism.Type%20Strain=Yes&Or
ganism.Active=Yes 

Bacteria 

https://byo.com/resources/yeast Yeast 

B. Normalization and Disambiguation Approach 
Fig. 1 demonstrates the workflow of the developed 

organism recognizer. We extended our previous BioC library1 
to support the process of figure captions represented in the Bio 
C format defined by the Bio-ID task. The developed library is 
then used to load the figure captions and their corresponding 
full-text article. Although the goal of Bio-ID task is to identify 
the organism terms in figure captions only, we still process 
both the full text and figure captions. Therefore both the full 
text and figure captions are preprocessed to detect sentence 
boundaries, tokens, part-of-speech (PoS) tags and full name-
abbreviation pairs.  

Full text

BioCSourceDataReader BioCPMCReader

Preprocessing

Preprocessed 
data

Figure 
captions

Organism 
recognition

Organism 
Disambiguation

 
Fig. 1. Workflow of the developed organism recognizer. 

1 https://www.nuget.org/packages/NTTU.BigODM.Bio.BioC/ 

When processing the full text, the base forms of the full 
names listed as the full name-abbreviation pairs found from the 
entire full-text are matched with our lexicon before performing 
the actual organism recognition process. If the full name is 
considered to be an organism term, both the name and its 
abbreviation are added to the organism lexicon for the one-off 
matching of the given full-text. Otherwise, the pairs are 
blacklisted for the current full-text. We then process the text of 
figure captions based on the updated lexicon. Through this way, 
we can reduce the ambiguity of abbreviated terms frequently 
used in figure captions. Finally, the algorithm developed in our 
previous work [2] was employed to recognize all organism 
terms from the full text by exploiting linguistic information and 
match against the extended dictionary. After identifying all of 
the organism candidates, the PoS information is used to filter 
out false-positive cases such as candidates with PoS as a verb. 

In order to reduce the ambiguity of the recognized 
organisms in figure captions, we applied two disambiguation 
methods. The first is a rule-based approach which uses the 
normalization information from full text. The algorithm 
follows the similar idea of our multi-stage normalization 
algorithm [6] to disambiguate ambiguous organism terms by 
exploiting the normalization information from the entire 
article. The majority rule is used to select the ID that has been 
successfully linked to previously mentioned organism terms. 

The second disambiguation method is a machine learning 
based method based on CNN. We formulated the 
disambiguation problem as a binary classification task and 
generated the training set based on the outcome of our 
organism recognizer. The generated training set includes both, 
the normalized terms and ambiguous terms along with the 
candidate IDs as well as their context in figure captions. Fig. 2 
shows an overview of the developed CNN model for organism 
disambiguation. 

... wild-type S. typhimurium or it isogenic translocation ...

... 

Position Embedding

Word Embedding

Context Modeling

Position Embedding

Word Embedding

Context Modeling
Entity 

Modeling

... 

Convolution/Pooling

Fully Connected

Softmax

 

Fig. 2. The developed neural network model for organism disambiguation. 
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The input of our model includes the context of the mention 
and the mention’s candidate record from the NCBI taxonomy 
database. The output of our CNN is the probability distribution 
over two possible outcomes {yes, no}. The context is 
represented by word representations and the distance between a 
context word and the target mention based on the consideration 
that a closer context word might be more informative than a 
farther one for disambiguating that mention [7]. For the entity 
modeling, the target entity was represented as the official 
symbol recorded in the taxonomy database.  

The pre-trained PubMed word embedding released by 
Moen and Ananiadou [8] was used for representing the words. 
Therefore, the dimension of word vector was set as 200. The 
learning rate and the window size of CNN were empirically set 
as 0.01 and 2, respectively. 

C. Common Term Recognition and Normalization 
We observed that in the Bio-ID corpus, the annotators tend 

to annotate common terms like larvae and embryos for 
organisms such as Drosophila melanogaster and Danio rerio 
(zebrafish) depending on the context mentioned in the full-text 
article or figure captions. For example, in Figure 1, the term 
“embryo” indicates the species zebrafish. We analyzed the 
training set of Bio-ID corpus to collect all possible grounding 
IDs for a given common term. 

 
Fig. 3. An example text indicates the common term (embryos) and its related 
species (zebrafish). 

When processing a given article, if our tool detects an 
occurrence of the considered common terms, an algorithm was 
developed to select an ID from the term’s possible IDs. The 
selection strategy is designed as a way to select the ID which 
appeared most frequently in the entire full text.  

III. RESULTS 
We submitted three runs to assess the performance of the 

developed organism recognizer module. At first run, the rule-
based normalization method utilizing full-text information only 
was applied. We set a threshold at two to filter those organism 
names assigned for more than two IDs after the disambiguation 
process. In the second run, the threshold for filtering increased 
to 10, i.e. those organism mentions having more than 10 IDs 
were filtered out. After that, we employed the developed CNN 
model to select the ID with the highest likelihood. At last, we 
performed third run where we used the original lexicon from 
our previous work along with the CNN-based disambiguation. 
The threshold for the last run was set to infinite. 

Table II shows the recognition results for organism on the 
test set of the Bio-ID task. Two matching criteria are used. The 
strict span condition depicts that annotator annotates the term 
“zebrafish” and another annotator annotates “spns1-mutant 
zebrafish” then the match function will fail to identify. While 
in overlap situation the term is considered to be a match. 

As shown in Table II, the first run achieves the best recall 
(R) and F-score among others. The second run with the 
developed CNN filter achieves better precision (P) under both 
matching criteria. However, as we increase the threshold the 
performance declining gradually. 

TABLE II.  OFFICIAL RECOGNITION RESULTS ON THE TEST SET 

No of 
Run 

NER 
Criterion Precision Recall F-measure 

Run 1 Strict 0.662 0.873 0.753 
Overlap 0.681 0.910 0.776 

Run 2 Strict 0.670 0.730 0.699 
Overlap 0.689 0.751 0.719 

Run 3 Strict 0.516 0.250 0.337 
Overlap 0.535 0.260 0.350 

 

In order to describe the normalization result, we used two 
methods to get average statistical scores i.e. micro average 
method and macro average method. Table III shows the official 
results on the test set. Comparing the normalization results 
with the recognition results we can observe that the developed 
CNN disambiguation method can improve the precision of the 
two tasks but reduce the recall. We believe that it may due to 
that the corpus released by the Bio-ID task does not 
exhaustively annotate all organism terms mentioned in figure 
captions. 

TABLE III.  OFFICIAL NORMALIZATION RESULTS ON THE TEST SET  

Run Micro-
P 

Micro-
R 

Micro-
F-score 

Macro-
P 

Macro
-R 

Macro-
F-score 

1 0.660 0.882 0.755 0.709 0.924 0.685 

2 0.668 0.760 0.711 0.732 0.824 0.611 

3 0.525 0.327 0.403 0.766 0.462 0.273 

IV.   CONCLUSION 
In summary, we introduce our new species recognition tool 

SPRENO which can recognize organism terms mentioned in 
figure captions. The developed tool will be released on 
https://www.nuget.org/packages/NTTU.BigODM.Bio.NER.Sp
ecies/. 
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Abstract—We participate in BioCreative VI: Interactive Bio-
ID Assignment (Bio-ID) track by developing systems capable of
named  entity  recognition  and  normalization  of  6  entity  types,
namely  Protein,  Cell,  Organism,  Tissue,  Molecule  and  Cellular.
Our  named  entity  recognition  system  is  based  on  conditional
random  fields. For  named entity normalization, we apply fuzzy
matching  and  rule-based  system  to  disambiguate  and  assign
unique  identifiers  to the  entities.  The  official  evaluation shows
that average F1-scores of all entity types for our recognition and
normalization systems on strict span offsets are 0.720 and 0.668,
respectively.  

Keywords—CRF; fuzzy matching; rule-based; Simstring

I. INTRODUCTION

The  main  goal  of  BioCreative  VI  (Bio-ID)  track  is  to
annotate text with the entity types and IDs for organism, gene,
protein,  miRNA,  small  molecules,  cellular  components,  cell
types and cell lines, tissues and organs, in order to facilitate the
curation process.  The task principally  consists  of  two major
subtasks:  i)  named  entity  recognition  (NER)  and  ii)  named
entity normalization (NEN).

On one hand, several machine learning-based approaches,
such  as  support  vector  machines  and neural  networks,  have
been applied to NER tasks with varying entities ranging from
genes to diseases,  chemicals and anatomical parts [1,2].  The
most recent successful approaches include conditional random
field  (CRF)  classifiers  and  neural  networks  [1,3,4].  The
approaches for NEN, on the other hand, are largely based on
string  edit  distance  and  TFIDF  weighted  vector  space
representations with a variety of preprocessing approaches to
remove the written variations [5,6]. 

Our system, capable of recognizing all six types of entities
and assigning the corresponding identifiers, is based on CRF
classifiers,  fuzzy  matching  and  a  rule-based  system.  In  the
following sections we describe our system and its performance
based  on  the  official  evaluation  for  both  recognition  and
normalization tasks.

II. METHODS

A. Preprocessing

We  preprocess  the  documents  by  using  the  publicly
available  tool  [77]  converting  the  character  encodings  to
ASCII.  The  characters  with  the  missing  mapping,  such  as
smiley faces and calendar symbols, are thus replaced with '-'
(dash). Subsequently we split the documents into sentences and
further  tokenize  and  part-of-speech  (POS)  tag  them  using

GENIA sentence splitter [8], NERsuite tokenizer and NERsuite
POS tagger modules [9], respectively. 

Some of the documents contain incorrect word boundaries
such as 'mouseliverlysosomes' which should have been written
as 'mouse liver lysosome'. While the result of tokenization is
overall satisfactory, it is incapable of correctly splitting these
words  into  tokens.  We  thus  resolve  this  by  additional
tokenization using the known tokens from the corresponding
full-text document. Specifically, we split the tokens using the
span of the longest matching document tokens.  To reduce the
chance of  mistakenly tokenizing correct  tokens,  we only re-
tokenize the tokens that belong to noun phrases. Finally, we re-
apply POS tagging to complete the data preprocessing.

B. Ontology and controlled vocabularies

We prepare a set of controlled vocabularies and ontologies
to assist named entity recognition and normalization. List  of
concept names and ontologies we used include ChEBI [10] and
PubChem [11] (for  Molecule), Entrez Gene [12] and Uniprot
[13]  (for  Protein),  NCBI  Taxonomy  [14]  (for  Organism),
Uberon [15] (for  Tissue), Cellular Component Ontology [16]
(for  Cellular  component)  and  Cell  Ontology
(http://purl.obolibrary.org/obo/uberon.owl)  and  Cellosaurus
(http://web.expasy.org/cellosaurus)  (for  Cell).  We  preprocess
the  lists  by  removing  non-alphanumeric  characters  and
lowercasing the symbols. 

Specifically for NCBI Taxonomy, we additionally expand
the ontology by adding the commonly used abbreviations for
scientific  names.  For  binomial  nomenclature  of  names  in
species  rank,  we abbreviate  the  genus  while  the  rest  of  the
names such as species epithet, varieties, strains and substrains,
remain  the  same.  For  example,  'Escherichia  coli  O.1197'  is
abbreviated  as  'E.  coli  O.1197',  'E  coli  O.1197',  'Es.  coli
O.1197' and 'Es coli O.1197'. This rule applies to all organisms,
except for scientific names of organisms in Viruses and Viroids
superkingdoms,  since  the  scientific  names  do  not  usually
follow binomial nomenclature but are in the form of [Disease]
virus [17]. Acronyms are often used as abbreviated scientific
names  for  viruses,  for  example  ZYMV  is  the  acronym  of
Zucchini yellow mosaic virus, and thus we also add acronyms
to the ontology. 

C. Named Entity Recognition

For  the  given  training  data,  we  first  completely  remove
annotations  for  Assay entity  type  and  combine  miRNA and
Gene with  Protein annotations. Hence, the total entity counts
are 58476, 7476, 6312, 11213,  10604 and 7888 for  Protein,
Cellular,  Tissue,  Molecule,  Cell  and  Organism.  We  then
randomly  partition  the  training  data  into  a  training  and  a
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development  set,  containing  455  and  115  documents
respectively. 

We train  our  NER system on the  training  set  using  the
NERsuite  (http://nersuite.nlplab.org/)—a  named  entity
recognition toolkit—and optimize it  against our development
set.  We  train  a  single  CRF  model  capable  of  detecting  all
possible entity types and use micro-averaged F1-score as the
optimization metric, derived from the official evaluation script.
To achieve higher performance in NER, we directly provide
NERsuite with dictionaries through dictionary-tagging module
with no further  preprocessing or normalization. We compare
the performance of different dictionaries on development data
using default NERsuite hyperparameters. 

For final prediction of the test set, we merge the training
and the development sets and re-train the CRF on this data
using the best found hyperparameters.

D. Named Entity Normalization and Disambiguation

Our normalization  approach  is  primarily  based  on  fuzzy
string  matching  algorithm  where  both  entity  and  ontology
terms  are  converted  to  vectors  using  character  n-gram
frequencies.  Cosine  similarity  is  then  used  for  calculating
similarity between detected entity and ontology terms. In this
study, we use Simstring [18], a library for approximate string
matching, to retrieve the ontology terms with highest cosine
similarity  with  queried  entity,  regardless  of  the  type  of  the
terms.  

The  tagged  entities  resulting  from  the  NER  system  are
preprocessed using the same approaches we use on dictionaries
and ontologies, by removing the punctuations and lowercasing,
as  described  previously.  We  utilizes  approximate  string
matching approach to all entity types except for Protein, which
we instead apply 'exact string matching' to retrieve matching
identifiers.   

Some of the ontology terms are not uniquely linked to a
single identifier, but multiple ones. For Cell, Cellular, Molecule
and  Tissue, a  random  identifier  is  selected.  The  selected
random  identifier  is  subsequently  applied  throughout  the
document. For Organism and Protein, we develop two separate
rule-based systems to uniquely assign an identifier. 

For  Organism,  we use  taxonomy tree  and  the  following
disambiguation rules to assign a taxon identifier to Organism.
These rules are sequentially applied if the previous rule results
in more than one identifier. 

1. Take  identifier  with  highest  cosine  similarity  score
and its taxonomic rank is under species, which also
includes subspecies, strain, variety and no rank.

2. Take  identifier  of  previous  mentioned  Organism if
abbreviations match.

3. Take  identifier  of  previous  mentioned  Organism if
acronyms match.

4. Take identifier of previous mentioned Organism of the
same genus.

5. Take  identifier  of  a  model  organism  of  the  same
genus.

6. Take  identifier  of  the  most  studied  organism  in
PubMed-Central Open Access section.

7. Take a random identifier.

Protein contain  the  most  ambiguous  names  as  the  same
protein names can be found in multiple organisms if they have
the same function or shared sequence identity [19]. Therefore,
the  information  about  the  Organism is  crucial  for  Protein
normalization.  We  therefore  employ  the  results  of  our
Organism normalization system and use the taxon identifiers to
disambiguate Protein. However, multiple taxon identifiers can
be recognized in a single document, hence we adapt rule-based
system proposed by [1] to generate candidate taxon identifiers
for  the  Protein.  The  list  of  candidate  taxon  identifiers  are
ordered according to the following rules.   

1. Organism mentioned inside Protein text span

2. Organism mentioned before  Protein within the same
sentence 

3. Organism mentioned  after  Protein within  the  same
sentence 

4. Organism mentioned in the previous caption

5. Organism mentioned in the same document

In  addition,  we  perform  query  expansion  to  generate
candidate Protein names to cover potential Uniprot and Entrez
Gene symbol variations by using stripping algorithm [20]. The
algorithm recursively removes common words, such as protein,
gene  and  RNA,  and  Organism from  Protein to  produce  a
canonical form which includes minimal symbols that are gene
symbols  in  the  Entrez  Gene  database.  For  instance,  'p53
protein'  will  result  to  'p53'.  Finally,  the  canonical  forms  are
subsequently lower-cased and punctuation-removed. The list of
candidate Protein names are then ordered by the string length.

For each taxon identifier, we use 'exact string matching' to
retrieve corresponding Protein identifier. The search starts with
the  longest  candidate  Protein name  and  stops  when  the
identifier is found. In case of multiple identifiers, a random one
is selected.

III. RESULT AND DISCUSSION

E. Name Entity Recognition

Incorrect word boundaries can result in multiple types of
entity  annotations  for  a  given  token.  For  example,
'mouseskinfibroblasts'  contains the annotations for  Organism,
Tissue and  Cell. Since we train a single CRF-based model to
recognize all types of entities, having one token representing
multiple  entities  would  have  caused  the  loss  of  training
examples  as  NERsuite  does  not  support  multilabel
classification. As mentioned in Method section, we resolve this
issue by re-tokenizing the tokens using known tokens from the
provided  full-text  document.  The  result  for  recovering  the
training examples is significant as tokenization from NERsuite
alone  yields  about  97%  of  the  annotations,  while  this  step
increases  the  number  of  annotations  by  additional  2pp,
equivalent  to  more  than  2000  annotations.  As  a  result,  we
recover  more  than  99%  of  the  original  annotations  with
Organism with the highest increase in coverage. 
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TABLE I. COMPARISON OF ANNOTATION COUNTS BETWEEN
TOKENIZATION APPROACHES

re-
tokeniz
ation

Prot Cellu Tiss Mole Cel Org

without 97.178 99.772 95.951 96.107 97.099 93.691

with 99.187 99.866 99.842 99.424 99.559 98.921

a. The comparison of annotation counts between preprocessing with only NERsuite tokenization module
(without) and with both NERsuite tokenization and additional tokenization (with). The numbers are

percents of annotations compared to the provided data presented for each entity type. 

It has been demonstrated that domain knowledge, such as
controlled vocabularies, is important to attain good performing
NER model  [3,4].  In  this  study,  we use  dictionaries  to  add
features for classifier and compare the model performance on
the development data. As shown in Table II, there is no clear
performance improvement when adding dictionary features in
either  strict  or  overlap  modes  of  evaluation.  In  the  case  of
cellular  component  from  GO,  the  performance  of  NER  is
however,  lower  than  other  models  by  more  than  6pp  in  F-
measure.  As a result,  we train our model without using any
additional dictionary features.

TABLE II. OFFICIAL EVALUATION OF NER SYSTEM ON DEVELOPMENT
DATA

Dictionary/
Ontology

Precision / Recall / F-measure

Strict Overlap

Uberon 0.787 / 0.688 / 0.734 0.882 / 0.771 / 0.823

ChEBI 0.763 / 0.689 / 0.724 0.865 / 0.780 / 0.821

GO 0.652 / 0.687 / 0.669 0.789 / 0.830 / 0.809

Cellosaurus 0.780 / 0.687 / 0.730 0.875 / 0.772 / 0.820

NCBI Taxonomy 0.785 / 0.689 / 0.734 0.880 / 0.772 / 0.823

NCBI Gene 0.770 / 0.688 / 0.727 0.870 / 0.778 / 0.821

Cell ontology 0.788 / 0.687 / 0.734 0.883 / 0.770 / 0.823

No dictionary 0.788 / 0.686 / 0.734 0.882 / 0.769 / 0.822

We finally train NERsuite model on combined training and
development sets. The resulting model is subsequently used for
tagging the entities in the test dataset. The official evaluation
results, shown in Table III, demonstrate that our NER system
performs best on Organism, achieving F-measure of 0.834. The
performance of the system is moderate for  Cell and  Protein
with F-measure of 0.743 and 0.734, respectively. For the other
three entity types,  Tissue, Cellular and  Molecule, our system
shows comparatively lower performances with F-measure of
0.668, 0.642 and 0.579, respectively. Cellular proves to be the
most difficult entity to recognize. Overall, the performance of
model is moderate across all entity types, achieving F-measure
of 0.720 and 0.790 on strict and overlap evaluation criteria. 

TABLE III. OFFICIAL EVALUATION OF NER SYSTEM ON TEST DATA

Entity
Precision / Recall / F-measure

Strict Overlap

Cell 0.783 / 0.708 / 0.743 0.841 / 0.760 / 0.799

Cellular 0.673 / 0.508 / 0.579 0.728 / 0.550 / 0.627

Protein 0.729 / 0.739 / 0.734 0.825 / 0.836 / 0.831

Organism 0.860 / 0.809 / 0.834 0.878 / 0.826 / 0.852

Molecule 0.775 / 0.587 / 0.668 0.796 / 0.603 / 0.686

Tissue 0.727 / 0.575 / 0.642 0.793 / 0.627 / 0.701

All 0.747 / 0.694 / 0.720 0.821 / 0.762 / 0.790

F. Name Entity Normalization and Disambiguation

The  performance  of  normalization  system  is  heavily
depending on the NER system performance since unrecognized
and incorrect spans entities  are automatically classified as false
negative and false positives, respectively. We thus evaluate our
normalization system on the development set based on the gold
standard entity mentions to compare the different approaches
on different entity types.

TABLE IV. OFFICIAL EVALUATION OF NEN SYSTEM ON DEVELOPMENT
DATA

Entity
Precision / Recall / F-measure

Strict Overlap

Cell 0.902 / 0.946 / 0.923 0.935 / 0.980 / 0.957

Cellular 0.974 / 0.929 / 0.951 0.980 / 0.934 / 0.957

Protein 0.878 / 0.591 / 0.706  0.902 / 0.606 / 0.725

Organism 0.977 / 0.887 / 0.930 0.993 / 0.901 / 0.945

Molecule 0.963 / 0.488 / 0.647 0.969 / 0.491 / 0.651

Tissue 0.920 / 0.978 / 0.948 0.930 / 0.988 / 0.958

All 0.914 / 0.700 / 0.793 0.933 / 0.716 / 0.810

Our normalization system performs relatively well on Cell,
Cellular,  Organism and  Tissue,  where  the  F-measure ranges
from  0.923  to  0.951  under  strict  criteria.  However,  the
performance of the system drops dramatically on Molecule  and
Protein, as their recall of both entities are significantly lower
than their precision counterpart. For  Protein, the exact string
matching and a set of taxon identifiers are probably attributing
factors for a low recall as these two criteria are probably too
stringent resulting in almost half of the Protein not being linked
to an associated identifier.  For  Molecule,  the lower recall  is
most likely caused by some other factor since the approximate
pattern matching was used. 

When evaluated against test set, the normalization results
differ  from  gold  standard  development  data  as  the  overall
performance is largely depending on the NER system output.
As shown in Table V, the normalization performance does not
appear  to  drop  drastically  even  when  applied  on  predicted
entities instead of the gold standard mentions.
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TABLE V. OFFICIAL EVALUATION OF NEN SYSTEM ON TEST DATA

Entity
Precision / Recall / F-measure

Strict Overlap

Cell 0.774 / 0.699 / 0.735 0.830 / 0.750 / 0.788

Cellular 0.685 / 0.482 / 0.566 0.737 / 0.519 / 0.609

Protein 0.795 / 0.543 / 0.645 0.823 / 0.561 / 0.667

Organism 0.857 / 0.797 / 0.826 0.877 / 0.815 / 0.845

Molecule 0.787 / 0.581 / 0.668 0.803 / 0.593 / 0.682

Tissue 0.604 / 0.542 / 0.572 0.669 / 0.600 / 0.632

All 0.775 / 0.586 / 0.668 0.809 / 0.612 / 0.697

IV. CONCLUSIONS AND FUTURE WORK

We approach BioCreative Bio-ID task by training a single
CRF-based  model  to  recognize  all  entity  types and  we link
them  to  their  corresponding  database  identifiers  using
approximate  pattern  matching  algorithm.  For  Protein and
Organism,  we utilize the ontology structure and surrounding
context  to  disambiguate  the  entities  with  multiple  identifier
candidates. Our systems, evaluated independently, demonstrate
a  moderate  performance  overall.  However,  a  lower
performance  for  most  types  of  entities  is  observed  when
recognition and normalization are evaluated jointly as the F-
score is largely determined by the F-score of the recognition
system.

CRF-based classifiers have been a relatively successful tool
for  entity  recognition  in  biomedical  domain,  demonstrating
state-of-the-art for several entity types. However, it  has been
recently  shown  that  neural  networks  with  only  word
embeddings as features can outperform traditional CRF-based
NER systems  with  manually  crafted  features  [1].  Thus,  our
future work includes developing a neural network-based NER
system capable of recognizing multiple types of entities. 

Our  normalization  system  for  Protein and  Molecule
demonstrate a lagging performance when compared with other
entities.  For  Protein,  applying  relaxed  string  matching  in
addition to improving the organism assignment algorithm can
potentially improve the performance . For Molecule, our future
work  lies  on  identifying  contributing  factors  that  lower  the
recall and adjusting the system accordingly. 

Our  current  normalization  system  is  limited  and  time-
consuming as it applies several manually generated rules which
do  not  generalize  to  normalizing  other  entity  types.  Thus
developing a machine learning system that can be trained on
the annotations of new entity type would be an ideal solution
for  the normalization task.  Since the conventions of  naming
biomedical  entities  vary  among  entity  types,  a  unified
normalization system can be a challenging task.
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Abstract—Bioconcept curation is important to improve 
research on bio-literatures. Among bioconcepts, organism named 
entity recognition has been studied for a long time but without 
much success. According to this, we decided to develop a system 
for curating organisms and normalizing the entities of figure 
captions. In this work, we split the system in two parts, one is 
named entity recognition, and the other is entity normalization. 
In the first part, we leverage conditional random fields (CRFs) 
with several linguistic features that assist recognition, and in the 
second part, we utilize some heuristic ways to enhance the ability 
to identify the taxonomy ID for each entity. At the bioentity 
normalization task of BioCreative VI Bio-ID task, our system 
obtained 0.81 precision in the recognition stage and 0.61 
precision in the normalization stage. 

Keywords—conditional random fields; taxonomy named entity 
recognition and normalization; Biomedical text mining 

I. INTRODUCTION

In the biomedical field, biomedical publications are 
rapidly increasing. Text mining technology has become an 
integral part for biomedical literatures. Through natural 
language processing (NLP) techniques analysis, curating 
useful information within corpora becomes more accurate and 
lets us readily find relevant information. If there is too much 
irrelevant information in the corpus, existing techniques will 
struggle. As biomedical literature grows, so do the number of 
bioconcepts that require curation – e.g. chemicals, diseases, 
genes and organisms. There are many existing outstanding 
tools for curating bioconcepts, such as AuDis[1], 
OrganismTagger[2] and TaggerOne[3] etc. – but few address 
the need for curation of organisms. Therefore, we chose to 
participate in the BioCreative VI Task 1: Interactive Bio-ID 
Assignment, and we chose the bioentity normalization task to 
recognize organism named entities and normalize.  

This task consists of a collection of figure captions from 
PubMed which are curated by the SourceData team. The 
format of the training data is BioC format, but to be easier to 
use in our system, we transform every caption into Pubtator 
format, and in the end of our system, we turn our result back 
into BioC format. After observing the captions in the training 

data, we found out that there are some words that are different 
from the original article, such as the word ‘Sykfl/flmice’ in 
corpus, but in original article it should be ‘Sykfl/fl mice’ that 
should have a space inside the word, and we developed some 
ways to overcome this problem. We also leveraged useful 
features and methods from other systems in our system, such 
as SR4GN[4] and AuDis[1]. Additionally, abbreviations of 
species names are widespread as well as the use of common 
English names instead of Latin names, which are easy to read 
but will cause difficulties for taxonomic identification of the 
organisms described in the captions. The use of acronyms, 
which can be both species specific and species independent, 
also poses challenges for recognition tasks. Lastly, incorrect 
spelling has created more ambiguity.  

In this paper, in section II we will introduce the systems 
referenced; in section III we explain the method we use for 
developing our system; in section IV we will report the results 
of our experiments and discuss the differences between each 
experiment; finally, in section V we state our conclusions and 
future work.

II. RELATED WORK

SR4GN[4] identifies and disambiguates gene names, it also 
focus on species detection and recognition. The method to 
identify the main species mentioned in the article has been 
integrated into our system. The method gives more weight to 
species when the species mention occurs in the title as 
compared to the abstract. In particular, it will double counts on 
the frequency of the species mentions in the title. However, 
when multiple species have the same number of occurrences 
in a document, the author adopted a tie-breaking strategy that 
uses the global frequency of different species in the Linnaeus 
corpus. Another outstanding system is AuDis[1], which is for 
disease name entity recognition and normalization, but the 
method and features that the author used inspired us to 
develop this work. 

Linnaeus[5] uses a dictionary-based approach to recognize 
species names and develops a set of heuristics to resolve 
ambiguous mentions. As a standalone and open source tool, 
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Linnaeus has been widely used in many the biomedical 
literature. In LINNAEUS-species-corpus, it performs with 
94% recall and 97% precision. 

OrganismTagger[2] (OT) is another well-known system for 
curating organisms, it is a hybrid rule-based/machine learning 
system to extract organism mentions from the biomedical 
literature. OT addresses some challenges and makes some 
contributions, such as, a machine learning-based classifier for 
strain detection, and tools for automatically generating lexical 
and ontological resources from a copy of the NCBI Taxonomy 
database which allow the system to be updated by the users. 
On their manually annotated OT corpus, the OT achieves a 
precision of 95%. 

In addition to the aforementioned systems, more recently, 
there is a new detection and recognition technology called 
TaggerOne[3], which is currently the state-of-the-art 
technology for tagging bioconcepts. The system is the first 
machine learning model for joint named entity recognition 
(NER) and normalization using semi-Markov models during 
both training and prediction. The result of NER F-measure of 
TaggerOne[3] in NCBI Disease corpus is 0.829 and in 
BioCreative V CDR corpus is 0.914. 

Conditional Random Fields (CRFs)[6] is a popular 
probabilistic method for structured prediction. While most 
classifiers predict a label with just a single sample without 
considering other neighboring samples, CRF can take context 
into account which makes it perform better on predicting 
tokens’ labels. For instance, the linear chain CRF which is 
famous in natural language processing and is used in our 
system, predicts sequences of labels for sequences of input 
samples. 

III. METHODS 
To deal with the organism identification problem, we 

designed a semantic based recognition system which includes 
two modules as shown in Fig. 1. First, taxonomy named entity 
recognition. We utilize linear chain conditional random fields 
(CRFs)[7] as our recognition model based on semantic features 
and dictionaries (NCBI taxonomy dictionary and UniProt 
taxonomy identifier). Also, we expanded our dictionary in 
some ways to deal with the special cases that influence our 
system to recognize the taxonomy entities. Second, taxonomy 
normalization. In this stage, we not only use the dictionary to 
identify the entities but also find the target species of each 
article to enhance the ability to normalize the species mentions.  

A. Named Entity Recognition 
To train a taxonomy named entity recognition model, we 

leverage the CRF++ toolkit (https://taku910.github.io/crfpp/).  
In this model, we utilized BIEO states (B: begin, I: inside, E: 

end, O: outside) to tag each word and using a template of CRF 
which assists our model to recognize a taxonomy named entity. 
For training the CRF model, we need to get all the features of 
each token in the preprocessing stage. 

      
Fig. 1. The architecture of our system, which can be divided into two stages, 
recognition stage and normalization stage. 

First, we divide tokens with not only spaces and punctuations 
but also letters and digits. After getting all the tokens, we 
transform them into lowercase, and get several features of them. 
In AuDis[1], the author uses features like morphology and part 
of speech, which are really useful to recognize the meaning of 
each word, so in our model, we utilized these as some of our 
important features. The significant features are describe as 
below: 

 Morphology: this feature includes the original tokens, 
stemmed tokens which are extracted by the Snowball 
library, and prefixes/suffixes of the tokens whose 
lengths range from 1 to 5. 

 Part of Speech: we use Stanford POS tagger to extract 
the part of speech of the token. 

 Dictionary: we utilize the dictionary from NCBI 
taxonomy and UniProt Taxonomic identifier, to get the 
token’s rank, like species, genus etc. 

 Abbreviation: if the curated entity is an abbreviation, 
we label it as abbreviation, otherwise, we label it as 
normal. 

 For the dictionary feature, there are two dictionaries that we 
use. In the dictionaries, there are several columns and 
information that can be used in our features, such as taxonomy 
ids, taxonomy names, other names, rank of each mention, 
scientific name and common names. In particular, to strengthen 
our dictionary lookup feature, we have two possible ways; first, 
if the token is one of the taxonomy named entities but can’t be 
found in these two dictionaries, we add this token into our 
dictionary. Second, we add to our dictionary if the token is an 
abbreviation of a taxonomy named entity or some common 
abbreviation.  
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 In addition to the methods above, sometimes the taxonomy 
named entities will appear in a word which should have a space 
between it but missing. We store these tokens as special cases 
and using these at the normalization stage to avoid the situation 
where the correct entity is found in the text but can’t be found 
in the dictionary. 

B. Conditional Random Fields module 
 CRFs have been applied in many entity extraction studies 
in biomedical literature. And CRFs are a type of discriminative 
undirected probabilistic model for computing conditional 
probability distributions. Lafferty, McCallum and Pereira 
define the conditional probability distribution p(YX) of a 
random variable Y given the input X as follows: 

 𝑝(𝑌𝑋) =  
1

𝑍(𝑋)
𝑒𝑥𝑝(𝑓(𝑌, 𝑋)) =  

exp (𝑓(𝑌′ ,𝑋))

∑ exp (𝑓(𝑌′,𝑋))𝑌′
 

where Y = {y1, y2, …, yn} is a label sequence from an 
observation sequence X = {x1, x2, …, xn} which means a token 
sequence. Z(X) is the normalization term. To learn the feature 
weights in a CRF, we can use gradient ascent because it is 
memory efficient. The weighted feature function in equation 2 
for deciding the label at position i is a function of the label at 
position i-1, and the entire observation sequence X, made up of 
all xi, which are vectors of features. 

 𝑓(𝑌, 𝑋) =  ∑ ∑ 𝑤𝑖𝑓𝑖(𝑦𝑖𝑦𝑖−1, 𝑋)𝑚
𝑖=1

𝑛
𝑗=1  

C. Normalization 
 After passing the data through our CRF model, we obtain 
the label of each token. With these labels, we can extract the 
taxonomy entities. At the taxonomy normalization stage, we 
use NCBI Taxonomy dictionary to identify each taxonomy 
named entity. If the taxonomy named entity cannot be found in 
the dictionary, the entity might be one of the special cases or it 
might be a kind of species’ embryo, larva etc. 

 If it is the latter, it is a bioconcept ambiguity problem. To 
address this problem, we developed an approach for looking up 
the articles’ target species. At first, we break the original full 
text article into tokens, and get the features of each token as in 
the preprocessing stage; next, we utilize our CRF model to 
extract the taxonomy entities in the article; finally, we choose 
the taxonomy entity which appear the most frequently in the 
full text article as the target species for this article. 

TABLE I.  CAPTIONS STATISTICS 

Task Dataset Captions 
Training data 13696 

Caption contains Taxonomy 4206 

 

 

 

 

TABLE II.  RESULTS WITH AND WITHOUT SPECIAL CASES 

RUN SC- SC+ 
 P R F P R F 
1 0.571 0.373 0.451 0.548 0.403 0.464 

2 0.486 0.315 0.382 0.52 0.359 0.424 

3 0.594 0.273 0.374 0.625 0.315 0.419 

4 0.799 0.481 0.6 0.81 0.533 0.642 

5 0.778 0.485 0.598 0.793 0.548 0.648 

Avg. 0.645 0.385 0.481 0.659 0.432 0.519 

 With the target species of all the articles, we can identify 
the entities that are extensions of the target species. As a result, 
we can address the problem of taxonomy ambiguity, and this 
approach improves our system for taxonomy  normalization. 

 Some species’ names can cause ambiguity (i.e. mouse,  
mice), because the species like “mouse” can be identified as 
taxonomy ID:10088 as genus and taxonomy ID:10090 as 
species. To address this problem, we normalize the mentions 
like mouse, mice, rat which IDs are 10088 into 10090 to make 
it consistent, which means that we identify IDs for species rank, 
not genus rank. 

IV. EXPERIMENT AND RESULTS 
To make the data easier to train and raise the accuracy of 

recognition, we transform all the training data from BioC 
format into Pubtator format, and extract the annotated captions 
that contains taxonomy entities. The statistics of the captions 
are shown in Table I. 

In our evaluation, we use 5-fold cross-validation to evaluate 
our result on training data that only contains annotated captions 
with taxonomy entities. The results are shown in Table II. The 
SC- means normalization without checking if the entity is one 
of the special cases, and the SC+ is using the special cases to 
identify the unknown taxonomy named entities in the 
normalization stage. This approach raises the F-measure about 
0.03%. 

Due to the better result of using special cases, we go on to 
analyze the effect of identifying the unknown entities using 
original articles’ target species. As shown in Table III, the F-
measure raises about 0.12%. 

Finally, we get our test result from BioID scorer, Table IV 
shows our score in each corpus that contains scores with and 
without normalization. The score without normalization counts 
extracted taxonomy named entities, and the score with 
normalization counts the correct taxonomy IDs. 

V. DISCUSSION AND CONCLUSION 

 From our test results, we found out that our performance on 
taxonomy named entities recognition is effective, but we have 
more room to improve in our normalization stage. We now 
discuss some methods that might improve the performance. 
First, the way we find the target species in the original articles, 
we only use our CRF model to detect the mentions in the 
article. A better way is to not only use our model but also use 
some  
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TABLE III.  PERFORMANCE WITH TARGET SPECIES 

RUN SC+ SC+_Target 
 P R F P R F 

Avg. 0.659 0.432 0.519 0.703 0.579 0.635 

 

other taxonomy identifier to enhance the accuracy of getting 
the right target species. Besides, we only use two dictionaries 
(NCBI Taxonomy dictionary and UniPort Taxonomy identifier) 
and only use NCBI Taxonomy dictionary for the normalization 
stage. As the results show, we need more high quality 
dictionaries to improve our normalization stage. Lastly, if an 
entity is correctly mentioned once, if the same word appears 
again, the word should be marked same as the entity above, as 
in AuDis’s[1] post-processing. We believe that integrating this 
step will significantly raise our performance. 

Overall, we found several features which can assist our 
system in developing enhanced CRF model for taxonomy 
named entities recognition. With these features, our system 
sees increased performance in the recognition stage. In the 
normalization stage, we also use several methods to correctly 
identify the mentions’ IDs, such as finding the target species 
and the special cases which significantly improved the F-
measure. In our future work, we will focus on enhancing the 
performance of the normalization stage with the methods 
mentioned above, and by considering some other machine 
learning approaches. 

TABLE IV.  TEST RESULTS FROM BIOID SCORER 

 precision F-measure norm_ 
precision 

norm_ 
F-measure 

Any_Strict 0.813 0.701 0.609 0.555 

Any_Overlap 0.853 0.735 0.609 0.555 

Normalized_Strict 0.812 0.701 0.609 0.555 

Normalized_Overlap 0.852 0.735 0.609 0.555 
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Abstract— The BioCreative VI Kinome Track proposed a 
competition to assess the effectiveness of text mining to perform 
literature triage, thanks to an unpublished curated dataset from 
the SIB Swiss Institute of Bioinformatics. This dataset contains 
comprehensive annotations for 300 human proteins kinases. For 
a given protein and a given curation axis (disease, or biological 
processes), participants’ systems have to search relevant articles 
in a collection of 5.2M MEDLINE citations for the subtask 1, or 
270,000 fulltext articles for the subfulltask 2. The list of explored 
strategies comprises Named Entity Recognition and machine 
learning frameworks. In particular, participants managed to 
derive a set of negative instances, as the databases typically do 
not store articles that were judged as irrelevant by curators. 
Final results shows significant improvements compared to the 
baseline established in a previous study, and compared to a basic 
PubMed search. 

Literature triage; protein curation; text mining 

I. INTRODUCTION AND MOTIVATION 
Curators play a key role to define the content and ensure 

the quality of the biomedical databases and to spotlight the 
major findings (1,2). Their mission consists of continuously 
collecting, verifying and annotating the literature, in order to 
fill reference databases. Most curation methods are based on 
manual approaches, which produce the most accurate 
knowledge, but are time-consuming (3). With the exponential 
growth of biomedical literature (4), biocurators need help from 
the text mining community in order to remain up-to-date. In 
particular, (5) estimates that about 7% of the curation time is 
assigned to the rejection of papers. (6) assumes that 15% of 
curators’ time is spent on triage. Assisting curators in 
retrieving, filtering and/or prioritizing the literature can save 
productivity.  

The CALIPHO group develops the neXtProt database (7-
8), a flagship resource of the SIB Swiss Institute of 
Bioinformatics that integrates information on human proteins. 
The data in the neXtProt database comes from both integration 
of external resources and annotation within the group using an 
internal annotation tool, the BioEditor. In a project funded by 
Merck-Serono from 2011-2013, the CALIPHO group has 
annotated 300 human protein kinases from over 13,600 
research articles, producing a data corpus of over 30,000 
different annotations describing the function, substrates of the 
kinases, and diseases in which they have been implicated. This 
large data corpus is still unpublished (to be released in the 
upcoming months), providing a unique opportunity to use 
curated data to create a text mining task. 

Literature triage is an Information Retrieval task; it aims at 
retrieving/filtering articles that are supposed to be relevant for 
curation. This is a basic task performed by virtually all curated 
molecular biology databases to initiate a curation workflow. 
The BioCreative VI Kinome Track proposed a competition in 
literature triage, thanks to the neXtProt data. Text mining 
groups were invited to develop and test approaches aiming at 
assisting database curators in the selection and ranking of 
relevant articles for the curation of human protein kinases. Two 
aspects were investigated in two subtask: abstracts triage, and 
fulltexts triage. All abstracts annotated in the neXtProt data are 
available via MEDLINE. The availability of fulltexts is more 
problematic, as only a tiny fraction (approximately 10%) is 
open access in services such as Europe PMC (Europe PMC 
consortium). 

II. TASKS & DATA 

A. The Kinome Track dataset 
The BioCreative VI Kinome Track dataset contains 

comprehensive annotations about kinase substrates. It covers a 
significant fraction of the Human Kinome: 300 proteins out of 
approximately 500 human kinases. The dataset contains more 
than 30,000 annotations, all supported by an article (a PubMed 
identifier). The Kinome Track focuses on two different 
curation axes: diseases, and biological processes. This dataset 
is ready to be integrated in the neXtProt database by 2017, yet 
still hidden from public and participants during the competition 
period. 

The dataset represents a total of 4,581 different articles 
annotated for diseases annotations, and 5,357 for biological 
processes ones. There is a slight overlap between both axes: 
only 6% of the curated articles contain an annotation for both a 
disease and a biological process. In total, 9,367 different 
articles, published in 862 different journals, are present in the 
dataset. Table 1 shows the 10 most represented journals in the 
dataset.  

TABLE I.  TOP 10 JOURNALS IN DATASET 

Journal # articles in 
dataset 

Cumulative 
percentage 

J Biol Chem 744 7.9% 

Proc Natl Acad Sci U S A 314 11.3% 

Cancer Res 301 14.5% 

Blood 288 17.6% 
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Journal # articles in 
dataset 

Cumulative 
percentage 

Mol Cell Biol 253 20.3% 

Oncogene 228 22.7% 

PLoS One 219 25.1% 

J Immunol 208 27.3% 

Nature 156 28.9% 

Clin Cancer Res 156 30.6% 

Fig. 1. The top 10 journals in the dataset, ranked by the number of articles 
annotated in the dataset. The cumulative percentage is computed for the whole 
collection (e.g. the top 10 journals represent 30.6% of all the annotated 
articles in the dataset). 

B. The Kinome Track benchmark 
In the Cranfield paradigm (9) for evaluation of Information 

Retrieval systems, benchmarks are composed of three parts: a 
collection of documents, a set of queries, and relevance 
judgements. In the Kinome Track, a query was a human kinase 
and an axis (biological processes, or diseases). Participants’ 
systems had to search in the collection, and to propose a ranked 
list of articles that are relevant for the curation of this kinase 
and this axis. Systems were evaluated on their ability to 
propose the articles that were chosen by neXtProt curators. 

a) Design of the collection: For a fair comparison, 
systems obviously had to search for relevant articles in a 
common collection. This collection had to satisfy two 
conditions: being small enough to be efficiently processed by 
all teams for the competition, but large enough to make the 
task realistic. For designing such a collection, we applied a 
journal-centric strategy. As mentioned previously, annotated 
articles in the dataset were published in 862 different journals 
(out of approximately 5,500 in MEDLINE). We chose to 
include all articles published in these 862 journals. We also 
decided to limit the collection to papers published before 
2014. Thus, the final collection contained a total of 5.3M 
PMIDs. Unfortunately, for the fulltexts collection, only a 
small fraction of the PMIDs corresponded to an open-access 
article. 

b) Queries: They were pairs made of: one of the 300 
kinases (e.g. "Activin receptor type-1B" - P36896), and a 
curation axis (biological processes, or diseases). For each 
kinase, neXtProt collected synonyms were provided to the 
participants.  

c) Relevance Judgements: For a given kinase and a given 
axis, all annotated articles in the dataset are considered as 
relevant. The rejections of articles after screening by a curator 
are not stored in the database. Yet, the neXtProt curation is 
assumed to be comprehensive. This assumption means that all 
potential articles were screened, and that articles that were not 
annotated are considered as non-relevant. Articles that could 
have never been screened by a curator are equally distributed 
among all participants runs, and thus comparisons between 
systems are still valid. 

C. The Kinome Track subtasks 
Figure 2 presents an overview of the triage 

process.

 

Fig. 2. Overview of literature triage for the Kinome Track. (the collection 
differs depending on the subtask: abstracts, or fulltexts). 

The 300 proteins present in the dataset were randomly 
distributed in three different subsets: one third for the tuning 
set, one third for the subtask 1 test set, and one third for the 
subtask 2 test set. The tuning set contained 100 kinases, along 
with the PMIDs of the annotated articles for each axis 
(relevance judgements). The tuning set was made available in 
April 2017, thus participants were free to use it for analyses, 
and for tuning their system. Both test sets were delivered in 
May 2017. Obviously, test sets only contained the queries, 
while relevance judgements were kept for the official 
evaluation. 

a) Subtask 1 – abstracts triage: This subtask focuses on 
abstracts triage. The collection (5.3M of articles) was given in 
the form of MEDLINE citations. Thus, systems had to 
perform triage only based on abstracts, and metadata (such as 
journal, publication year, publication type, etc). In the test set, 
for each kinase, this collection contained on average 16 
relevant articles for the biological process axis, and 18 for the 
diseases axis. The collection was provided in BioC format. 

b) Subtask 2 – fulltexts triage: This subtask focuses on 
fulltexts triage. The collection was given in the form of 
PubMed Central (PMC) fulltexts. Thus, systems had to 
perform triage based on fulltext contents. As only a fraction of 
PMC is open-access, the collection for the subtask 2 only 
contained 260,000 articles. Thus, in the test set, for each 
kinase, this collection only contained on average 2.6 relevant 
articles for the biological process axis, and 3.6 for the diseases 
axis. The collection was provided in XML format. 

D. Metrics used for evaluation 
TREC formats and metrics were used for evaluation (10) as 

follows: 

 P10 or Precision at rank 10: among the top 10 articles 
returned by the system, how many are relevant. If the 
system returned 10 documents and only 4 are relevant, 
then P10 is 0.4. Idem for P30, P100 at ranks 30 and 
100. 

 R30 or Recall at rank 30: among all the relevant articles 
in the collection for a given query, how many are 
retrieved in the top 30 articles returned by the system. If 
for a given query there are 20 relevant documents in the 
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collection, and the system returns 10 of them in the top 
30 documents, then R30 is 0.5. Idem for R100 at rank 
100. 

 P at R0: this is the maximum precision observed (for 
any rank value). 

 Mean Average Precision (MAP): this is the average of 
all Precision at rank k, for ranks where a relevant article 
is retrieved (for no retrieved articles, 0 is counted). 

 R-Prec: this is the Precision observed at rank r, where r 
is the number of relevant articles for a given query. If 
for a given query there are 20 relevant articles in the 
collection, R-Prec is Precision at rank 20. 

III. RESULTS 
More than twenty teams registered to the Kinome Track, 

but two finally submitted runs. In this section, we broadly 
describe strategies investigated by these participants. Then, we 
give results for both subtasks. All metrics were computed with 
the trec_eval reference program (http://trec.nist.gov/trec_eval/). 

A. Participants strategies 
Both participating teams exploited tuning data in order to 

train a machine learning system. They applied Named Entity 
Recognition system – such as the PubTator system (11) – in 
order to identify biological processes and diseases in the 
relevant articles, and thus obtained a set of positive pairs of 
kinase-concept. One team exploited these positive examples 
and the rest of the articles collection in order to bootstrap some 
pseudo negative samples. Then, both teams trained a machine 
learning system for triage based on several features, such as 
numbers and position of genes and axis. 

B. Subtask 1 – abstracts triage 
For the subtask 1, each team could submit up to ten runs. 

There were twenty runs for the disease axis, and nineteen for 
the biological process axis. Figures 3 and 4 present results for 
each run. 

 

Fig. 3. Results for the abstracts triage subtask, disease axis. 

 

Fig. 4. Results for the abstracts triage subtask, biological process axis. 

In (12), the Text Mining group at the SIB describes the 
development of neXtA5, a curation service and interface, 
powered by different ontologies, and developed for the 
CALIPHO group. This system aims at assisting biocurators by 
prioritizing articles for the curation of a given protein and a 
given axis. The system was evaluated on the same dataset than 
in the Kinome Track. The study also compared the neXtA5 
ranking with PubMed ranking (both Boolean and relevance-
based). For the disease axis, the reported values P at R0 were 
between 0.12 and 0.13 for PubMed rankings, while they 
reached up to 0.41 for neXtA5. The best reported MAP was 
0.04. For the biological process axis, the reported values P at 
R0 were 0.14 for both PubMed, and 0.45 for neXtA5. The best 
reported MAP was 0.11. These values can be considered as the 
baselines for the interpretation of results in the Kinome Track. 

In terms of P at Ro values, for the disease axis, three runs 
(submitted by the same team) makes better than the baseline 
for P at R0 (+10%). For these runs, on the top 100 returned 
articles, 22% are relevant (P100), and they represent 33% of all 
available relevant articles (R100). For the biological process 
axis, best results observed are close to the baseline for P at R0, 
while the second team made slightly better. Even if we don't 
know yet the details of the implemented strategies, it is 
interesting to note that the best runs submitted by team 383 for 
both axes share the same names. In (Mottin 2016), separate 
strategies were implemented for each axis. The main advances 
are observed regarding the recall with a significant 
improvements at MAP values (+175% for disease, +80% for 
biological processes). 

C. Subtask 2 –triage of fulltext articles 
For the subtask 2, each team could submit up to ten runs. 

There were ten runs for the disease axis, and eight for the 
biological process axis. Figures 5 and 6 present results for each 
run. 
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Fig. 5. Results for the fulltexts triage subtask, disease axis. 

 

Fig. 6. Results for the fulltexts triage subtask, biological process axis. 

Comparisons between abstracts and full text articles results 
must be made with great care. Indeed, the sizes of the 
collections made the direct comparison difficult (5.2M in 
subtask 1 versus 260,000 in subtask 2). The number of relevant 
articles was 16-18 per query in subtask 1 versus 2-3 per query 
in subtask 2. In this perspective, the best reported MAP values 
are higher with full text than abstracts, but the likeliness to 
miss some relevant articles in the subtask 1 is higher – and so 
to be penalized – than in subtask 2. A comparison remains 
possible using P at R0 since it focuses on the precision of the 
first relevant retrieved article. Best reported P at R0 values are 
higher with abstracts than fulltexts. 

D. Subtask 3 – snippets extraction 
A third subtask was initially considered: snippet extraction. 

In this subtask, the participants’ system should extract from the 
fulltext a snippet of maximum 500 characters, which contains 
enough information to be “annotatable”. Curators should judge 
snippets according to one of the three following values: 1 = 
Good (the snippet is sufficient for making an annotation 
without reading the paper); 0.5 = quite good (the curator thinks 
that there is a potential annotation, but needs to read the paper 
because the snippet is not sufficient for making the entire 
annotation); 0 = Irrelevant (nothing in the snippet indicates that 
an annotation is possible). Unfortunately, this task was 
cancelled due to no submitted runs. 

IV. DISCUSSION AND CONCLUSION 
Participants’ papers and presentations will describe the 

respective methods. In particular, the impact of the 
bootstrapping strategy proposed by one of the competitor to 
acquire negative instances seems especially effective. 
Altogether, the precision at P0 improves slightly over (12) on 
the same tasks but with a different dataset, while the MAP is 
more significantly improved. Moreover, the triage of articles to 
support the curation of biological processes shows better 
results than for curation of diseases (+82% for best MAP 
values). 

The low ratio of participation for registered teams is 
difficult to explain. The huge – yet realistic – size of the 
collection (5.2M of articles) could have been a serious 
obstacle. Moreover, data provided to participants did not 
contain any annotated concepts. Yet, both teams developed 
supervised strategies based on the potential concepts present in 
the articles. Thus, they had no gold standard for building their 
knowledge base, and had to use NER systems in order to 
generate a silver standard.  

Further, data-driven approaches do need positive and 
negative examples for training. Unfortunately, curated 
databases usually do not store negative examples, such as 
articles, which are screened by the curator but not selected for 
curation. Hopefully, such a data stewardship “gap” should 
improve as FAIR principles become common practice. 
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Abstract—Manual curation efforts are often tedious and 
have largely been limited by the need to process and integrate 
large numbers of biomedical literature in finite amounts of 
time. Document triage with automatic methods can 
compensate for the weakness of manual curation efforts and 
help provide more efficient and effective curation workflows. 
Machine-assisted document triage involves automatic 
identification of entities and relation extraction with natural 
language processing techniques. Here, we developed a system 
that can automatically predict which articles have a higher 
relevance for curation. In the triage task for Human Kinome 
Curation in BioCreative (BC) VI, we applied several machine 
learning methods for exploring articles with curatable 
knowledge, in particular the bio-concept relations among 
kinases, diseases, and biological processes. We used rich 
co-occurrence and linguistic features to assess the influence of 
human kinome articles from the neXtProt database. We expect 
this method can provide neXtProt biocurators with ranking 
lists for specific queries, thus facilitating the process of 
reviewing relevant information in the literature.  

Keywords—document triage, machine learning, relation 
extraction 

I. INTRODUCTION 
Assisting biocurators in the retrieval of relevant articles 

and passages for the curation of protein kinases proves to be 
an ongoing challenge. The BC VI Human Kinome Curation 
Track addresses this problem and is designed as an 
information retrieval task (literature triage) aimed at 
retrieving relevant articles for specific curation efforts (i.e. 
biological process (BP)/disease (DIS)). To help develop and 
evaluate approaches for this task, the neXtProt data (cite 
25593349) is used and includes 300 proteins protein kinases. 
The articles in this database contain comprehensive manual 
annotations including gene ontologies, biological processes, 
and the National Cancer Institute (NCI) diseases.  

This paper describes our submission to the human 
kinome curation track at the BC VI. This track includes three 
subtasks: (1) abstract triage, (2) full text triage, and (3) 
snippet selection. We participated in the first subtask, which 
is about retrieving curatable articles based on abstracts. As 
biocurators spend significant amounts of time surveying and 
reviewing articles using specific queries, a precise document 
triage classification could be helpful in reducing the 

workload of biocurators and allowing them to customize 
their own curation patterns (1, 2). 

II. SYSTEM DESCRIPTION 

A. Data preprocessing 
For the training set, the BC VI organizers provided two 

datasets, each including 1,615 and 1,844 pairs (<kinase, 
PMID>) with its associated axis, which can either be a 
biological process or disease. However, the datasets do not 
annotate which biological processes or diseases correspond 
to the annotated kinase. In this study, we combined the two 
sets (1,615 + 1,844 = 3,459) and generated triples <kinase, 
axis, PMID>. For instance, there is a relationship between 
“SGK1” and “myeloma” in Fig. 1., which would be noted as 
<SGK1, myeloma, 21478911> in the triple. 

 
Fig. 1 An example of positives in the training set 

First, we used our Named Entity Recognizer (NER) taggers 
(3, 4) to recognize all kinase, disease, and biological process 
mentions. We filtered out the articles without kinase 
mentions, and narrowed our results to 2,775 triples. In order 
to evaluate our method, we kept 225 triples as a development 
set, leaving 2,550 triples for training (Table 1).  

We also selected articles with 100 target proteins from 5.3 
million citations, therefore creating 894,312 triples. Although 
there are no negative training instances in the datasets 
provided, we generated pseudo-negatives by using the 
following process. First, we used a Support Vector Machine 
(SVM)-one class classifier to train on 2,550 triples and test 
on 894,312 triples, and then selected the lowest 2,500 scores 
as our negative training instances. Note that we now have a 
positive set (2,550 triples) and a negative set (2,500 triples). 
We then trained our models on different classifiers described 
in the methods section using both the 2,550 positive set and 
2,500 negative set. After the models were built, we added the 
225 triples to the 894,312 triples to evaluate the ranking 
scores of the development set. Fig. 2 shows the workflow of 
our proposed document classification system for human 
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kinome curation using machine learning. 
 

Table 1. Statistics of the training set 
 Official 

Training set 
Utilized 

 Training set Development set 
# Triple 3,459 2,550 255 
# PMID 3,018 2,282 221 

 

 
Fig. 2 The workflow of our human kinome curation system 

 

B. Methods 
Our submission to the abstract triage task utilizes several 
machine learning methods including lasso (least absolute 
shrinkage and selection operator) and Elastic-Net 
Regularized Generalized Linear Models (Glmnet) (5), 
SVM (6), and Convolutional Neural Network (CNN) (7). 
As mentioned, we applied our bio-concept taggers 
(TaggerOne (3) and GNormPlus (4)) to recognize all 
disease and kinase mentions, and then built a 
dictionary-based tagger to annotate biological process 
mentions. The performance of bio-concept recognition on 
the training set is shown in Table 2. Overall, the 
performance of the target kinase recognition is lower than 
the performance of the bio-concept recognition. When 
the recognition rate of DIS and BP mentions achieves 
over 98%, the recognition rate of the target kinase 
achieves less than 80% in recall. In our observation, 60% 
of missed target kinases are not mentioned in the abstract. 
The input data for the machine learning based models 
includes only the title, abstract, and bio-concept 
annotations of the taggers. Additionally, our methods did 
not distinguish between the data for disease and 
biological process mentions. The texts of the two types 
were trained together by using the same features. 

Table 2. The NER results of target kinase, DIS, and BP 

Mentions Set Method Recall Found All 

DIS DIS_train.qrel TaggerOne 0.9807 1375 1402 
BP BP_train.qrel Dictionary 0.9975 1612 1616 

Target 
Kinase 

DIS_train.qrel 
BP_train.qrel GNormPlus 

0.7879 1304 1655 
0.6302 1162 1844 

   

 Glmnet 
The features of large datasets would suffer from a curse 
of dimensionality, and they usually generate large sparse 
data matrices. To reduce the high dimensional features, 

Glmnet is a widely used algorithm for fitting various 
probability distributions in statistical computing and 
machine learning. When analyzing the high dimensional 
data, Glmnet uses the lasso or the elastic net to interpret 
and fetch important features with efficient computation. 
Therefore, Glmnet increased in stability and made 
predictions with a path of penalty parameters. 

 SVM 
A Support Vector Machine (SVM) is a robust machine 
learning algorithm for classification analysis. The SVM 
has been applied to many classification problems related 
to supervised learning with multidimensional data. After 
the SVM classifier is built, the model can correctly 
determine the hyperplane, which separates the data into 
different classes. 

• One-class classification: this model aims to find the 
support vectors of the one-class training set, and 
allows for outlier/novelty detection (8). The goal is to 
distinguish new data as either similar or different 
from the normal training set. 

• Binary classification: The original SVM is designed 
for determining the optimal separating hyperplane 
between the two groups. In practice, the SVM project 
samples on a higher dimensional space to approach 
the optimal hyperplane with less empirical 
classification errors (6). 

 CNN 
A Convolutional Neural Network (CNN) is derived from 
deep artificial neural networks that consist of receptive 
fields, local connectivity, and shared weights (7). The 
CNN has been well known for its excellent performance 
on image recognition. In this work, we trained a simple 
CNN with two layers of convolution on top of word 
vectors obtained from an unsupervised learning algorithm 
(9). We then designed and aligned the CNN with 
different parameters including an input layer, convolution 
layer, pooling layer, fully connected layer, and output 
layer. 

 Features 
The following features are applied to all the methods, as 
shown in Table 3. The features can be grouped into three 
categories: A) frequency features (feature 1-2): calculated 
the number of kinase and axis mentions in each abstract. 
B) location features (feature 3-7): the location of kinase 
and axis is detected. C) natural language processing (NLP) 
features (feature 8-11): kinase key words include a list of 
keyword groups, which is shown in Table 4. Each group 
includes manually generated key words of the genetic 
disease field. Furthermore, we applied tmVar (10, 11) to 
recognize variation mentions in the text as an additional 
variation key word group. The bag of words feature 
includes the lemma form of words around kinase, disease, 
and biological process mentions in the abstracts. Parsing 
tree path features use the dependency relation of 
dependency grammars to record the syntactic structure of 
kinase, disease, and biological process mentions (12). All 
features are transformed to document-term matrices. 
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Table 3. Statistical and linguistic features 
Feature  Type 

1 Number of target kinase Numeric 
2 Number of target axis Numeric 
3 Target kinase in 1st sentence Boolean 
4 Target axis in 1st sentence  Boolean 
5 Target kinase in last sentence Boolean 
6 Target axis in last sentence Boolean 
7 The same sentence Boolean 
8 Kinase key words String 
9 Bag of words String 
10 Parsing tree path String 
11 Parsing tree path w/o ancestors String 

 
Table 4. The keyword groups 

Group Key words 

Verb involve, enhance, inhibit, regulate, increase, 
associate, phosphorylate 

Patient patient, men, women 

genetic 
detectable, survival, genetic, tumorigenesis, 
overexpression, mutation, translate, transcript, 
change, lymphangiogenic, neurotrophic 

scale mg, kg 
period day(s), during 

examine examine, experiment, screen, role, risk, 
significant 

Variation recognized by tmVar 

EVALUATION 
Before submitting official runs, we used the following 
evaluation metrics to assess each of our models: 

• MAP (Mean Average Precision) is the mean of the 
precision scores for various queries. 

• We also defined an estimated score (𝐸𝑠𝑐𝑜𝑟𝑒) for 
measuring the ranking result of a triple (t) including 
a kinase, an axis, and a PMID. Note that γ is the 
rank of a triple after we combined the triples of the 
training and development set ( |𝐷| ). We then 
summarized the score γ

|𝐷|
 of all 225 triples from the 

development set. For example, if we assume there 
are 10 PMIDs mentioned for a target kinase and the 
rank of one specific PMID is the top one among all 
10 PMIDs, then γ

|𝐷|
 is 0.1. Therefore, the 

lower 𝐸𝑠𝑐𝑜𝑟𝑒 represents a better performance. 

𝐸𝑠𝑐𝑜𝑟𝑒 = ∑
γ

|𝐷|
|𝑡|

 

The following evaluation metrics are used by organizers for 
official results. 

• P10 is the precision at rank 10: we calculated the 
number of documents that are relevant among the 
top ten documents returned by the system. If the 
system returns ten documents and only four 
documents are relevant, the P10 is 0.4. Also, P30 and 

P100 are the precision at rank 30 and 100 
respectively. 

• R30 is the recall at rank 30: we calculated the 
number of relevant documents retrieved in the top 30 
documents returned by the system. We assume that 
within each query there are only 20 relevant 
documents within the collection. If the system 
returns ten of these relevant documents, then the R30 
is 0.5. Also, R100 is the recall at rank 100. 

• P at R0 is the maximum precision observed (for any 
rank value). 

• R-Prec is the precision observed at rank r, where r is 
the number of relevant documents in the collection. 
If a given query contains twenty relevant documents, 
R-Prec is the precision at rank 20. 

As shown in Table 5, we trained different models with 
features described in Table 3. For the Glmnet classifiers, 
both BP and DIS triples are included in the training set. An 
SVM (binary) is the model that we applied both positives 
and negatives as a binary classifier, while an SVM (one 
class) uses only the positives to train a one-class classifier. 
For the CNN classifiers, we constructed multiple hidden 
layers between the input and output layers, and modeled 
complex non-linear relationships. The evaluations of 
different methods on training sets (including disease and 
biological process sets) are reported in Table 6. In the last 
stage, we used the entire positives in the training set and 
features of better performance in our evaluation for method 9 
and 10. In this case, we did not have the testing triples to 
evaluate both models. Overall, the performance of the 
Glmnet classifiers is superior compared to the other two 
classifiers. After reviewing and optimizing the parameters in 
the training set, we then used the following methods and 
features in Table 5 as our ten submitted runs. 

Table 5. Combinations of different methods and features 
Method Features Positives of Training set Classifier 

1 9 2500 Glmnet 

2 1-9 2500 Glmnet 

3 1-10 2500 Glmnet 

4 1-9, 11 2500 Glmnet 

5 1-10 2500 SVM (Binary) 

6 1-9, 11 2500 SVM (Binary) 

7 1-9, 11 2500 SVM (One class) 

8 1-9, 11 2500 CNN 

9 1-9, 11 2775 Glmnet 

10 1-9, 11 2775 CNN 

 
Table 6. Evaluation of training set 

Method 𝐸𝑠𝑐𝑜𝑟𝑒 MAP 

1 58.09 0.0401 
2 49.84 0.0535 
3 46.46 0.0593 
4 49.85 0.0598 
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5 52.88 0.0460 
6 57.32 0.0470 
7 82.20 0.0227 
8 83.68 0.0204 

 

Table 7 and 8 demonstrate the official results of the abstracts 
triage (provided by the task organizers). Both tables show 
that Glmnet classifiers have a better performance of MAP 
than that of SVM and CNN classifiers, which is consistent 
with our observation in the training & development phases. 
When considering the 𝐸𝑠𝑐𝑜𝑟𝑒 metrics, Glmnet classifiers 
are also consistent with the best performance compared to all 
classifiers. As for CNN classifiers, the approach sketched 
here fails to compete with other classifiers because when 
running on a small dataset an over-fitting problem develops. 
CNN classifiers might be able to identify more relations 
using larger datasets. 

Table 7. Official results of kinases/diseases for the ten submitted runs. 

Method MAP R-Prec 
P at 
R0 P10 P30 P100 R30 R100 

3 0.109 0.147 0.458 0.152 0.098 0.052 0.222 0.327 
9 0.109 0.145 0.453 0.148 0.097 0.052 0.223 0.327 
4 0.108 0.142 0.455 0.151 0.098 0.052 0.225 0.326 
5 0.088 0.125 0.351 0.119 0.081 0.044 0.203 0.304 
6 0.088 0.125 0.351 0.117 0.081 0.044 0.201 0.304 
1 0.081 0.098 0.370 0.103 0.075 0.042 0.184 0.286 
7 0.079 0.099 0.338 0.103 0.075 0.042 0.182 0.288 
2 0.073 0.084 0.338 0.094 0.064 0.038 0.166 0.269 
8 0.062 0.079 0.224 0.075 0.054 0.036 0.150 0.265 

10 0.060 0.079 0.227 0.065 0.057 0.034 0.154 0.259 
 
Table 8. Official results of kinases/biological processes for the ten submitted 

runs. 

Method MAP R-Prec 
P at 
R0 P10 P30 P100 R30 R100 

3 0.195 0.182 0.450 0.176 0.121 0.065 0.399 0.563 
9 0.192 0.184 0.430 0.171 0.122 0.064 0.397 0.563 
4 0.191 0.178 0.437 0.171 0.122 0.064 0.396 0.561 
5 0.172 0.168 0.379 0.143 0.107 0.057 0.361 0.526 
6 0.170 0.169 0.378 0.140 0.107 0.057 0.361 0.524 
1 0.159 0.150 0.379 0.138 0.105 0.057 0.362 0.535 
2 0.155 0.141 0.373 0.137 0.104 0.056 0.346 0.529 
8 0.127 0.109 0.251 0.086 0.074 0.045 0.292 0.468 
7 0.119 0.109 0.242 0.101 0.077 0.046 0.285 0.457 

10 0.109 0.078 0.219 0.075 0.064 0.044 0.266 0.455 
 

 Error analysis 
We applied various statistical and linguistic features to 
prioritize the abstracts with relationships between target 
kinase and DIS/BP mentions. However, this task is very 
challenging by nature. First, there are no “non-curatable” or 
negative documents provided in the training set. Without 
such negative cases, most classification methods are difficult 
to distinguish the curatable versus non-curatable documents. 
Second, the relationships between DIS/BP mentions and the 
target kinases are not clearly curated in the training set. For 
example, one abstract may have various DIS/BP mentions. 
Therefore, it is difficult to find the correct triples for feature 
extraction in our method. Third, the low recognition rate of 
GNormPlus missed about 20~40% of the kinases (60% of 
the missed kinases are not in the abstracts). Thus, about 
20~40% of the relevant documents would not be found in 

our results. Finally, according to the official results, our best 
performance acquired a P100 = 0.052, R100 = 0.327 in 
kinases/diseases and P100 = 0.065, R100 = 0.563 in 
kinases/biological processes. The average number of 
curatable articles are 15.90 and 11.55, respectively. For each 
kinase with an axis, the average number of curatable articles 
among the entire PubMed database is extremely low. Thus, 
we suspect that human curators may only include articles 
with evidence within the experimental results section. 
Therefore, those excluded articles cannot be filtered by our 
methods which use only titles and abstracts. According to the 
above reasons, this task is much difficult than many other 
traditional document classification tasks. 

CONCLUSION 
In summary, we used several machine learning methods with 
frequency, location, and NLP features for the neXtProt triage 
task, which aims to specifically retrieve PubMed articles 
with biomedical relations among kinases, diseases, and 
biological processes. The average numbers of curatable 
articles in the testing set are rare (15.90 of target 
kinases/diseases articles and 11.55 of target 
kinases/biological processes articles). Thus, the biocurators 
using our methods can retrieve 32.7% (5.2 articles) and 
56.3% (6.5 articles) of curatable articles among all PubMed 
articles with only reviewing 100 articles returned by our best 
method. Therefore, we believe our method can effectively 
accelerate the manual curation efforts used today. In our 
future work, we plan to examine the triage task based on full 
texts, and  investigate a robust machine learning approach 
which is capable of using curatable labeled data only.  
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Abstract—Kinases are enzymes that mediate phosphate 
transfer. Extracting information on kinases from biomedical 
literature is an important task which has direct implications for 
applications such as drug design. In this work, we develop 
KinDER, Kinase Document Extractor and Ranker, a biomedical 
natural language processing tool for extracting functional and 
disease related information on kinases.  This tool combines 
information retrieval and machine learning techniques to 
automatically extract information about protein kinases. First, it 
uses several bio-ontologies to retrieve documents related to 
kinases and then uses a supervised classification model to rank 
them according to their relevance. This was developed to 
participate in the Text-mining services for Human Kinome 
Curation Track of the BioCreative VI challenge. According to the 
official BioCreative evaluation results, KinDER provides state-
of-the-art performance for extracting functional information on 
kinases from abstracts. 

Keywords—kinase; proteins; machine learning; biomedical 
natural language processing; BioCreative; text classification; 
supervised learning 

I. INTRODUCTION 
With the steady advancement of computing power and 

decline in memory cost over the years has come the ability to 
work with increasingly larger data sets in more complex ways. 
These opportunities have opened up the relatively new fields of 
computer-driven bioinformatics and natural language 
processing. These two areas, when in conjunction, can allow 
for automatic extraction of important information from 
biomedical literature written in plain, unstructured text. An 
example of where this is advantageous could be having the 
ability to intelligently search through all existing journal 
articles about a specific cellular structure in order to aggregate 
current knowledge about that structure. This process is 
currently done by hand via human curators. As there are 
literally millions of journal articles published each year, there 
is much room for improvement. One such group of bio-entities 
of high interest are the human protein kinases, a specific type 
of enzyme that can phosphorylate (add a phosphate to) other 
proteins. This process can activate or inhibit various other 
proteins, and plays an important role in cellular communication 
and hormone action (1). An automated, intelligent search tool 
for protein kinases could dramatically improve the curation 
process and potentially assist the scientific community in better 
understanding these important proteins. This report describes 
the development, implementation, and testing of a pipeline to 

do just this. In particular, the KinDER (Kinase Document 
Extractor and Ranker) pipeline allows users to enter a specific 
human protein kinase in addition to an axis (be it disease, or 
biological function), and returns predictions of which 
documents from either a collection of PubMed database journal 
articles or MEDLINE database abstracts contain relevant 
information to those criteria. Furthermore, KinDER can be 
used to predict ~500 character snippets of text which contain 
relevant information to the search criteria. This tool was 
developed in order to participate in the Track 2 (Text-mining 
services for Human Kinome Curation) of BioCreAtIvE 
(Critical Assessment of Information Extraction systems in 
Biology) challenge held in 2017. 

II. METHODOLOGY 
KinDER is composed of two main components: 1) 

Document Retrieval component which retrieves documents 
annotated with kinases and axis terms using dictionaries and 2) 
Document Ranking and Information Extraction component 
which uses machine learning to rank those documents based on 
relevancy, as depicted in the figure below. There are a 
significant number of data processing steps that occur inside 
these two components that make up the full KinDER pipeline 
(Fig. 1). The following subsections will describe those steps in 
more detail.  

A. Data 
We use the BioCreative Track 2 official dataset as the 

input data for KinDER. Included in this were PubMed articles 
(approx. 260,000) and MEDLINE abstracts (approx. 4.4 
million) in BioC format (2), lists of kinase names and 
synonyms, and a gold standard dataset of kinase names and 
associated relevant documents. This challenge has three 
subtasks: Abstract Triage, FullText Triage, and Snippet 
Selection. In order to annotate documents based on their 
relevancy to the disease axis (DIS), we considered the HPO 
(3), ORDO (4), NCITd (5) (hand culled subset comprised of 
only disease related subsections of NCIT), PDO (6), OAE (7), 
IDO (8), ICD10 (9), MeSH (10) and DOID (11) bio-ontology 
annotation dictionaries available from the NCBO annotator 
website (12). For annotating the biological process axis (BP) 
we considered the GO (13) dictionary from NCBO as well as 
a concept recognition dictionary developed by Funk et al. (14- 
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Fig. 1. N2 (N-squared) Diagram of KinDER Pipeline.   

15), which we refer to as GO2. According to our preliminary 
results (see Fig. 2 and Fig. 3), we chose HPO and NCITd for 
DIS annotation and GO for BP annotation. 

B. Input Pre-Processing 
This first stage takes the input data described previously and 

converts it into formats useful for the annotation stage. The 
document annotator chosen for this pipeline was 
ConceptMapper (CM) (16), an annotation engine for the 
Apache UIMA framework (17). This tool is discussed in more 
detail in the next subsection. Input processing has two main 
steps: article extraction and dictionary creation. In order to 
handle the large collection of documents provided in BioC 
format, a custom python library was developed using lxml’s 
iterparse object (18), which significantly improves memory 
efficiency compared to existing libraries. This step also 
consisted of writing scripts which converted BioCreative’s 
XML lists of kinase synonyms, NCBO’s CSV dictionaries, 
and the GO.obo dictionaries into XML formatting for 
ConceptMapper. Original BioCreative kinase dictionaries 
were also enhanced by using kinase synonyms from UniProt 
(19), adding any new synonyms that were not already 
provided. These appended dictionaries were then run through 
string-processing scripts to convert Roman numerals to Arabic 
numerals and remove unnecessary spaces between words. 
These variants were added as additional synonyms, as 
opposed to replacing old ones.  

C. Document Annotation 
As mentioned previously, CM was chosen as the primary 

dictionary look up tool for the KinDER pipeline. This tool 
takes a directory of text files to annotate, as well as a 

dictionary to annotate with. By default, it automatically 
handles all stemming and stop word removal. For improving 
efficiency, the CM output files were compressed into custom 
summary structs containing basic information on each 
annotation made including the term that was a “hit” as well as 
its position in the document and the canonical term which it 
refers to. In addition, these structs stored metadata about the 
documents such as the number of total hits, the number of 
unique terms, and sets/counts of matched terms.  

D. Feature Extraction 
The main goal of this stage is to provide meaningful 

information to enable successful downstream classification of 
documents as relevant or irrelevant. This task is broken down 
into three main processes: 1) cross-reference validation, which 
attempts to filter out obviously irrelevant documents (i.e. 
documents that do not contain both a kinase and an axis term), 
2) feature vector generation, which creates vectors of 
meaningful metadata that the downstream machine learning 
algorithm can use to learn from, and finally 3) creation of 
corresponding binary labels for the training subset of feature 
vectors based on the BioCreative gold standard.  

In generating feature vectors to train the machine learning 
based Document Ranking portion of the KinDER pipeline, 
two types of features were generated, both using the set of 
documents that made it through the initial round of cross 
referencing based selection. The first approach is the standard 
Bag of Words (BOW) feature model which uses TFIDF 
features values (20). In our model, two and three-gram term 
combinations were also included in the vocabulary.  

For the second approach, six metrics were chosen as 
features (referred to as the “engineered feature set” or ENG). 
They are, Kinase Score: the number of kinase annotations 
normalized by total words, Axis Score: the number of axis 
term annotations normalized by total words, Relevancy Score: 
The product of the kinase score and axis score, Proximity 
Score: The minimum number of words separating a kinase and 
axis annotation, and Proximity 10-Count and Proximity 50-
Count: the number of pairs of kinase and axis annotations that 
are within 10 and 50 words of one another. We apply standard 
pre- and post-processing techniques including stemming, and 
the removal of standard English stop words before 
constructing both types of above features. 

E. Machine Learning Model Selection and Training 
    We model this problem as a binary classification problem in 
which we distinguish between relevant vs irrelevant articles. 
We used the Scikit-learn (21) Python machine learning library 
for implementing the machine learning models. An initial 
model selection phase was conducted comparing three 
supervised classification algorithms and it was determined that 
Support Vector Machines (SVMs) were the most promising 
avenue. For the BP FullText and BP Abstract subtasks, eight 
SVM models were evaluated based on SVM kernel (linear vs 
gaussian) and feature type (BOW vs ENG). For the DIS 
FullText and DIS Abstract subtasks, sixteen models were 
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evaluated based on kernel (linear vs gaussian), features (BOW 
vs ENG) and the ontology (HPO vs NCITd).  
    Each classifier model was trained using the full set of gold 
standard relevant documents and only a 10-20% random 
sample of the total irrelevant documents. Several classifiers 
utilizing BOW were also restricted to feature vectors of total 
length 100,000 (only the 100,000 most common terms). It was 
found through preliminary experiments that restrictions on 
training set size and feature vector length did not significantly 
impact model scoring (data not shown). Computational efforts 
were performed on the Hyalite High-Performance Computing 
System, which is operated and supported by University 
Information Technology Research Cyberinfrastructure at 
Montana State University.   

F. Test Kinase Classification and Ranking Paradigm 
    Saved classification models were used for ranking the 
documents based on their relevance. Document subsets for the 
test data created in the document annotation stage were fed 
into their respective classifiers and assigned a classification 
and confidence score. All documents within a subset were 
sorted based on the classifier confidence score.  

G. Snippet Selection 
In order to extract a snippet of text 500 characters or less 

which contained sufficient relevant information to make an 
accurate annotation for the article, we used the following 
method. First, the two annotated terms, kinase and axis, that 
were in closest proximity in the article was identified. Next an 
approximate 500-character excerpt encapsulating the two 
terms as close to the middle as possible was captured. Finally, 
the excerpt length was rounded down in order to begin and 
end at the start and end of sentences. 

III. EXPERIMENTAL SETUP 

A. Document Retreival  
To determine the best ontology for document retrieval, 

standard metrics of precision, recall, and F-1 Score were 
utilized. To calculate these, two sets of articles of equal size, 
one containing gold standard positives and the other 
containing gold standard negatives were created. The default 
settings of ConceptMapper were used. 

B. Document Classification and Ranking  
    Three classifier models were compared: K-Nearest 
Neighbors, Support Vector Machines, and Naïve Bayes. For 
evaluating the machine learning models, in both comparing 
models in the initial model selection phase and selecting 
hyperparameters when tuning models for the ranking phase, a 
3-fold stratified cross validation technique (22) was used. We 
used AUROC (23) as our evaluation measure. In training 
models for ranking, a grid search with nested cross validation 
(24) approach was used.  

IV. RESULTS 

A. Document Retrieval  
According to the results of ontology comparison for both 

the Abstract and the FullText sets depicted in Fig. 2 and Fig. 
3, we chose NCITd and HPO for the disease axis, and GO for 
the function axis. 

B. Ranking and Information Extraction 
Initial SVM scoring results were promising for the BOW 

model which significantly outscored the engineered feature set 
as seen in Fig. 4 and Fig. 5.  Furthermore, the linear kernel 
SVM performed best across all subtasks and ontologies, 
slightly beating out gaussian kernel models, likely due to a 
larger hyperparameter search space used because of more 
efficient training times. 

C. Official BioCreative Track 2 Results 
In addition to prediction made by our machine learning 

models described above, we made a set of submissions based 
on several rule-based models that were each using the six 
ENG feature types. In this method, each document was 
assigned a relevancy score or an aggregate score of all 
calculated feature vectors, and the predictions were made 
purely on this basis without any machine learning. According 
to Table I which shows the MAP (mean average precision –  

Fig. 2. Bio-ontology comparison for Abstract subtask.  

Fig. 3. Bio-ontology comparison for FullText subtask. 
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Fig. 4. SVM performance on Abstract subtask. LSVM/ SVM: SVMs using 
linear/gaussian kernel, BOW: bag-of-words features, ENG: engineered 
features. 

 
Fig. 5. SVM performance on FullText subtask. LSVM/ SVM: SVMs using 
linear/gaussian kernel, BOW: bag-of-words features, ENG: engineered 
features. 

the higher is better) scores for our top three submissions in 
each of the subtasks, and as predicted by our preliminary tests, 
using a BOW machine learning model outperformed 
engineered feature sets. In addition, however, we observe that 
the rule-based methods using engineered features 
outperformed the machine learning methods for subtask 2 
(FullText). It is important to note that, for the Abstract BP 
subtask, KinDER provides state-of-the-art performance among 
all submissions. 

V. CONCLUSION AND FUTURE WORK  
To conclude, KinDER has been shown to have the 

potential to become an effective tool for automating 
biocuration efforts, particularly in the functional domain. 
However, much work is still necessary to improve both the 
recall of document annotation and the ranking paradigms. 

The creation and experimentation with KinDER 
revealed several additional avenues of necessary research in 
the field. Perhaps the most glaring problem was the lack of a 
comprehensive list of synonyms for proteins kinases. Though 
several synonym lists exist, we found through experimentation 
that none are exhaustive when it comes to the various ways 
that authors notate kinases. We also found that manually 
expanding the synonym lists (for instance changing roman 
numerals to numbers and vice versa) increased our recall. A 
more comprehensive list would improve results for computer-
driven biocuration.  

 

TABLE I.  OFFICIAL BIOCREATIVE RESULTS. 

 

a. Rule-based methods. 
b. Using only 20% of the training data to train the classifier. 

 
Within the machine learning portion of our work, many 

improvements could be made in the comprehensiveness of 
model selection and training. The extent of model selection 
was fairly limited due to resource constraints for this study 
and examining further models e.g. random forests or neural 
networks may lead to improved predictions over SVMs. 
Training SVMs is a highly resource intensive process for 
larger datasets, making it difficult to test more than a handful 
of hyperparameters. A more extensive parameter sweep 
trained on a larger, more balanced dataset would likely 
improve KinDER’s performance. In addition, should a golden 
standard data set containing examples for every kinase we are 
interested in ranking be released this problem could be 
rethought as a multiclass classification problem which would 
simplify many aspects of the problem. 

In addition to triage improvements, our process for 
snippet selection did not incorporate any machine learning 
techniques. If we were able to incorporate ML, we believe our 
snippet selection process would improve as well. Lastly, 
though KinDER is a fully functional standalone pipeline, its 
current web user interface is very limited. The evolution of 
KinDER into an end-to-end tool for biocuration could lend 
itself well to future bio-curation projects. 
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Abstract— Biological signaling is complex and our knowledge 
about it is often only available in literature. Signaling can involve 
small molecules as well as proteins that can be activated or 
deactivated by various regulations such as ligand binding, 
complex forming, modification status or miRNA binding. 
Changes in signaling influence biological processes and/or are 
involved in disease etiology. The Biological Expression Language 
(BEL) has been created to store this kind of information in a 
structured form that can be used for network generation and 
visualization as well as interpretation of experimentally 
generated data. The BioCreative VI BEL track provides training 
data and an evaluation environment to encourage the text mining 
community to tackle the automatic extraction of such complex 
relationships as well as converting it to BEL. Although only a few 
groups participated in this track, the groups participating the 
second time could drastically increase their performance. The 
best system reached 32% F-score for extraction of complete BEL 
statements (task 1) and, when given the named entities, above 
49%. Beside rule-based systems, methods involving hierarchical 
sequence labeling and neural networks are adapted to this task. 
For the second task in the BEL track, finding evidence text 
snippets for a given statement, despite the provided training 
data, only one team took part. 

Keywords—text mining; relation extraction; named entity 
recognition; entity normalization; evaluation; BEL 

I. INTRODUCTION 

Biological Expression Language (BEL) has been 
introduced to allow the formalization of causal biomedical 
relationships (1). The resulting BEL statements can be 
assembled into causal networks, which can be easily queried or 
used for data mining. The manual extraction of this 
information from literature is time consuming. Consequently, 
there is a high demand for automatic support. Currently, the 
automatic extraction has not yet reached the performance to 
allow for fully automatic extraction of this information. Even 
for humans, depending on training and application area, 
formalizing complex knowledge is demanding and not 
unambiguous. Nevertheless, due to the increase of large scale 
experiments and the requirements of molecular knowledge in 
precision medicine, the demand for structured biomedical 
knowledge is increasing. The BEL track has been introduced in 
BioCreative V 2015 to provide training data for the extraction 
and BEL translation of complex relationships over a set of 
different named entity classes (2). In addition to the 
relationship information, BEL has the advantage to provide 

provenance information in form of text evidences that are well 
suited to serve as training set. During the first BEL track, we 
appraised a large corpus of BEL documents resulting in a 
training corpus of BEL statement–sentences pairs (3). A 
development and the test set were analyzed by annotators and 
curated to assure that all possible BEL statements are 
associated with the sentences. In addition, information 
resources to explain BEL and an evaluation framework has 
been set up (2). For the current task, novel and yet unpublished 
test data from the disease context of Ulcerative Colitis (4,5) has 
been created. In the next chapter, the task, relevant resources, 
the created test set and result summaries of the participating 
systems are presented. 

II. TASK OVERVIEW

A. Biological Expression Language and used namespaces
BEL statements encode semantic triples with subject,

relationship and object. An example BEL statement with the 
corresponding sentence is shown in Fig. 1. For the BEL track, 
we focus on two causal relationship types: increase and 
decrease. Subject and object contain entities that are 
normalized to so-called namespaces. Those namespaces are 
generated from database entries (e.g. human genes from 
HGNC1, mouse genes from MGI2 and chemical entities from 
ChEBI 3  database). Other namespace origin either from 
ontologies, such as the biological processes subtree of the 
Gene Ontology for GOBP4, or from terminologies, such as the 
diseases namespace MESHD 5  from the Medical Subject 
Heading terminology disease subtree. By using the normalized 
entities from such namespaces, the resulting statements can be 
integrated and merged to networks as well as aligned to other 
data. 

For the different entities, different class abundances are 
assigned: the abundance function a() is assigned to chemicals, 
bp() for biological processes and path() (pathology) for 
diseases. For genes, different abundances g() (gene), r() 

1 HGNC stands for HUGO Gene Nomenclature Committee 
(http://www.genenames.org) 
2 MGI stands for Mouse Genome Informatics 
(http://www.informatics.jax.org/) 
3 ChEBI stands for Chemical Entities of Biological Interest 
(https://www.ebi.ac.uk/chebi/) 
4 GOBP stands for Gene Ontology Biological Process  
5 MESH disease subtree is available at https://meshb.nlm.nih.gov/treeView. 

 We acknowledge support of our research from Philip Morris International. 
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(mRNA) or p() (protein) are possible, but only p() is used in 
the BEL track to reduce the complexity. In addition to those 
class abundances, different functions can also be assigned to 
the biological entities. For the BEL track, we focus on the 
protein phosphorylation function pmod(), the activity function 
act() to describe a protein activation, the tloc() function to 
describe a translocation, deg() for degradation and finally 
complex() to describe protein complexes. For a more detailed 
description we refer to Rinaldi et al. (2).   
 

cat(                                )p( HGNC:FAS ) increases p( HGNC:RB1,                    )pmod(P)

Protein ModificationBEL Statement

Relation

Protein Abundance

Function Namespace
 

Fig. 1 Example of a BEL statement extracted manually for the 
sentence “Fas stimulation of Jurkat cells is known to induce 
p38 kinase and we find a pronounced increase in Rb 
phosphorylation within 30 min of Fas stimulation” 
(PMID:10075927). Reprinted with permission from Rinaldi et 
al. (2).  

B. Task description and evaluation 
The BEL track challenge is organized into two tasks 

evaluating the complementary aspects of the problem:  
 Task 1: Given textual evidence for a BEL statement, 

generate the corresponding BEL statement. 

 Task 2: Given a BEL statement, provide at most 10 
additional evidence sentences.  

Extraction of relationships and their coding in BEL is a 
complex task due to the different entity, relationship and 
function types. Therefore, we simplified the challenge further 
and provided a cascade model for evaluation of task 1. A 
detailed overview of all simplifications is provided online6. In 
short, HGNC or EntrezGene identifiers are accepted for the 
same statement and mouse orthologous identifiers are 
accepted as well. For the abundance function of those 
namespaces, all correct abundance are accepted. Furthermore, 
for the modification function pmod() and the translocation 
function tloc(), the number of arguments are reduced. 

The cascade evaluation model is described in detail in 
Rinaldi et al. (2). Only syntactically correct statements in a 
correct format are accepted, but different levels of 
performance are evaluated. A submitted full BEL statement is 
automatically cut into its fragments to ensure evaluations on 
lower levels. On term level, only the correctness of BEL terms 
is assessed. On this level, the correctness of the discovered 
entities, the correctness of associated namespaces and their 
format as well as the correctness of the associated 
abundance/process function is measured. 

On function level the correctness of discovered function is 
evaluated. Functions are only accepted together with their 
argument, the BEL term. As simplification, a complex 

6 http://wiki.openbel.org/display/BIOC/All+Functions+Evaluation+Overview 

function is only valid if at least one of its arguments is correct. 
On the secondary function level, the correctness of a function 
alone was measured, regardless of the correctness of their 
term-arguments.  

In the relationship-level evaluation, only the entities and 
the relationships are considered, functions that are part of a 
BEL statement are not taken into account on this level. Yet 
again, two levels of evaluation are considered. For a full score 
relationship, subject, object and the relationship type must be 
correct. For the secondary relationship level, partial 
relationships, containing two correct units out of three 
(subject, object and relationship type), are considered fulfilled. 
Finally, we evaluated how many BEL statements are entirely 
correct.  

For task 2, up to 10 sentences for each BEL statements 
were accepted from the participating systems. Those 
statements were evaluated on two levels: In the ‘fully 
supportive level’, the sentence must contain all necessary 
information for a biologist to create the BEL statement. In the 
‘partially supportive level’, the sentence is correct, when 
context information from the paper is taken into account. For 
more detailed information on the evaluation criteria, we refer 
to Rinaldi et al. (2).  

III. TRAINING DATA AND PREPARATION OF NEW TEST SET 
The training data and test data from BioCreative V (2015) 

is available at the datasets page 7 . The description of the 
training set selection and annotation are described in detail in 
Fluck et al. (3). For the generation of the 2017 BEL track task 
1 test set, we decided to use a real-world use case and extracted 
new data in the disease context of Ulcerative Colitis. For the 
test set, we restricted the named entity classes to those that can 
be normalized to the gene/protein namespaces HGNC and 
MGI, CHEBI for chemical names, MESH for disease names 
and GO for biological processes and a restricted set of 
relationship types and functions defined above. For the 
extraction, we used automatic support in form of the BELIEF 
workflow (6). This workflow pre-annotates and normalizes the 
named entities and suggests BEL statements in a user-friendly 
curation environment. In the frontend, the curator can browse 
through the text, search for unrecognized named entities and 
edit or add statements. Only user-selected statements are 
exported by the system.  

In a first step, two curators independently extracted the 
information from the same full texts. In the comparison of 
results, it became clear that it is very tedious to extract all 
possible statements for a document and, in addition, we would 
create very similar statements only with different experimental 
settings, which are irrelevant for the task 1. It was also not 
feasible that independent curators select the same sentences for 
curation in full text. Therefore, we decided towards a more 
straightforward approach. One person selected the relevant 
sentences and extracted all BEL statements from this sentence. 
The second curator analyzed and edited this set. Finally, 
differences were discussed in an annotation jamboree. In Table 
I, an overview about the number of different statements, 
articles, entities and relationship types and functions of the task 

7 https://wiki.openbel.org/display/BIOC/Datasets 
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1 test set are given. For task 2 BEL statements were curated 
from abstracts to make sure that at least one sentence could be 
found for every BEL statement. 

Type Training Test 2015 Test 2017 
Terms    
p() 19.918 346 328 
a() 1.927 37 52 
bp() 877 31 23 
path() 244 15 2 
Functions    
act() 6.332 36 79 
pmod() 1.411 9 36 
complex()   750 15 5 
tloc()   406 13 10 
deg()   205 6 4 
sub()     23 0 0 
trunc()      6 0 0 
Relations    
increases 8.112 155 130 
decreases 2.956 53 68 

IV. SUPPORTING RESOURCES 
The participants were provided with a range of supporting 

resources and a comprehensive documentation8, containing a 
description of the format and detailed explanation of the 
evaluation process. The evaluation on the different levels of a 
single BEL statement was illustrated using a set of concrete 
example submissions as reference. Additionally, a validation 
and an evaluation interface9 was provided for the participants 
to validate and test their generated statements during the 
development phase. The BEL statement validator checks the 
user provided BEL statements with respect to formal 
correctness. It provides specific error messages for invalid BEL 
statements. For sample, training and 2015 test set, the 
evaluation interface evaluates the input BEL statements based 
on the evaluation criteria such as term, function, relationship 
and full statement level. An example of a candidate evaluation 
is shown in Figure 2. 

Further supporting resources included the BEL statements 
from the training, sample and 2015 test set in BioC format, 
which we generated automatically using a converter based on 
the official ruby-based BEL parser10 and an open-source BioC 
ruby module 11 . A tab-separated format that contains all 
fragments of the BEL statements (terms, functions and 
relations) was automatically generated from the sample, 
training and 2015 test set, using the same BEL parser 
mentioned above. These were provided to the participants as 
supporting material (c.f. (2)). 

8 https://wiki.openbel.org/display/BIOC/BioCreative+BEL+Task+Challenges 
9 http://bio-eval.scai.fraunhofer.de/cgi-bin/General_server.rc 
10 https://github.com/OpenBEL/bel.rb  
11 https://github.com/dongseop/simple_bioc 

For task 1 stage 1, we also provided the normalized names 
of all biological processes that occur in the test set as extracting 
such concepts is still a non-trivial task. Finally, for task 1 stage 
2, we provided a file with entity information with offsets and 
the associated normalized concept with the namespace. 

 
Fig. 2 An example of a candidate evaluation. The example 
shows the candidate sentence, the gold standard and predicted 
statements. For all primary and secondary levels the scores are 
provided (2). Abbreviations: PMID (PubMed identifier), true 
positive (TP), false positive (FP), false negative (FN), recall 
(R), precision (P). Adapted and reprinted with permission 
from Fluck et al. (7).   

V. RESULTS 

A. Task 1: Given textual evidence for a BEL statement, 
generate the corresponding BEL statement. 
Four teams contributed results of their information 

extraction systems for task 1. A maximum number of three 
submissions was permitted. Table II shows the results for the 
task 1 in stage 1. Here the teams had to provide their own term 
recognition. The results are color-coded in shades of green 
according to the values of F-score (F), the main evaluation 
criterion, and supplemented by the values for precision (P) and 
recall (R). The best results for each evaluation metrics are 
marked up in bold script. In general, all teams took part on all 
structural levels except team 390, which excluded the function 
level. Team 379 and 411 already took part in the BioCreative 
V BEL track task 1 (2015). 

For the full statement level, the best system with the team 
id 379 achieved an F-measure of 32%. This illustrates the 
difficulty of this highly structured prediction task. The teams 
411 and 390 had a similar performance, although their results 
were quite different on other evaluation levels, e.g. the term 
level.  

TABLE I.  DISTRIBUTION OF TERM, FUNCTION AND RELATIONSHIP 
TYPES IN THE TRAINING AND TEST SETS 

Sent.-Id:10004582 PMID:15909112 

 

Sentence: In the present study, we found 

that transgenic mice overexpressing wild- 

type human APP gene (hAPP/+) displayed a 

much higher expression of FAS, one of the 

death receptor subfamily. 

 

BEL statements 

--------------------------- 

Gold standard BEL statements 

p(HGNC:APP) -> p(HGNC:FAS) 

---------------------------------------------- 

Prediction BEL statements 

act(p(HGNC:APP)) -> bp(GOBP:"gene expression") 

act(p(HGNC:APP)) -> act(p(HGNC:FAS)) 

 

Sentence based evaluation 

Class         | TP | FP | FN | R      | P      | F-score 

--------------| -- | -- | -- | ------ | -------| ------- 

Term (T)      |  2 |  1 |  0 | 100.00 |  66.67 |   80.00 

Func-Sec (FS) |  0 |  1 |  0 |      0 |      0 |       0 

Function (F)  |  0 |  2 |  0 |      0 |      0 |       0 

Rela-Sec (RS) |  1 |  0 |  0 | 100.00 | 100.00 |  100.00 

Relation (R)  |  1 |  1 |  0 | 100.00 |  50.00 |   66.67 

Statement (S) |  0 |  2 |  1 |      0 |      0 |       0 
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    Terms Function Function Second. Relation Relation Second. Statement 
Team 
Id Run F P R F P R F P R F P R F P R F P R 

411 r1 63.24 84.62 50.49 33.99 44.83 27.37 51.24 67.39 41.33 40.22 55.38 31.58 62.92 88.19 48.91 22.99 33.33 17.54 

  r2 57.75 81.93 44.59 31.08 43.4 24.21 38.67 69.05 38.67 36.78 53.33 28.07 57.73 86.84 43.23 20.71 31.82 15.35 

  r3 61.24 88.27 46.89 32.88 47.06 25.26 46.15 64.29 36 37.43 56.14 28.07 62.03 92.24 46.72 21.15 33.98 15.35 

380 r1 50.88 76.82 38.03 6 60 3.16 7.5 60 4 16.77 31.71 11.4 45.14 80 31.44 7.38 15.71 4.82 
  r2 55.29 81.01 41.97 6.06 75 3.16 7.59 75 4 21.52 38.64 14.91 51.06 84 36.68 10.67 22.22 7.02 
  r3 67.83 72.22 63.93 20.17 50 12.63 31.25 71.43 20 24.69 28.25 21.93 62.25 70.95 55.46 10.44 12.9 8.77 
379 r1 74.14 78.18 70.49 40.54 56.6 31.58 55.28 70.83 45.33 43.65 51.81 37.72 86.17 89.62 82.97 32.28 40.67 26.75 
  r2 72.89 78.71 67.87 40.29 63.64 29.47 54.39 79.49 41.33 43.77 52.12 37.72 86.71 93 81.22 32.45 41.22 26.75 
390 r1 76.39 81.18 72.13 0 0 0 0 0 0 29.87 25.55 35.96 65.19 60.45 70.74 18.08 16.1 20.61 
  r2 76.39 81.18 72.13 0 0 0 0 0 0 28.92 24.19 35.96 65.23 59.29 72.49 17.88 15.53 21.05 
 
 

    Terms Function Function Second. Relation Relation Second. Statement 
Team 
Id Run F P R F P R F P R F P R F P R F P R 

411 r1 83.93 99.11 72.79 36.36 47.46 29.47 46.77 59.18 38.67 57.22 73.29 46.93 83.33 98.8 72.05 31.30 46.15 23.68 

  r2 86.09 99.15 76.07 40.51 50.79 33.68 51.16 61.11 44 56.08 70.67 46.49 83.92 98.82 72.93 30.95 44.63 23.68 

  r3 85.45 99.13 75.08 39.24 49.21 32.63 50 60.38 42.67 57.6 73.47 47.37 83.63 98.81 72.49 31.79 46.61 24.12 

380 r1 90.20 98.83 82.95 12.39 38.89 7.37 21.74 58.82 13.33 42.52 52.94 35.53 84.24 96.61 74.67 22.66 32 17.54 
379 r1 87.65 90.56 84.92 51.75 77.08 38.95 57.63 79.07 45.33 66.83 76.7 59.21 92.06 95.75 88.65 49.2 63.01 40.35 
  r2 86.4 90.94 82.3 52.55 85.71 37.89 58.93 89.19 44 66.83 76.7 59.21 91.92 97.55 86.9 49.6 64.34 40.35 
  r3 87.41 90.81 84.26 51.75 77.08 38.95 57.63 79.07 45.33 66.83 76.7 59.21 91.99 96.63 87.77 49.2 63.01 40.35 
390 r1 91.33 99.23 84.59 0 0 0 0 0 0 43.51 41.6 45.61 86.36 90.05 82.97 23.61 25 22.37 
  r2 88.36 99.18 79.67 0 0 0 0 0 0 42.47 44.29 40.79 83.41 91.19 76.86 24.06 28.07 21.05 
  r3 76.71 98.96 62.62 0 0 0 0 0 0 25.68 29.38 22.81 71.76 85.98 61.57 15.06 18.47 12.72 
 

On the secondary relation level, it is sufficient that only 
two out of the three components of relationship (subject, 
object, relation type) are correct for the statement to count as a 
positive match. This level is introduced in order to give credit 
to results, which although partially correct, could still be 
useful in the context of a semi-automated approach as 
suggestions to a human curator. Here, up to 87% F-score were 
achieved, which is quite impressive. Whereas on the relation 
level, the highest F-measure was around 43%. This shows a 
drop of around 40% in comparison to the secondary level. 

Furthermore, the comparison of all teams shows that most 
of the teams (except team 390) built systems that focus more 
on precision rather than recall. High scores on the relation 

level do not necessarily correlate with high scores on the full 
statement level. This is due to the fact that full statement level 
combines all structural levels. 

The results for task 1 stage 2 are shown in Table III. In this 
stage, the gold standard concepts together with their specific 
text spans were made available to the teams. All teams could 
significantly benefit and improve on the level of full 
statements, which shows the importance of high-quality term 
recognition for further higher-level recognition tasks. Team 
379 reached the highest F-score of 49.6% with the provided 
terms. In comparison to stage1, the score was increased up to 
17% on the same test set. Similar performance increases can be 
seen on the function and relation level, too. 

TABLE II.  EVALUATION OF STAGE 1 OF TASK 1 (PREDICTION OF BEL STATEMENTS WITHOUT GOLD STANDARD ENTITIES) 

TABLE III.  EVALUATION OF STAGE 2 OF TASK 1 (PREDICTION OF BEL STATEMENTS WITH GOLD STANDARD ENTITIES) 
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B. Task 2: Given a BEL statement, provide at most 10 
additional evidence sentences. 
For this task only one team participated. The team asked the 

organizers whether they can choose a different setting for the 
submission. In agreement with the organizers, two runs with 
two different configurations and only 5 ranked sentences for 
each run were submitted. The correctness of the provided 
evidence sentences was evaluated manually and rated on two 
different levels of strictness: 

1. Fully supportive: Relationship is fully expressed in the 
sentence. 

2. Partially supportive: Relationship can be extracted from the 
sentence if context sentences or biological background 
knowledge are taken into account. 

 
To evaluate the quality of the curation results, we 

calculated an inter-annotator agreement. To tackle this task 
part of the manual curation was carried out by two different 
curators. For 150 entries, we observed a high agreement of 
93% (kappa statistic: 0.75) and 91% (kappa statistic: 0.79) for 
the categories fully and partially supportive, respectively. 

Runs Criterion TP FP Precision MAP 

Run 1 Full 117 265 30.6% 59.6% 
Partial 175 207 45.8% 77.5% 

Run 2 Full 121 261 31.7% 50.2% 
Partial 192 190 50.3% 76.7% 

 
As shown in Table IV the system provided 382 evidence 

sentences for 98 BEL statements in each run (mean 3.9 
sentences per statement). In run 1 for 55 BEL statements, there 
was at least one entirely correct evidence sentence, for 71 
statements at least one sentence meeting the partially 
supportive evaluation condition, and in run 2, 58 and 70 BEL 
statements satisfied the fully and partially supportive 
evaluation condition, respectively. Table IV also shows the 
detailed numbers for TP, FP and the resulting precision at the 

micro level. Around one third of all sentences fully expressed 
the desired relationship. In order to assess the ranking quality 
of the system, we computed the mean average precision 
(MAP). Although the first run has a slightly lower precision 
compared to the second run, the MAP is considerably higher, 
especially for full supportive sentences. Overall, based on the 
results and the low number of participants, task 2 seems to be 
as difficult as task 1. 
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Abstract— In this work, we describe an improved 
version of BELMiner that extracts Biological Expression 
Language(BEL) statements from evidence sentences 
provided for BioCreative BEL 2017 task. The current 
system builds upon the basic infrastructure of 
BELMiner; a system was developed to extract BEL 
relationships from evidence sentences for the 
BioCreative BEL 2015 task. Training a state of the art 
machine learning NER architecture using a pooled 
corpus from diverse shared tasks and marshalling their 
results with other existing state of the art NER tools, 
incorporating the latest Stanford parser 3.8 textual 
entailment functionalities, graph based traversal to 
extract relations, handling double negations are some of 
the new functionalities that we incorporated in 
BELMiner. The system achieved an overall F-measure of 
49.6% with gold standard entities, while it achieved a 
lower performance of 32.45% with the entities extracted 
by an ensemble of NER systems on blind test data. For 
relation extraction, the system achieved an F-measure of 
66.83% on a blind test data set with gold standard 
entities. We observe a significant improvement in the 
state of the art performance in BEL statement extraction 
by over 14% when compared to the performance of the 
best system on 2015 data set. 

Keywords—BEL; BELMiner; graph based relation 
extraction; biomedical information extraction 

I. INTRODUCTION

Biomedical literature has been a rich resource for 
information on biological pathways. Tapping into the 
information in the literature on signaling pathways is of 
great importance that will help bridge the gap in the curation 
of biological pathways. One approach is to crowdsource the 
human curation of biological events and pathways through 
intuitive and effective user interfaces such as PubTator [1], 
BELIEF [2] and other similar tools. This curation initiative 
can be substantially augmented through text mining efforts.  

Formal representation of textual assertions in biological 
literature is important to fully realize any of the curation and 
text mining initiatives. There has been considerable 
attention on Biological Expression Language(BEL) [3] by 
system biologists in the recent past. It is one of the suitable 
representation languages to formalize signaling pathways 
from biomedical literature. BioCreative shared task 
organizers organized a very important task involving 
formalizing the relation extracted from biomedical text in 
BEL framework in 2015 [4]. Multiple teams participated in 
the task and the state of the art performance achieved F-
measure of 35% when the system used the gold standard 

entities. Our system BELMiner [5] achieved an F-measure 
of 25.6%. As a continued effort, this year additional test 
data was provided to validate the ability to extract BEL 
statements from evidence sentences. In this paper, we 
describe the performance of an improved version of 
BELMiner, which we call BELMiner 2.0 on the BioCreative 
2017 BEL extraction task. In the following sections, we 
briefly describe the various improvements we made to the 
BELMiner, its performance and brief error analysis. Due to 
space constraints, we provide only a brief description of our 
system. 

II. SYSTEM DESCRIPTION

Figure 1 outlines the overall architecture of BELMiner 2.0. 
The system consists of the following components executed 
in sequence to process the evidence statement, with each 
component incrementally contributing towards BEL 
statement extraction. 1) Extraction of normalized entities 2) 
Identify dependency structure 3) graph based traversal to 
extract causal relationships 4) Formalization of causal 
relations into BEL statements and 5) Filter out irrelevant 
BEL statements. 

Fig. 1. BELMiner architecture. 

We briefly describe the individual steps of BELMiner 2.0 
below. In Figure 2 we have illustrated the important steps of 
BELMiner 2.0 using an example sentence. 

A. Preprocessing
BELMiner 2.0 pipeline starts with some simple pre-

processing such as sentence tokenization. We also have few 
simple regular expressions to trim unnecessary phrases like 
“(Fig 2A)”, “Figure 1”” from the sentences to avoid errors in 
the subsequent steps. 

B. Entity recognition and normalization
In BELMiner, we assembled an ensemble of state of the

art entity normalization tools such as PubTator and beCAS 
[6], further supplemented by dictionary based lookup [7] to 
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extract normalized entities from the evidence sentences 
provided for the task. Subsequent analysis of the impact of 
different NER components showed certain gaps in the NER 
tools. Most of these tools are trained on the specific corpus 
and hence do not generalize well for the BEL NER task. In 
this work, we used TaggerOne [8], a trainable semi-Markov 
structured linear classifier for any entity types. It also uses 
supervised semantic indexing for entity normalization. Its 
unique feature is its ability to jointly model NER and 
normalization.  

We made the following changes to the core components of 
the TaggerOne framework. First, we replaced the Ab3P 
acronym detection component with the algorithm of 
Schwartz and Hearst algorithm [9]. We did joint training for 
the gene, chemical, and disease entity detection and 
normalization using diverse corpus from prior BioCreative 
shared task data sets [10]. While the TaggerOne 
infrastructure had inherent support for Chemical and Disease 
entity normalization we did additional implementation to 
extend its functionality for gene normalization. We used 
internally generated lexicon integrated from different sources 
such as UniProtKB [11], Entrez Gene [12], HGNC [13] and 
MGI [14]. We supplemented the annotations provided by 
TaggerOne with annotations from other external tools such 
as beCAS and Reach [15]. Our strategy was similar to the 
one described in the earlier paper; to build consensus across 
multiple NER tools for the gene, chemical, and diseases. For 
Gene ontology term normalization we used dictionary look-
up approach where we used only the terms given by the task 
organizers. In addition to the terms, we included their 
synonyms from GO ontology.  

 
Fig. 2. Illustration of the function of individual components of BELMiner 
using an example sentence (PMCID: PMC3677168) 

 

In the biomedical text, the presence of coordinated entities is 
quite common. For example, in the phrase “ERK1 and -2” 
while it is easily possible to detect ERK1 as gene the second 
entity ERK-2 is difficult to identify unless the entities are 
decomposed into two entities ERK1 and EKR-2. We 
integrated SimConcept [16] into the current BELMiner 2.0 
pipeline in order to distinctly identify the composite entities 
and normalize them to the right database identifiers. 

Composite names and entity co-ordinations are common in 
bio-medical literature and their resolution has been shown to 
improve the performance of gene/disease detection and 
normalization by 1% [16]. 

C. Improved syntactic and semantic features in BELMiner 
2.0 

 One of the shortcomings in the BELMiner was that its 
ability to identify long distance relations that occur beyond 
clausal boundaries are limited. In order to overcome this 
issue, we used the new Stanford Parser 3.8 [17] that 
identifies extended dependencies such as anaphora/co-
reference resolution, appositives and dependencies that occur 
beyond clausal boundaries with greater accuracy. 
Subsequently, we used a list of trigger words to identify the 
functions and relations (increase or decrease) to identify 
them in the text.  

Our approach to identifying appropriate arguments for 
function and relations involve a graph based traversal [18]. 
For example, consider an example sentence shown in Figure 
2. The system identified induced, knockdown, inhibited and 
increase as the trigger words that describe bio-medical 
events. Similarly, the term activity was identified as a 
“function”. From each of the event phrases, the relation 
extraction module traverses along the dependency graphs 
until it reaches an entity or a function word. During graph 
traversal, the system considers certain properties of the node 
such as the semantic type of the node and properties such as 
negations. It also identifies the successive double negation of 
events along the traversal path to correctly identify the type 
of the main event. Consider the phrase “siRNA-induced 
knockdown of p38 kinase also inhibited” in the example 
sentence shown in Figure 2. There is a possibility to mis-
identify “inhibited” as a negative regulation by just 
considering that word alone. The event “inhibited” takes 
“knockdown” as the causal argument, which in turn takes 
entity “p38 kinase” as its argument. Since both events belong 
to the Negative_Regulation class, the double negation 
classifies the type of the main event “inhibited” as 
“Positive_Regulation” class. In this case, the system 
identifies the correct relation “p(HGNC:MAPK1) ->”. 

TABLE I.  MAPPING NLP FUNCTION AND EVENT TYPES TO BEL 
FUNCTIONS  

Keywords Type BEL functions 
Physical interaction, 
binding, complex 
formation 

Function complex 

Gene expression, 
Transcription 

Function rnaAbundance() 

Translocation Function tloc() 
Phosphorylation, 
acetylation, 
methylation 

Function pmod(P/A/M) 

Degradation,  Function deg() 
Activity Function act() 
increases, activation, 
induce 

Event 
(Relation) 

increases 
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inhibit, block Event 
(Relation) 

decreases 

Directly increases, 
direct activation, 
directly induce 

Event 
(Relation) 

directlyIncreases 

Directly inhibit, 
directly block 

Event 
(Relation) 

directlyDecreases 

D. Mapping textual relations to BEL statements 
We retained a simple rule-based approach to map the relation 
extraction output to a formal BEL statement that we have 
described in our earlier paper [5]. Table 1 lists the mapping 
between NLP functions and events into BEL functions. We 
finally filter out the incomplete BEL statements that do not 
fit the syntax of BEL formalism and recursive BEL 
statements, as they were not considered for the evaluation in 
this task. 

III. RESULTS AND DISCUSSION 
We used the training and test data for BioCreative V BEL 

track task 1 from 2015 [4] for fine tuning the performance of 
updated BELMiner. We ran the new BELMiner 2.0 on the 
test data provided as part of BioCreative BEL task 2017. 
Similar to the 2015 tasks the performance of systems was 
performed at different levels namely, Term-Level, Function-
Level, Relationship-Level, Full Statement and Overall 
Evaluation. It was further carried out in two phases i) without 
named entities and after providing the gold standard entities. 
Table 2 outlines the results of the system for both runs of the 
system with and without the gold standard entities 
respectively. We submitted two runs of BELMiner output 
during Phase I and Phase II. The only difference between the 
two runs is that the first run consists of partial BEL 
statements where the missing entities (arguments) are 
replaced with PH:Placeholder. The standard metrics namely 
Precision, Recall, and F-measure was used to evaluate the 
performance of the system.  

TABLE II.  PERFORMANCE OF BELMINER ON BIOCREATIVE BEL 
TASK 2017 (WITH AND WITHOUT GOLD STANDARD ENTITIES) 

Class Entities from Gold 
standard 

Entities from NER 

Pre 
(%) 

Rec 
(%) 

F-Mes 
(%) 

Pre 
(%) 

Rec 
(%) 

F-Mes 
(%) 

Term (T) R1 90.56 84.92 87.65 78.18 70.49 74.14 
R2 90.94 82.3 86.40 78.71 67.87 72.89 

Function 
Secondary 

(FS) 

R1 79.07 45.33 57.63 70.83 45.33 55.28 
R2 89.19 44.0 58.93 79.49 41.33 54.39 

Function R1 77.08 38.95 51.75 56.6 31.58 40.54 
R2 85.71 37.89 52.55 63.64 29.47 40.29 

Relation-
Secondary 

(RS) 

R1 95.75 88.65 92.06 89.62 82.97 86.17 
R2 97.55 86.99 91.92 93.00 81.22 86.71 

Relation R1 76.70 59.21 66.83 51.81 37.72 43.65 
R2 76.70 59.21 66.83 52.12 37.72 43.77 

BEL 
Statement 

R1 63.01 40.35 49.2 40.67 26.75 32.28 
R2 64.34 40.35 49.6 41.22 26.75 32.45 

Pre – Precision; Rec – Recall; F-Mes – F-Measure 
R1 – Run1; R2 – Run2; R3 – Run3 

 

A. Term level performance 
Figure 3 and 4 outlines the performance of the new 

BELMiner during Phase I and Phase II, respectively. 
Comparison between the first and second phase between the 
best systems reveal a 12% difference between Phase I and 
Phase II. The native BELMiner identified 275 entities in total 
out of which only 215 were found to be correct when 
compared against the 305 gold standard entity annotations. 
With gold standard entities, the system extracted 259 entities 
correctly. Out of the 305 gold standard annotations, there 
were 247 protein, 36 chemical, 20 biological process, and 2 
diseases annotations. During Phase I the best system 
extracted 169 protein annotations (F-mes: 72%), while we 
observed a steep increase during Phase II. We did not 
observe much of a difference between two phases for 
chemical entity detection. We saw only 0.5% increase in the 
overall F-measure for chemical detection. There is a 
substantial increase in the biological process performance 
(11% increase) between Phase I and Phase II. The total 
number of protein annotations was more than the other two 
and they might have reflected in the overall numbers.  

  

Fig. 3. Term (category wise) level 
evaluation during Phase I. 

Fig. 4. Term (category wise) level 
evaluation during Phase II. 

B. Performance of BELMiner in identifying functions 
The ability of the BELMiner in identifying the functions 

(secondary functions) seems to be its key bottleneck. There 
were 75 functions annotated in the gold standard out of 
which the system identified only 34 correctly. There were 
totally 6 functional categories namely, activity, complex 
formation, secretion, protein modification, degradation, and 
translocation. The performance seems to be the lowest 
among the activity (F-Mes: 24%). The system really 
performs well in identifying the post-translational 
modification (F-mes: 92.31%). We haven’t completed our 
error analysis to understand how to improve the system 
better in its ability to identify the functions in the text. Figure 
5 outlines the performance of BELMiner on secondary 
functions belonging to different categories. 

C. Performance of BELMiner in extracting the relations 

The difference in the performance of the system in 
extracting the relations during Phase I and Phase II is very 
huge. We observed a huge increase in 23% overall F-
measure when we used the gold standard entities for named 
entities. The increase in the NER performance directly 
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correlates with the relation extraction. However, the 
evaluation at secondary functions level revealed that we did 
not observe a huge difference (increase in 5%) between the 
two phases. 

 

 
Fig. 5. Secondary function evaluation 

 

D. Performance of BELMiner in extracting the overall BEL 
statements 
The trend in complete BEL statement extraction is 

similar to that of relation extraction between the two phases.  
We observed nearly a 17% increase in the performance of 
BEL statement extraction between the two phases. 
Compared to the performance of BEL statement extraction 
in 2015, we observed nearly a 15% overall improvement in 
the performance of BEL statement extraction. 

IV. CONCLUSIONS 
In this work, we described a generic graph-based 

traversal on the dependency graphs constructed out of entity 
normalized sentences. We discussed the overall impact of 
different changes to the BELMiner on different tasks in BEL 
statement extraction on BioCreative BEL 2017 extraction 
task. We observed significant improvement in the state of the 
art in BEL statement extraction. Similar to the experience we 
had last time the performance of term level extraction played 
a major role in the overall improvement of BEL statement 
extraction. We believe that we can further improve the 
performance of the system through systematic analysis of the 
errors. 
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Abstract—In this paper, we describe our approach for the 
task 1 of the BioCreative VI Biological Expression Language 
(BEL) track. Our pipeline system is based on the BEL statement 
generation system, BelSmile. For the BioCreative VI BEL task, 
many components of BelSmile were updated. 1) We replaced the 
Conditional Random Fields (CRFs)-based approach with 
statistical principle-based approach (SPBA) for gene mention 
recognition. 2) A new verbal patterns were developed for 
function classification. 3) To improve SRL, we ensemble different 
semantic role labeling (SRL) parsers. 4) Our system is able to 
generate BEL statement even the relation is not described in a 
subject-verb-object (SVO) format. In the task 1, our best 
configurations achieved an F-score of 22.99% on the stage 1, and 
an F-score of 31.79% on the stage 2. 

Keywords—Biological Expression Language; Semantic Role 
Labeling; Named Entity Recognition; Relation Extraction 

I. INTRODUCTION 
The goal of the BioCreative VI Biological Expression 

Language (BEL) task 1 is that given a biological evidence 
sentence, the participants have to generate its corresponding 
BEL statement(s). The main challenges of this task are as 
following. First, the task contains many stages including 
named entity recognition (NER), named entity normalization 
(NEN), function classification, and relation classification. 
Therefore, developing a BEL statement generation system is 
more complicated than developing a single component. Second, 
the positions of named entity (NE), function and relation 
keyword are not provided in the training set. Therefore, the 
training set cannot be used to tune machine-learning models 
without appropriate preprocessing.  

To tackle above challenges, we developed our system 
based on our previous pipeline system, BelSmile (1). Table I 
summarizes the resources and methods used for this task, and  
the differences with our previous system. The one with ‘*’ 
symbol means that it was used for this task but not used in 
BelSmile. 

BelSmile and our new system for BioCreative VI BEL task 
1 differs in several ways. First, the CRFs-based gene mention 
recognition component was replaced by SPBA NER (2). 
Second, the verbal patterns were developed for function 
classification component. Third, for semantic role labeling, we 

ensemble our SRL parser, RCBiosmile (3), and a commonly-
used parser, Enju (4). Lastly, our system could generate BEL 
statement even when the relation was presented in temporal 
and location statement.  

This paper is arranged as follows. In Section II, we 
introduce our system for the BioCreative VI BEL track task 1. 
The configurations of each submission are described in Section 
III. In Section IV, we discuss the advantage of our approach. 
Section V concludes the paper and gives a future work.  

TABLE I.  THE RESOURCES AND METHOD USED FOR THIS TASK 

Component Method Training set Dictionary 

Biological 
Process 

Recognition 
Dictionary  BEL dictionary 

Chemical 
Recognition 

CRFs + dictionary 
*BioCreative 

V CEMP 
ChEBI 

Disease 
Recognition 

Dictionary  BEL dictionary 

Protein 
Recognition 

*SPBA + dictionary 
JNLPBA + 

*BioCreative 
VI CPRO 

Entrez 

Function 
classification 

Non-verbal pattern + 
*verbal pattern 

  

Semantic Role 
Labeling 

RCBiosmile + *Enju BioProp  

Relation 
Extraction 

SRL + 
*time/location rules 

  

 

II. SYSTEM DESCRIPTION 
In this section, we first introduce the named entity 

recognition components used in our system, and then introduce 
our normalization component. Third, we introduce our pattern-
based approach for function  classification. Then we introduce 
two different semantic role labeling  components used for 
relation classification, and how we combine them. Lastly, we 
introduce how to integrate all components for BEL statement 
generation. 
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A. Named Entity Recognition 
Here we briefly describe our named entity recognition 

components, which were used in our previous works (1, 2, 5, 6). 

Chemical Recognition: We used NERChem (5) for 
chemical recognition. It was a CRF-based system which used 
the two-stage  tokenization, consisting of GENIA tokenization 
and symbol tokenization. It used SOBIE (Singleton-, Outside-, 
Beginning-, Inner- and Ended-Named Entity) tag scheme and 
empirical feature set, including word, POS, affix, 
orthographical, word shape, syntax and NE features. We 
trained NERChem on the BioCreative IV chemical corpus to 
recognize chemicals. 

Disease and Biological Process Recognition: For diseases 
and biological process recognition, the dictionaries provided by 
the BEL task were used to develop our dictionary-based 
recognition component. We used the longest matching 
algorithm to recognize both disease and biological process.  

Gene Mention Recognition: We used SPBA (6) for gene 
mention recognition. It integrated the advantages of robustness 
of machine learning model and interpretability of pattern-based 
approach.   SPBA was developed based on our revised version 
of JNLPBA corpus and BioCreative V.5 Gene and Protein 
Related Object Recognition (GPRO) corpus (2, 7).  

B. Named Entity Normalization 
Since named entity (NE) may not exactly match its 

corresponding dictionary names, the normalization process 
used heuristic rules to expand the query of a NE. The heuristic 
normalization rules, such as converting to lowercase and 
removing symbols and the suffix ‘s’, used in our previous 
works (1) are employed to expand both NE and dictionary 
names. Moreover, additional rules were developed to  
normalize proteins. For example, if a protein complex “A/B 
complex” is failed to be mapped into identifier, we will try to 
normalize it by separating it into two proteins. Table II shows 
the resources used in normalization. 

TABLE II.  THE RESOURCES USED FOR RECOGNITION AND 
NORMALIZATION 

Type Dictionary 

Chemical ChEBI 
Gene mention Entrez gene (human and mouse) 

Biological Process BEL dictionary 
Disease BEL task 

 

C. Function Classification 
Function classification component classifies the molecular 

activity of the NEs into transcription and phosphorylation 
activity etc. We used a pattern-based approach to classify the 
functions of the NEs. Our patterns are divided into two 
categories: non-verbal and verbal patterns.  

In non-verbal pattern, a pattern consists of NE(s) and 
molecular activity keyword(s). Table III shows some examples 

of our non-verbal patterns, which were written by our domain 
experts.  

In verbal pattern, each pattern consists of predicate and 
arguments. In the next section, we will introduced how to 
generate the predicate-argument-structure (PAS) of a given 
sentence. Table IV shows some examples of the verbal patterns, 
and how to transform the PAS into the BEL function statement.  

TABLE III.  EXAMPLES OF NON-VERBAL FUNCTION PATTERNS 

Function Example Pattern  
molecularActivity (act) <Protein/> activity  
complexAboundance 

(complex) <Protein/>/<Protein/> complex  
degradation (deg) <Protein/> degradation  

proteinModification (pmod)  phosphorylation of <Protein/>  

translocation (tloc) translocation of <Protein/>  

TABLE IV.  EXAMPLES OF VERBAL FUNCTION PATTERNS 

Function  Example Pattern  BEL statement 

act 

<AgentNE/> 
<Verb>activates</Verb> 

<PatientNE/> 

<AgentNE/> increase 
act(<PatientNE/>) 

complex 
<ProteinA/> is complexed 

with <ProteinB/>  
complex(<ProteinA/>,<ProteinB/>) 

pmod 

<AgentNE/> 
<Verb>phosphorylates</Verb> 

<PatientNE/> 

<AgentNE/> increase 
pmod(<PatientNE/>, “P”) 

 

D. Semantic Role Labeling 
Before we introduce our relation extraction component, we 

briefly introduce two SRL components, RCBiosmile and Enju, 
used in our relation classification component. 

RCBiosmile: RCBiosmile (3) is a Markov-Logic-Network 
(MLN)-based SRL labeler that employs patterns to select 
candidate semantic roles for each argument and uses MLN (8) 
to learn and predict the semantic role of each argument. It was 
trained on BioProp (9).  

Enju: Enju is a commonly-used semantic parser (4), which 
can extract agent and patient arguments. We selected it, since 
we found that it seems more accurate than other open-source 
non-biomedical domain SRL parsers in the BEL training set. 

E. Combining Different SRL Systems 
Here, we describe the procedure that used to combine SRL 

parsers as follows.  

Step l: Both Enju and RCBiosmile were used to parse the 
predicate-argument-structure (PAS) of a given sentence.  

Step 2: The agent argument, patient argument and predicate 
of the Enju PAS were collected into a list.  

Step 3: All arguments and predicate of the RCBiosmile 
PAS were collected into a list.  

Step 4: In the Enju, the arguments like negation, time and 
location were not labeled as negation, temporal and location 
arguments. Therefore, if Enju predicts the same predicate with 

Identify applicable sponsor/s here. If no sponsors, delete this text box 
(sponsors). 

Identify applicable sponsor/s here. If no sponsors, delete this text box 
(sponsors). 
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RCBiosmile. For these arguments, we will add these arguments 
generated by the RCBiosmile into the Enju’s argument list. 

Step 5: According to our observation on the BEL training 
set. We found that the RCBiosmile is more accurate than Enju 
while the predicted predicate is defined in the BioProp corpus. 
E.g. the predicate “phosphorylate”. However, these predicates 
often appear in the BEL training set. Therefore, we combined 
the results of two parsers by using predicate. For the predicates 
which were used in BioProp, we will use the arguments 
generated by RCBiosmile, and for the rest predicates we will 
use the arguments generated by Enju. 

F. BEL Statement Generation 
In this section, we describe how to extract the cause-theme-

event relationship from PASs and transform them into BEL 
relations.  

Given a sentence, combined SRL parser is used to parse it, 
and we will retrieve one or more PAS(s). Each PAS contains 
the arguments corresponding to the predicate. To extract cause-
theme-event relationship, we map the predicate into the verb; 
map the abundances/processes which are inside the boundaries 
of the agent argument and the patient argument into the cause 
and the theme respectively. 

However some cause-theme-event relationships are not 
presented in subject-verb-object format. For example, given a 
sentence, 

“Furthermore, the expression of Bach 2, which can form a 
heterodimer with mafG protein, was found to be greatly 
reduced, while Notch 1 expression was increased in mafG-
deficient mice.” --- PMID:20813153 

In SRL, the phrase “in mafG-deficient mice” is labeled as a 
location argument of the predicate “increased”;“Notch 1 
expression” is labeled as the patient argument of the predicate 
“increased”. Although, “mafG-deficient mice” and “Notch 1 
expression” are not an agent-patient pair, but the sentence 
means that “mafG-deficient mice” would increase “Notch 1 
expression”. Therefore, the BEL statement  

“p(EGID:4097) -| p(EGID:4851)” should be generated. 

 “p(EGID:4097)” refers to “mafG”; “p(EGID:4851)” refers to 
“Notch 1”. 

To solve such problem, we map the predicate into the verb; 
map the abundances/processes which are inside the boundaries 
of the agent/patient argument into theme; map the 
abundances/processes which are inside the boundaries of the 
location or temporal arguments into cause.  

The BEL relationship type is then determined by the 
regulation keywords collected from the BioNLP corpora (10) 
where “Regulation” and “Positive_regulation” types are 
mapped into the increases, and “Negative_regulation” is 
mapped into the decreases. If the surrounding context of NE 
abundances has certain keywords, like “inhibition” and 
“knockout”, then we will reverse the relation type. 

III. EXPERIMENT RESULTS 
We participated in both stage 1 and 2 of the BioCreative VI 

BEL track task 1, and three runs were submitted for each stage. 
The configurations of all runs are as follows: 

Stage1: 
 Run 1 (our best): it used the combined SRL parser. 
 Run 2: it only used Enju for SRL. 
 Run 3: it only used RCBiosmile for SRL. 
Stage 2: 
 Run 1: it used the combined SRL parser. 
 Run 2: it used RCBiosmile parser as baseline, and added 

Run 1 statements. Furthermore, if some sentences only 
generated function statements, we will also output them. 

 Run 3 (our best): it used the Run1 as baseline, and 
added RCBiosmile-based statement. Furthermore, if 
some sentences only generated function statements, we 
will also output them. 

Table V and VI show the different level performances of 
our runs. In stage 1, the Run 1 used the combined SRL parser 
achieved our best performance on the statement evaluation 
metric. In stage 2, the Run 3 achieved our highest performance. 

TABLE V.  THE PERFORMANCES OF STAGE 1 

Class Recall Precision F-score 

Term 
run1 50.49 84.62 63.24 
run2 44.59 81.93 57.75 
run3 46.89 88.27 61.24 

Function 
run1 27.37 44.83 33.99 
run2 24.21 43.4 31.08 
run3 25.26 47.06 32.88 

Relation 
run1 31.58 55.38 40.22 
run2 28.07 53.33 36.78 
run3 28.07 56.14 37.43 

Statement 
run1 17.54 33.33 22.99 
run2 15.35 31.82 20.71 
run3 15.35 33.98 21.15 

TABLE VI.  THE PERFORMANCES OF STAGE 2 

Class Recall Precision F-score 

Term 
run1 72.79 99.11 83.93 
run2 76.07 99.15 86.09 
run3 75.08 99.13 85.45 

Function 
run1 29.47 47.46 36.36 
run2 33.68 50.79 40.51 
run3 32.63 49.21 39.24 

Relation 
run1 46.93 73.29 57.22 
run2 46.49 70.67 56.08 
run3 47.37 73.47 57.6 

Statement 
run1 23.68 46.15 31.3 
run2 23.68 44.63 30.95 
run3 24.12 46.61 31.79 
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IV. DISCUSSION 
In this section, we take a sentence as an example to 

illustrate the advantage of using combined SRL parser . 

“Pulse-chase biosynthetic labeling studies showed that 
AtT-20 cells expressed much less RESP18 than the endogenous 
prohormone, POMC, but that glucocorticoid treatment 
lowered POMC and raised RESP18 biosynthetic rates so that 
they were nearly equimolar.” --- PMID:7988462 

Two gold BEL statements should be generated. 

“a(CHEBI:glucocorticoid) -| p(EGID:5443);” 

“a(CHEBI:glucocorticoid) -> p(EGID:389075)” 

where “POMC” and  “RESP18” are “p(EGID:5443)” and 
“p(EGID:389075)” respectively; “lowered” and “raised” are 
“-|” and “->” respectively. RCBiosmile failed to generate the 
BEL statements, since both “lowered” and “raised” were 
tagged as “JJ”, and thus caused incorrect SRL results. However, 
in Enju, both “lowered” and “raised” can be tagged as 
“VBD”, and then generated correct agent and patient 
arguments for both “lowered” and “raised”.  In contrast, 
sometimes Enju might generate incorrect SRL results, but 
RCBiosmile didn’t. Therefore, to solve this problem, combined 
SRL parser could reduce such errors coming from individual 
SRL components. 

V. CONCLUSION AND FUTURE WORK 
In the future, we would like to apply the SPBA to tackle 

other NE types like chemical, disease and biological process. 
Using multiple components, the system performs better than 
using single component. Therefore, we would like to integrate 
different state-of-the-art systems in the future. The results of 
the BEL statement generation are depended on individual 
components. We also like to use deep learning-based 
approaches to enhance individual components like semantic 
role labeling. 
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Abstract— The automatic extraction of biomedical relations 
and entities from text has become extremely important in 
systems biology. For coding the extracted information, the 
Biological Expression Language (BEL) can be used. A BEL-
statement consists of a subject (entity), a predicate (type of 
relationship), and an object (entity or a further BEL-statement). 
This paper describes a system based on neural networks (NNs) to 
extract BEL-statements in the context of the BioCreAtivE 2017 
track 3 (task 1) challenge. In our approach, the overall problem 
is divided into four subtasks: (i) the detection of named entities 
(NER), (ii) deciding whether a pair of entities participate in a 
relation, (iii) determining which of the entities participating in a 
relation is the subject/object entity, and (iv) extracting the type of 
the relation. By merging the solutions of the subtasks, the BEL-
statements are generated. Except for the named entity 
recognition, (convolutional) NNs were used to solve the tasks. 
The results show that a neural net based approach is reasonable 
to use for the extraction of biomedical relations. The limitations 
of our system are related to the small size (compared to other 
NN-based applications) of the data set. We argue that by 
overcoming this limitation, promising results can be expected 
from NN-based approaches in future.  

Keywords— Text Mining; Convolutional Neural Network; 
Relation Extraction; Biological Expression Language (BEL) 

I. INTRODUCTION  
To be able to analyze the immense amount of biological 

data, automated systems are required. In order to perform an 
automated analysis, the knowledge must be available in a 
computational representation. Unfortunately, a big amount of 
the existing knowledge is only available in form of 
unstructured scientific texts. Therefore, it is of interest to 
develop systems that extract information from scientific 
publications and represent the information in a machine 
interpretable form. The Biological Expression Language 
(BEL)1 is a domain-specific language, which makes it possible 
to capture the extracted knowledge in a structured 
representation (1). Relationships encoded in BEL are triples 
consisting of a subject, a predicate, and an object. For example, 
the BEL statement “p(HGNC:TLR2) increases 
cat(p(HGNC:CASP1))” can be extracted from the sentence 
“Interestingly, BLP also activates caspase 1 through TLR2, 
resulting in proteolysis and secretion of mature IL-1beta” 
(PMID:10880445) (2). 

1 http://openbel.org 

The BioCreative VI BEL track task 12 offers a platform to 
compare systems for extracting biological knowledge out of 
free-texts and saving the gathered information as BEL-
statements (3). This task is carried out in two stages: i) without 
information about named entities and ii) with gold standard 
named entities. The evaluation scheme designed by the authors 
consider several structural levels of a BEL statement such as 
term (for e.g. HGNC:CASP1), function (for e.g. catalytic or 
kinase activity), and relation (for e.g. increases or decreases) 
level. For the latter two levels, two additional secondary levels 
are available. Due to time constraints, we did not participate in 
the function prediction. 

In the last years, neural network (NN) based approaches 
have become popular in Natural Language Processing (NLP) 
(4–7). Especially convolutional neural networks (CNNs) and 
recurrent neural networks (RNNs) are used in text mining. The 
advantage of neural networks is that they are capable of 
learning features by themselves (representation learning) by 
comprising features learned in the different layers of the 
network in a hierarchical manner. In the low-level layers, basic 
features are learned and in the higher layers, more complex 
features are extracted based on the low-level features. This 
allows to overcome the process of feature engineering or at 
least to reduce this process (8).  

 Quan et al. (5) and Hua et al. (9) show that neural networks 
can successfully be used to extract biomedical relations from 
scientific publications. Quan et al. use a multichannel CNN 
approach to extract protein-protein (PPIs) and drug-drug 
interactions (DDIs). Their system is able to predict associations 
between pairs of entities without determining which of the 
entity in an association is the subject or object and without 
giving details about the type of the relation. For the 
BioCreative VI BEL task 1, we used this work as a foundation 
to develop our NN-based system that is capable of extracting 
BEL-statements out of sentences without involving the 
complex and time-consuming process of manual feature 
engineering.  

In the following we give a short description of our system 
in Section II, present the achieved results in Section III, and 
discuss the results and provide a future outlook in Section IV. 

2 http://www.biocreative.org/tasks/biocreative-vi/track-3/ 
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II. SYSTEM DESCRIPTION 
Our NN-based system has a component based architecture 

in which each component has a specific task. Since the 
components can easily be exchanged, the system remains 
flexible. To extract BEL-statements out of the sentences four 
subtasks must be solved. The first sub-task (and the only one 
not solved by an NN in our setting) is entity recognition and 
normalization. The remaining tasks are formulated as binary 
classification problems (see Fig. 1) and each one is solved by 
an NN. For each pair of entities, the system has to predict, 
whether the sentence describes a relation between them. Then, 
for the case a relation exists, it must determine which of the 
entities corresponds to the subject and which to the object, 
respectively. The last step is to extract the type of the relation 
(“increases” or “decreases”). Based on the predictions for the 
four sub-tasks, a BEL-Statement is created for a pair of 
entities, if the existence of a relation is predicted. We use a 
multi-channel CNN architecture as proposed by Quan et al. (5) 
in all NN-based sub-tasks. For each task, we train a separate 
model. In the following, the four single steps and the applied 
CNN model are explained in more detail. 

Interestingly, BLP also activates caspase 1 through TLR2, resulting in proteolysis and secretion of
mature IL-1beta (PMID:10880445)

0.45 ... 0.6
... ... ...
- 0.2 ... 0.03

Interestingly, BLP also activates ENTITY-1 through ENTITY-2, resulting in proteolysis and secretion
of mature IL-1beta

Interestingly, BLP also activates caspase 1 through TLR2, resulting in proteolysis and secretion of
mature IL-1beta
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Get 
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Fig. 1. BEL-Statements extraction workflow 

A. Named Entity Recognition (NER) 

The first step is the extraction of named entities from the 
sentences. For this task, the rule and dictionary based software 
ProMiner (10) is used. It contains several terminologies to 
detect named entities. We use ProMiner with the terminologies 
listed in Table I. On the training set we used ProMiner to find 
the offsets of the annotated entities. For the test set we consider 
all detected entities for further predictions. 

B. Association Detection Model 

The second sub-task is to decide, whether a sentence 
describes an association between two entities or not 
(independently from any information about subject/object and 
the relationship type). Since we use a supervised machine 
learning approach, we need training instances from both 
classes to train our models. In the training set only positive 
examples (without any position information of the entities in 
question within the sentence) are annotated, meaning that only 
examples of related entities are  given. If a sentence does not  

TABLE I. Terminologies used for NER 
Entity Class Resources OpenBEL 

Namespace 

Human 
genes/proteins 

EntrezGene/Uniprot HGNC 

Mouse 
genes/proteins 

EntrezGene/Uniprot MGI 

Chemicals ChEBI CHEBI 

Diseases MeSH disease 
subtree 

MESHD 

Biological 
processes 

Gene Ontology 
biological processes 

GOBP 

mention a relation between two occurring entities, this fact is 
not captured. However, to train a binary classifier, also 
negative examples are required. Therefore, we create artificial 
negative examples based on the assumption that, if for a pair of 
entities no relation is annotated in the training set, the sentence 
doesn’t describe a relation between these entities. This strategy 
can produce false positives in the sense that a negatively 
annotated relation might in fact hold because it is not 
guaranteed that the curator annotated all relations in a sentence 
(11). The advantage of this approach is that, given a reliable 
NER tool, the automated creation of negative examples can be 
realised with very low effort. Our model was trained based on 
6,389 instances comprised of 4,633 positive and 1,756 negative 
examples. To evaluate our model, we applied a 10-fold cross-
validation. The results are depicted in Table II. Although the 
data set is imbalanced the results are quiet promising, 
especially for the “Association”- class. 

TABLE II. 10-fold cross-validation results for association detection model 
Class Recall Precision F1-Score 

Association 96.5% 90.7% 93.4 % 

No-Association 73.9% 88.9% 80.7% 

C. Subject/Object Detection Model 

The third sub-task is to decide which of the entities in an 
entity pair is the subject and which the object. To train this 
model, only positive examples are needed. Since the subject 
and object information is contained in the training set, a 
training instance can be directly created as follows. For each 
relation, the subject and the object are extracted. If the subject 
occurs before the object in the sentence, the instance is 
assigned to the class “Subject First” otherwise to the class 
“Object First”. This training set consists of 4,633 examples 
from which 3,156 instances belong to the class “Subject First” 
and 1,477 instances to the class “Object First”. This data set is 
imbalanced, too, and the results for the 10-fold cross-validation 
(see Table III) show that there is still room for improvement. 
TABLE III. 10-fold cross-validation results for subject/object detection-model 

Class Recall Precision F1-Score 

Subject First 88.5% 81.5% 84.9% 

Object First 56.9% 70.3% 62.3% 
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D. Relationship Type Detection Model 

The last subtask is to determine the type of the relationship 
of an entity pair participating in an association. As for the 
subject/object detection subtask no artifical negative instances 
have to be created. The training set contains the relationship 
types “increases”, “directly increases”, “decreases” and 
“directly decreases”, but for the BioCreative VI BEL task 1 
“directly increases” is mapped to “increases” and “directly 
decreases” is mapped to “decreases”, so that there are only two 
types of relationships to predict. The neural network for this 
task is trained based on 4,325 instances consisting of 3,103 
“increases”  and 1,222 “decreases” examples. The results are 
shown in Table IV.  

TABLE IV. 10-fold cross-validation results for relationship type detection 
model 

Class Recall Precision F1-Score 

Increases 91.8% 80.8% 85.7% 

Decreases 39.5% 66.4% 48.2% 

 

The model lacks in the correct identification of the class 
“decreases”, especially the recall is low. We argue that this is 
due to the unbalanced data set. The class “increases” contains 
71.7% of the instances while only 28.3% of the instances 
belong to the class “decreases”. To solve this issue, we 
experimented with an oversampling strategy by simply 
copying the “decreases”-examples. However, no significant 
improvement could be achieved, but the time for training the 
model rose, so that we decided to train the final model with the 
initial data set. 

E. Architecture of the Multichannel CNN  

For all three models described in Section II. B-D 
multichannel CNNs are trained (see Fig. 2). The embedding 
layer contains the representations of the input sentence. The 
idea of the multichannel CNN is to use different input 
channels for different representations of the sentence.  
Different Word2Vec models (4) are used to transform each 
word of the sentence into a vector representation. Based on 
these word-vectors, a sentence-matrix is generated and passed 
to the network as input. In the sentence-matrix, each column 
represents a word and the number of rows indicate the 
dimension of each word-vector. For our networks, we use four 
Word2Vec models 3  trained by (12), which are based on 
PubMed, PubMed Central (PMC), and Wikipedia texts, 
respectively.  

In the convolutional layer, local features are computed by 
applying a convolutional operation on each sentence-
representation (see Fig. 2). For each sentence-representation 
we retrieve a scalar value every time the sliding window of the 
convolution operation is shifted. The scalar values of each 
shift are summed up and passed to the activation function. The 
rows of a new matrix represent the results of the convolutions 
created by different kernels/filters (in this case 4 filters). At 

3 http://bio.nlplab.org/ 

the end of the convolutional layer a max-pooling operation 
creates a feature vector by extracting the most significant 
features, taking for each column the biggest value. The feature 
vector is passed to a fully-connected layer and the result of the 
fully-connected layer is given as input to a softmax classifier 
producing the predictions. In the convolutional layer and in 
the fully-connected layer the Exponential Linear Unit (ELU) 
is used as the non-linear activation function. 

Interestingly, BLP also activates ENTITY-1 through ENTITY-2, resulting in proteolysis and secretion of 
mature IL-1beta (PMID:10880445)

X^x^

Embedding layer

Convolution and
max-pooling

Fully-connected 
and
classification

Max-pooling

Predictions

Fig.  2. Multichannel convolutional neural network architecture (5,9) 

F. Hyper-Parameters of the Multichannel Convolutional 
Neural Network 

The selection of appropriate hyper-parameters has a big 
influence on the performance of the model. We tested different 
values, but we did not apply any automated hyper-parameter 
optimization techniques. The selected set of parameters that is 
used for all three detection models (B-D) is depicted in Table 
V. 

TABLE V. Hyper-Parameters of the trained models 
Parameter Value 

Learning rate 0.01 

Number of filters 200 

Filter size 7 

Dimension of word-vectors 200 

Hidden neurons in the fully connected layer 500 

Activation function in convolution layer Exponential Linear Unit  

Activation function in fully conn. layer Exponential Linear Unit  

Loss function Cross-Entropy 

Optimizer Adagrad 

Batch size 20 

Training steps 100.000 
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III. RESULTS ON THE TEST SET 2017  
For each stage of the BioCreative VI BEL task 1 challenge, 

we handed in three submissions. The difference between 
Submission 1 and 3 is that the models used in Submission 3 are 
trained on a reduced training set. For the models of Submission 
1, all sentences of the training set with a length up to 75 tokens 
were considered whereas for the models in Submission 3 the 
maximum sentence length was chosen to be 65 tokens. We 
followed this strategy to handle two different distributions of 
sentence lengths. For Submission 2, we use the models of 
Submission 1 with the additional rule that whenever two 
entities predicted to be in a relation have a distance greater than 
10 tokens, the prediction is omitted. We argue that an entity 
which occurs in one part of the sentence is likely not related to 
an entity which occurs in a distant position of the sentence, 
especially considering the fact that sentences can contain the 
same entities multiple times at different positions. The best 
results are reached with the first submission and its results are 
presented in Table VI for stage (i) and in Table VII for stage 
(ii). The most significant observation is the decrease of 
performance from the Relation-Secondary level to the Relation 
level, which again directly causes a decrease in the full 
statement level. Also not predicting any function of entities has 
a direct impact on the full statement level. 

TABLE VI. Results of stage (i) on test set 2017 
Evaluation-Level Recall Precision F1-Score 

Term 72.13% 81.18% 76.39% 

Relation-Secondary 70.74% 60.45% 65.19% 

Relation 35.96% 25.55% 29.87% 

Full statement 20.61% 16.10% 18.08% 

 
TABLE VII. Results of stage (ii) on test set 2017 

Evaluation-Level Recall Precision F1-Score 

Term 84.60% 99.23% 91.33% 

Relation-Secondary 83.00% 90.05% 86.36% 

Relation 45.61% 41.60% 43.51% 

Full statement 22.37% 25.00% 23.61% 

IV. CONCLUSION AND FUTURE WORK 
We have presented the results of our participation in the 

BioCreative VI BEL track task 1. Our BEL extraction 
workflow is based on a multichannel CNN architecture 
motivated by Quan et al. (5). As features for our models, we 
used several pre-trained Word2Vec embeddings that were 
created on PubMed, PubMed Central, and Wikipedia texts. Our 
architecture reached for the relation level an F-score of 29.9% 
in stage (i) and 43.5% in stage (ii). The results indicate that for 
the extraction of BEL statements from natural language 
sentences a NN-based approach is reasonable.  

The main difficulty when training NNs in this setting is the 
limited amount of training data. Especially for the relationship 
type detection model, we think that an increasing amount of 
training data can lead to a steep improvement of performance. 
Also the detection of functions of entities, which wasn’t 

tackled in this work, should increase the performance on the 
full statement level. 

Furthermore, it would be interesting to examine how the 
system performs with new, updated, and fine-tuned Word2Vec 
models. The models that were used during the training are 
already four years old. In particular the work of Bojanowski et 
al. (13) introducing an extended Word2Vec model seems 
promising for our use case. Besides, a hyper-parameter 
optimization approach will be integrated in our workflow, so 
that a better set of hyper-parameters can be detected. A further 
aspect to consider is the type of the neural network. Different 
architectures (e.g. recurrent neural nets) should be investigated. 

We also plan to perform a detailed analysis of the 
predictions to detect the problems causing the performance 
decline. Finally, for use cases where limited training data is 
available a hybrid system containing machine learning 
components and rule-based modules should be taken into 
account. 
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Abstract—We present an information retrieval system 
developed to retrieve evidence sentences for a given Biological 
Expression Language (BEL) statement. Previously, as a 
participant of the BEL challenge in BioCreative V, we proposed 
and developed a system called BELTracker, which mainly 
focused on lexical features. In the BEL challenge of BioCreative 
VI, we explored usage of syntactic and semantic features in 
identifying and ranking evidence sentences. Similar to 
BELTracker, the new system has 3 main components: indexing, 
retrieval, and ranking. In this system, we trained several 
classifiers for the ranking process. These classifiers have lexical, 
syntactic, and semantic features such as unigrams, bigrams, 
word embedding, and dependency-word embedding. Our 
evaluation showed that the new system obtained higher mean 
average precision on BioCreative V’s test data when compared to 
BELTracker under full, relaxed, and context criteria. The 
challenge organizers provided 100 BEL statements as test data 
and we submitted 2 set of results 1) baseline (using ElasticSearch 
results), and 2) using the classifiers to re-rank the ElasticSearch 
results. The baseline system achieved 30.6% and 45.8% precision 
under full and partial criteria, respectively. Using various 
classifiers for ranking, the precision of the system increased to 
31.6% and 50.2%, respectively, for full and partial criteria. 

Keywords—Biological Expression Language; Dependency-
word embedding; Information Retrieval; Semantic Information 
Retrieval; Sentence retrieval; Word embedding 

I. INTRODUCTION 

The aim of information retrieval (IR) systems is to identify 
relevant resources to users’ queries. Most IR systems consider 
scientific literature as resource and return abstracts or snippets 
of relevant literature as results. For some users, like physicians 
at point-of-care, reviewing or going through these results is 
time consuming and not practical. The ideal results for these 
users should be brief and pointed, especially if the users are 
looking for any evidence of relation between entities. For 
example, if a physician is interested in finding any evidence of 
interaction between 2 drugs, the evidence would most likely 
be in a single sentence (or 2 consecutive sentences). There 
have been several attempts in the biomedical domain to 
implement such IR systems which allow users to enter entities 
and type of relation between them and retrieve evidence 
sentences (1–6). The main limitation of these systems is 

focusing on unary or binary relations. They are unable to 
retrieve relevant evidence for biological observations which 
contain more than 2 entities and relations. The organizers of 
BioCreative V introduced a new track, called Biological 
Expression Language (BEL), which addresses this limitation. 
The track had 2 main tasks: 1) extracting BEL statements from 
a given sentence, and 2) identifying relevant sentences for a 
given BEL statement (7,8). BEL is 1 of the main 
representatives of biologic networks. A BEL statement has 
several components: normalized entities, functions, relations, 
namespace, and sequence positions. Table I illustrated 2 
sentences and 3 extracted BEL statements. 

TABLE I.  EXAMPLES OF BEL STATEMENTS 

Sentence 
We showed that HSF1 is phosphorylated by the protein 
kinase RSK2 in vitro. We demonstrate that RSK2 slightly 
represses activation of HSF1 in vivo 

Extracted 
BEL 

1: kin (p (HGNC: RPS6KA3)) increases p (HGNC: HSF1, 
pmod (P)) 
2: kin (p (HGNC: RPS6KA3)) decreases tscript (p 
(HGNC: HSF1)) 

Sentence Exposure of neutrophils to LPS or TNF-α resulted in 
increased levels of the transcriptionally active serine 133-
phosphorylated form of CREB 

Extracted 
BEL 

p (MGI: TNF) increases p (MGI: CREB1, pmod (P, S, 
133)) 

BEL Elements: Relationship, Function, Entity, Namespace, Sequence 
position 

 

BioCreative VI includes BEL track as well, and our team 
participates in the track and tries to improve our previous 
system, called BELTracker (9), and this paper describes our 
new system. One of the limitations of BELTracker is relying 
upon lexical features and heuristic approaches to rank returned 
results. In the new system, we try to address these issues by 
training several classifiers for ranking process and using 
semantic features along the way. Similar to BELTracker, the 
system has 3 main components: indexing, retrieval, and 
ranking components. First, we index all informative sentences 
in MEDLINE abstracts. For a given BEL statement, the 
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system constructs a query using all the elements in the BEL 
statement and retrieves the most relevant sentence from the 
index based on occurrence of the elements. Finally, using 
lexical and semantic features, the system ranks the results and 
returns the top 10 relevant sentences. 

Herein we will discuss our method. Next, we will present 
the results of comparison of the systems and the performance 
of the new system on the test set, which was evaluated 
manually by the organizers. Lastly, we discuss the results and 
limitations of the system. 

II. METHODS 
Our system has 3 main components: indexing, retrieval, 

and ranking.  

A. Indexing Component 
As the system aims to retrieve evidence sentences for BEL 

statements, we only store and index informative sentences from 
MEDLINE abstracts. We call a sentence informative if it 
contains at least 2 biomedical entities and a relationship 
between the entities. To identify these sentences, the system 
relies on Semantic Medline Database (SemMedDB (10)). 
SemMedDB is a relational database and stores all informative 
sentences, from MEDLINE abstracts, which are extracted by a 
rule-based system, as described by Kilicoglu et al (10). The 
indexing component retrieves all the sentences from 
SemMedDB and indexes them in a text search engine, called 
ElasticSearch. Unlike the other 2 components that run for each 
query (BEL statement), this component only runs once and 
prepares the index for the system.  

In the previous system (BELTracker), we indexed abstracts 
from PubMed and full text articles available in PubMed 
Central. In the current index, we do not have full-text article 
sentences because SemMedDB does not cover full-text articles. 

B. Retrieval Component 
For a given BEL statement, the system first retrieves the 

most relevant sentences from the index, which is the 
responsibility of the second component, retrieval. The retrieval 
component identifies all the elements (Table I) in the given 
BEL and uses external and expert-generated resources to find 
their synonyms and then generates an appropriate 
ElasticSearch query. The retrieval component in the system is 
as the same as BELTracker (9), and the only difference is that 
we utilize a newer version of the resources. 

C. Ranking Component 
The retrieval component returns at most 1,000 relevant 

sentences to the given BEL statement. ElasticSearch retrieves 
these sentences based on appearance of the BEL’s elements 
somewhere in the sentence, and it does not consider any 
semantic feature in the retrieval process. It is obvious that 
simply based on co-occurrence of the elements in a sentence, 
we can not conclude existence of relation between the 
elements. The third component of the system, the ranking 
component, investigates existence of relation between the 
elements and ranks the sentences based on their relevancy to 

the BEL statement. In order to rank the evidence sentences, 3 
classifiers classify them based on existence of any relation 
between the elements. Here we describe these 3 classifiers and 
how the ranking component uses the classification results for 
ranking the sentences. 

1. First Classifier: Entity-Entity Classifier 
Instead of using co-occurrence of entities (of the BEL 

statement) in a sentence as the indicator of the existence of a 
relation between them, we propose to train a binary classifier, 
called Entity-Entity (EE) classifier. Each BEL statement (in the 
training and test data) has at least 2 entities and EE classifier is 
calculating the likelihood of relation (regardless of type of 
relation) between the BEL entities in the retrieved sentences by 
the retrieval component. The instances of EE classifier are 
sentences containing at least 2 entities; the positive instances 
showing relation between the entities and the negative 
instances otherwise. One of the challenges to train the EE 
classifier is the training data. The training data provided by the 
organizers contains only positive instances (6,000 sentences 
and 11,000 BEL statements extracted from them). In order to 
generate negative instances, we employ distant supervision 
technique and SemMedDB. There are sentences in 
SemMedDB, which contain 2 biomedical entities with co-exist 
relation type. This relation type indicates that the rule-based 
system was not able to identify any specific type of relation 
between the entities and they only co-occurred in the sentence. 
We utilized these sentences as negative instances for the EE 
classifier. In the training process, the name of entities in the 
sentences are masked and replaced with a general term such as 
Entity. As features for the EE classifier, unigrams, bigrams, 
and word embedding of terms between entities are used. Since 
word embedding contains semantic relationship information, 
adding word embedding to the feature list allows us to move 
beyond lexical features. We trained embedding on PubMed 
abstracts. 

2. Second Classifier: Function-Entity Classifier 
The second classifier aims to calculate the probability of 

relation between functions and entities in the retrieved 
sentences. For example, if the given BEL statement is: 

cat(HGNC:XIAP) decreases cat(HGNC:CASP9) 

there are 2 function-entity relations: cat-XIAP and cat-CASP9. 
This classifier, called Function-Entity (FE) classifier, examines 
existence of both pairs in the retrieved sentences and calculates 
the probability of each relation in the sentences. For each 
function that appeared more than 100 times in the training data, 
we build a binary classifier. 

In order to train FE classifiers, both positive and negative 
instances are available in the training data. Unigrams and 
bigrams of surrounding words of the entity (window 3-5) are 
utilized as the features for FE classifiers. Beside lexical 
features, we evaluated using word embedding, dependency-
based word embedding (11), and abstract meaning 
representation (AMR) embedding (12) as other features for FE 
classifiers. In the following sentence, we illustrate how we 
generate dependency contexts to train dependency-based word 
embedding. A similar approach was used to generate AMR  
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embedding from AMR graphs shown in Wang et al (12). 
Consider this sentence:   

“RapGEF activity is less potent than that associated with 
CalDAG-GEFI.” 

We generate dependency tree for the sentence(Figure I). 
Then for each term, we produce dependency contexts for all 
incoming and outgoing edges. Dependency context for each 
edge is  a combination of governor of edge, direction of edge 
(inv for incoming edges), and the term on the other side of 
edge. Table II contains dependency contexts for first 3 terms in 
the sentence. 

TABLE II.  DEPENDENCY CONTEXTS 

 
Terms 

RasGRP2 Also Catalyzes 

Dependency 
Contexts 

1)nsubj_i
nv_cataly
zes 1)advmod_in

v_catalyzes 

1)nsubj_RasGPR2 
2)advmod_also 
3)conj_potent 
4)cc_but 
5)dobj_exchange 

 

3. Third Classifier: Relation Classifier 
There are 2 types of relationship in the training data: 

increase or decrease. We train another binary classifier to 
categorize the retrieved sentences based on type of 
relationship. The training data contains both positive and 
negative instances for this classifier. More details about these 
classifiers, such as feature list, are explained in our previous 
work (9). 

4. Final score calculation 
After obtaining probabilities (from the classifiers) for each 

retrieved sentence, we aggregate the results and calculate a 
score for each sentence. This score is used for ranking the 
sentences and selecting top relevant evidence sentences. The 
score is calculated as follows: 

Scoresentence = WEE * PEE + WFE * PFE + Wrelation * Prelation 

P represent the probability produced by the classifiers and W 
indicate the weights assigned to each classifier. As we do not 
have appropriate data to learn each classifier’s weight, we 
assign weights to each classifier based on importance of each 
element and training data of the classifiers. The weights are: 
WEE = 0.4, WFE = 0.5, and Wrelation = 0.1. The FE classifier has 

the highest weight because the data used to train this classifier 
has less noise compared to the EE classifier. The relation 
classifier has a low weight, because we observe that rarely 2 
sentences contain all elements of a BEL statement but convey 
2 different relationship types. Meaning, if entities and 
functions of a given BEL statement appear in a sentence, most 
likely the sentence has the relationship type mentioned in the 
BEL statement. 

III. RESULTS AND DISCUSSION 
Using the test set of BioCreative V, we compared mean 

average precision (MAP) of new and previous systems. Table 
III shows MAP of the systems and 3 different scenarios (worst, 
random, best) (scenarios and criteria are described in (9)).  

TABLE III.  COMPARING MAP OF BOTH SYSTEMS AND 3 SCENARIOS 

Criteria 
Systems and scenarios 

Worst Random Previous 
System 

New System Best 

Full 31.7  46.5  49.0  56.96 74.2  
Relaxed 45.9  58.4  62.1  65.05 80.4  
Context 55.2  65.7  68.9  73.15 83.5  

 

The results in Table III show the new system obtains higher 
MAP compared to the previous system; however, there is still a 
lot of room for improvement (comparing to the best possible 
MAP for BioCreative V test set). Unfortunately, we are not 
able to compare precision of the systems, because the 
evaluation should be done by domain expert, who we do not 
have access to.  

TABLE IV.  PRECISION OF EACH RUN 

Systems 
Criteria 

Full Partial 
Baseline  30.6 45.8 

Using the classifiers for ranking 31.6 50.2 

 

For BioCreative VI, the organizers provided 100 BEL 
statements as a test set and asked the participants to return up 
to 5 relevant evidence  sentences for each BEL statement. We 
submitted 2 sets of results. In the first run (baseline), we ranked 
the sentences based on ElasticSearch score (in fact, we did not 

Figure I: Dependency tree for this sentence:  
“RasGRP2 also catalyzes nucleotide exchange on Rap1, but this RapGEF activity is less potent than that associated with CalDAG-GEFI” PMID:10918068 

76



engage the ranking component). In the second run, the 
sentences are ranked using the ranking component. Table IV 
shows precision of each run for full and partial criteria. The 
results show that semantic features can improve the 
performance of the system. Using semantic features, the 
system gained 1% and 5% in precision for full and partial 
criteria, respectively. 

There are several limitations in this work. The main 
limitation is the absence of manually generated training data 
for the classifiers. The classifiers are training by the dataset 
which the entities are not annotated manually (keyword search 
is used to detect and annotate the entities). Using the classifiers 
is the novelty of this work, but lack of having comprehensive 
and clean training data forced us to simplify the relations in 
BEL statements. For example, EE classifiers do not consider 
relations between more than 2 entities (which is possible in 
nested BEL statements). As mentioned before, the system is 
only search sentences in PubMed abstracts, because 
SemMedDB does not cover full text articles. This leads to 
another limitation that the system misses evidence sentences 
which are not in the abstracts.  

In the future, we will focus our work on generating cleaner 
training data for the classifiers and adding sentences from full-
text articles available in PubMed Central to the index.     

IV. CONCLUSION 
As a participant in BEL track of BioCreative VI, we 

implemented an information retrieval system to retrieve 
evidence sentences for BEL statements. Compared to our 
previous system, BELTracker, we tried to use semantic 
features such as: word embedding, dependency-word 
embedding, and AMR embedding in the ranking process. The 
results showed that these semantic features can improve 
performance.  
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Abstract—We implemented a hierarchical sequence labeling 
system for BioCreative VI Track 3 BEL Task 1—extract BEL 
statements from sentences with or without gold entity 
annotations. Different from previous systems for BEL task, we 
mapped sentence-level BEL statements in the BCV 2015 training 
corpus to the corresponding text segments, thus generating  
hierarchically tagged training sentences. A hierarchical sequence 
labeling model was afterwards induced from the training 
sentences and applied to the test sentences in order to construct 
the BEL statements. The system achieved an overall F-measure 
of  22.66% and  10.67% respectively for the test sentences with or 
without gold entity annotation. The potential of our system is 
that many advanced machine learning methods can be adopted 
in the future to further enhance the BEL extraction system. 

Keywords—Biological Expression Language; Dependency 
Parsing; Alignment Algorithm; Hierarchical Sequence Labeling 

I. INTRODUCTION 
Automatic extraction of biological network information 

involving proteins, drugs and diseases from biomedical 
literature is a promising yet demanding task in biomedical text 
mining. BioCreative VI track 3 task 1 provides a benchmark 
platform to test various techniques of extracting causal 
relationships represented in Biological Expression Language 
(BEL)[1]. Specifically, BEL statements are required to be 
constructed from sentences in scientific literature. 

In the training corpus of BEL track task 1, one BEL 
statement is annotated corresponding to one sentence or 
multiple continuous sentences, which means the tags for 
functions and relationships in a BEL statement cannot be 
obviously mapped to text segments, therefore training a 
machine learning model directly from the training sentences 
and applying it to the test sentences become infeasible. 
Therefore, previous studies in the BEL task either adopt rule-
based methods[2] or apply event extraction/semantic role 
labeling models induced from other training sets[3] and then 
transform event/predicate-argument structures to BEL 
statements. One main drawback of these methods is that the 
training corpus of BC5 BEL task, which contains roughly 6K 
informative sentences, is essentially unexplored. 

We propose an approach to directly use the BEL training 
corpus to induce a machine learning model and then apply the 
model to predicting the test corpus. The main idea is to map a 
sentence-level BEL statement to the corresponding sentence, 
i.e., label the text segments with hierarchical tags 
corresponding to entities, functions and relationships in the 
BEL statement using an alignment algorithm. After that, 

sequence labeling models are trained from the tagged sentences 
and applied to the test sentences in order to reconstruct the 
BEL statements. 

II. SYSTEM DESCRIPTION AND METHODS 

A. System Framework 
Our pipeline system consists of five components: 

preprocessing, named entity recognition and mapping, parallel 
corpus construction, training corpus generation and model 
training/testing. Figure 1 illustrates the framework of the 
system. 

During preprocessing, training sentences are tokenized and 
BEL statements are normalized. Then, biomedical entities in 
the training sentences are identified and mapped to the ones in 
the BEL statements. Next, a parallel corpus is generated 
between simplified sentences and corresponding BEL 
statements. A word alignment tool is then applied to the 
parallel corpus to obtain alignments between words and BEL 
nodes, from which training examples are generated. Finally,  
hierarchical sequence labeling models are trained to predict the 
test sentences and the results are converted to BEL statements. 

Training Corpus Preprocessing

Sentence Preprocessing

BEL Statement 
Preprocessing

NER and Mapping

Parallel Corpus Construction

Named Entity

Source Sentence
Construction

Training Corpus Generation

Word Alignment

Hierarchically Tagged 
Corpus Generation

 Hierarchically Tagged 
Corpus

Target Sequence
Construction 

NER and Mapping

Training and Testing

Model Training

Model Testing

BEL Statement

 

Fig. 1. Framework of the system 

* The corresponding author, email: qianlonghua@suda.edu.cn. This 
research is supported by the National Natural Science Foundation of China 
[Grant No. 61331011, 61373096 and 61673290]. 
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B. Preprocessing 
Preprocessing the training corpus includes two steps. First, 

we tokenize the sentences using a limited yet effective way. 
The tokenization here is mainly aimed to facilitate the 
dictionary-based entity search mentioned in the next subsection. 
we follow the intuition that a comma followed by a space 
usually means the end of the sentence, we perform special 
processing for the hyphens in the sentences. The hyphen in a 
composite noun will be tokenized if the noun ends with “ed” or 
“ing”, because the past participles and gerunds included in the 
noun are usually associated with some kind of relationships in 
scientific literature.  

Then, we normalize the BEL statements by resolving the 
redundancy and inconsistency among them, e.g., there are 
some cases where two identical statements correspond to the 
same sentence and other cases where the same entities are 
involved in two distinct BEL statements. Additionally, in order 
to facilitate the serialization of the BEL statements, we elevate 
the hierarchical level of some protein modification functions 
(including pmod, sub, and trunc etc.) within an entity by 
reorganizing the entity and the parameters of the function as 
the child nodes of the function itself. For example, the BEL 
component “p(HGNC:AKT1, pmod(P, S, 21))” is converted to 
“pmod(p(HGNC:AKT1), P, S, 21)”, thus keeping the functions 
always above the entities in the BEL statement hierarchy. 

C. Named Entity Recognition and Mapping 
In the training corpus, entities are given in a BEL statement, 

but their positions in the sentences are unknown. We adopted 
three steps in order to maximize the entity recall rate. 

 NER: first, three NER tools are used to identify 
biomedical entities, i.e., GNormplus[4] for gene and 
protein recognition, tmChem[5] for chemical 
recognition and DNorm[6] for disease recognition. In 
addition, these tools also link recognized entities to the 
corresponding entity databases. GNormplus links genes 
and proteins to Entrez[7], tmChem links chemicals to 
MESH[8] and CHEBI[9], and DNorm links diseases to 
MESH and OMIM[10]. 

 Mapping: entity identifiers in the BEL statement, 
however, are not always the same as the ones 
recognized by the NER tools, so the second step is to 
map the latter into the former. Protein ids are consistent 
across Entrez, HUGO and MGI, so no conversion is 
needed. Recognized chemical ids are converted to 
CHEBI ids in terms of their normalized names. 
Recognized disease ids are discarded if they are linked 
to OMIM since conversion from OMIM to MESH often 
leads to loss of information.  

 Dictionary search: although the three tools achieve the 
state-of-the-art performance in recognizing biomedical 
entities, there are still a number of entities in the BEL 
statement unrecognized, particularly for biological 
processes. Therefore, we finally performed a dictionary-
based entity search for the remaining entities in the 
BEL statement. The dictionary consists of symbols and 
synonyms from five entity lists provided by the 

organizer, i.e., MGI, HUGO, CHEBI, MESHD and 
GOBP. The matching is based on edit distance and the 
word sequence with minimal distance to the dictionary 
items is recognized as the correct one. 

For the test corpus in stage 1, the basic steps are similar to 
the above, and the difference lies in in the step of dictionary 
search. Here, the search is based on exact matching. We do not 
use a distance threshold to cut off the partially matched 
potential entities since the hard-to-set threshold always brings 
false positives to the system. 

D. Parallel Corpus Construction 
 In order to obtain the alignments between entities, functions 
and relationships in the BEL statement and the words in the 
sentence, we recast this problem as the word alignment 
problem between the source language (text sentence) and the 
target language (serial representation of the BEL statement). 
The process includes four stages: BEL tree generation, BEL 
tree unification, BEL tree serialization, and sentence 
simplification: 

 BEL tree generation: in order to serialize BEL 
statements, they are first converted into tree structure. 
The aforementioned preprocessing of BEL statements 
can ensure the success of this conversion. For a BEL 
statement, the relation is taken as the tree root, and then 
the relation’s left/right arguments are converted in their 
original order into the children of the tree root. This 
process can be proceeded in a recursive way until a tree 
is finally generated. For example, BEL statement 
“a(CHEBI:castanospermine) decreases complex 
(p(MGI:Asgr2),p(MGI:Pdia3))” can be converted to 
BEL tree “(decreases (a CHEBI:castanospermine) 
(complex (p MGI:Asgr2) (p MGI:Pdia3)))” in the LISP 
form. 

 BEL tree unification: one sentence may correspond to 
multiple BEL trees while one tree may also correspond 
to multiple sentences. Since BEL statements across 
multiple sentences are extremely difficult to extract, we 
focus our attention to statements within one sentence. 
Multiple trees with coordination or independent 
relationships are unified by inserting an additional node 
“or” to produce a single tree in order to align with the 
sentence. For example, two BEL trees “(decreases (p 
HGNC:FOXP3) (sec (p HGNC:IL8)))” and “(decreases 
(p HGNC:FOXP3) (sec (p HGNC:IL6)))” can be 
unified into “(decreases (p HGNC:FOXP3) (sec (or (p 
HGNC:IL8) (p HGNC:IL6))))”.  

 BEL tree serialization: with the unified BEL tree at 
hand, it can be easily transformed into a sequence of 
nodes via preorder traversal. For example, the above 
tree “(decreases (a CHEBI:castanospermine) (complex 
(p MGI:Asgr2) (p MGI:Pdia3)))”  is serialized as the 
node sequence “decreases@2 CHEM1 complex@2  
GENE1 GENE2” using the serialization scheme[11], 
where the sign “@n” following function or relation 
nodes mean those nodes have n children. This number 
is used to reconstruct the tree structure from the node 
sequence without ambiguity. Here entity names are 
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replaced with placeholders consisting of entity type 
name plus the order number of the entity in that type. 

 Sentence simplification: essentially the BEL statement  
can be regarded as a kind of semantic representation of 
sentence. Direct alignment between the whole sentence 
and the BEL tree may produce many unaligned words, 
therefore, a dependency-based simplification scheme is 
adopted to simplify the.  Stanford parser[12] is used to 
parse the sentence into a dependency tree and then the 
words in the minimal subtree containing all the entities 
in the BEL statement are rendered as the simplified 
sentence according to their original order in the whole 
sentence. For example, the sentence corresponding to 
the above tree, “Preincubation with a low concentration 
(15 microg/ml) of the glucosidase inhibitor 
castanospermine prevented the association of H2a to 
ERp57 but not to calnexin” (PubMed ID: 14978212) 
can be simplified to “Preincubation with CHEM1 
prevented association of GENE1 to GENE2”, which 
conveys concisely the meaning of the BEL statement. 
Also, the entities are replaced with placeholders in the 
same way as for BEL tree serialization. 

E. Training Corpus Generation 
Generating training corpus from the aforementioned 

parallel corpus follows two steps: word alignment and 
hierarchical tag generation: 

 Word alignment: with the simplified sentence as the 
source language and the serialized BEL tree node 
sequence as the target language, their alignment can be 
readily obtained via GIZA++[13], which is a statistical 
machine translation toolkit that is used to train IBM 
Models 1-5 and an HMM word alignment model. The 
only problem is that in order to ensure that entities in 
the sentence be aligned to the same entities in the BEL 
node sequence, many pseudo-parallel sentences like 
“GENE1→ GENE1” are augmented to the parallel 
corpus. For example, the alignment result of the above 
node sequence and the simplified sentence can be 
represented as “Preincubation/ with/ CHEM1/CHEM1 
prevented/decreases@2 association/complex@2 of/  
GENE1/GENE1 to/ GENE2/GENE2”, where in a 
aligned word pair the left one comes from the sentence 
and the right one comes from the node sequence. It 
occurs that some words in the sentence cannot be 
aligned to any node in the sequence. 

 Hierarchical tag generation: based on the alignment 
result between the nodes in the BEL statement and the 
words in the sentence, a bottom-up labeling approach is 
used to annotate the sentence with tags corresponding to 
BEL nodes layer by layer. The lowest level is for entity 
and other parameters (such as P, S, or numbers for 
pmod), the immediate upper level (function nodes) is 
annotated for the text segment spanning between the 
word aligned to the function node and the words 
covered by the function node. Finally the top node (the 
relationship node) is reached and its text span is 
determined. Take the above sentence as an example, it 

is annotated as “[[CHEM1]CHEM prevented [association 
of [GENE1]GENE and [GENE2]GENE]complex]decreases”, 
where a subscript denotes the node type corresponding 
to the text span enclosed by the pair of brackets. 

It should be noted that when dealing with the test sentences, 
the gold entities are not given in stage 1,  and we do not know 
how many of automatically recognized entities are involved in 
the potential BEL statements, hence we regard the whole 
sentences as the test examples. In stage 2, however, the entities 
along with their positions in the sentences are given in advance, 
so we can derive the simplified test sentences from the original 
sentences as the test examples using the same method as for the 
training examples. 

F. Training and Testing 
We use the open source CRF package--CRF++[14] to train 

hierarchical sequence labeling models from the training 
examples. The first-level sequence labeling model is trained 
on words and entities. When training the k-th level model, we 
treat the lower k-1 layers as features. In this recursive way we 
can finally reach the top-level model. If the maximum model 
level in the training examples is denoted as L(4), then we need 
to train 4 models. 

In every level of training models, the “BIESO” (begin, in, 
end, single and out) labeling scheme is used to denote token 
labels. In traditional sequence labeling-based NER, this 
scheme usually exhibits best performance. The features used 
in k-th level CRF model include context words and labels in 
all the lower k-1 levels with window size 5. 

In testing stage, we use the L models trained above to label 
the test examples in the same order as when we train them. 
Differently from training, when labeling the k-th layer, the 
labels automatically recognized in the lower k-1 layers are 
treated as features. 

After labeling all the layers, we convert the labeling results 
into BEL statements. This process is basically the reverse one 
of training example generation and can be divided into three 
steps: 

 BEL tree generation: convert the hierarchical labeling 
result of the test sentence to the BEL tree structure. 

 Unified tree splitting: if there is “or” nodes in the tree, 
separate the tree into multiple subtrees accordingly. 

 BEL statement generation: convert every tree into a 
BEL statement, including normalizing entity type 
names and moving some protein modification functions 
(pmod, sub and trunc etc.) inside the entities.  

III. RESULTS AND DISCUSSION 
We participated in both stage 1 and 2 of the BioCreative VI 

BEL task 1, and three runs were submitted for stage 1, but only 
one run for stage 2. Table 1 reports the BEL extraction 
performance with automatically recognized entities (stage 1) 
and gold entities (stage 2). There is no significant difference 
between different runs for stage 1, so we only present the best 
one. The table shows that our system achieves 10.67% and 
22.66% of F-measures for stage 1 and stage 2 respectively. 

80



TABLE I.  BEL STATEMENT EXTRACTION PERFORMANCE WITH AND 
WITHOUT GOLD ENTITIES 

Generally, the low performance, particularly low recall rate, 
is mainly caused by cascaded errors induced during different 
stages:  

 NER in training: automatically entity recognition from 
the training sentences is far from satisfaction, 
particularly for the biological processes which cannot 
even be called entities in strict sense. Matching these 
processes from a BEL statement into its corresponding 
sentence seems infeasible in some cases. 

 Dependency parsing: although we trained Stanford 
parser using GENIA corpus specifically designed for 
biomedical domain, there is still a lot of errors for long 
sentences in the scientific literature, particularly for 
coordination conjunctions and PP attachments. 

 BEL tree unification: when we unify multiple trees 
corresponding to a single sentence, we only consider 
coordination and independence relationships among 
trees while ignoring other relationships. This will 
reduce the number of the training examples by ~20%. 

 Word alignment: while we finally generate 2,900 
parallel sentences for word alignment, this corpus size 
is still insufficient for a better alignment compared with 
millions of parallel sentences in machine translation. 

 Hierarchical sequence labeling: it is always the case 
that lower-level models can achieve better performance 
than higher models due to fewer training examples for 
the latter. This leads to the decrease in the overall 
performance. 

Stage 1 results: the significant performance difference 
between system with and without gold entities is due to the 
errors induced by the NER module. Particularly, we initially 
introduced an additional rule-based postprocessing step which 
is not mentioned in Subsection B of Section II. The rule 
dictates that if these species mentioned in the abstract 
containing the test sentence are human-related, then all the 
proteins are mapped to the HUGO list, otherwise they are 
mapped to the MGI list. This rule causes many erroneous 
conversions for this test corpus. We have removed the rule for 
the present, however, our official results in stage 1 were 
induced under the rule. 

Stage 2 results: given the gold entities, the performance of 
function extraction is still low, the reason is that it is difficult to 
align keywords denoting functions to the ones in BEL 
statements, either because the keywords are discarded during 
sentence simplification or because there doesn’t exist any 

keywords in the sentence at all. Also, there is a dramatic 
performance decrease (~40%) from relation-secondary level to 
relation level, the reason is that some informative words can 
obviously indicate the type of relationship conveyed in the 
sentence while determining the scope of the relationship is a 
relatively challenging task, particularly when the entities are 
far away from the relation-informative words. 

IV. CONCLUSION 
We have implemented a hierarchical sequence labeling 

system for BEL statement extraction. The main advantage is 
that we can make use of the training corpus to induce the 
sequence labeler and then apply it to the test corpus. There are 
a number of ways to enhance our extraction system in the 
future, e.g., improve the NER module to recall more entities in 
the training/test corpus, adjust the BEL tree unification strategy 
to include more training examples and augment the parallel 
corpus from other resources etc. 
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Level NER-induced Entities Gold Entities 
P(%) R(%) F1(%) P(%) R(%) F1(%) 

Term 81.01 41.97 55.29 98.83 82.95 90.20 
Function-Secondary 75.00 4.00 7.59 58.82 13.33 21.74 
Function 75.00 3.16 6.06 38.89 7.37 12.39 
Relation-Secondary 84.00 36.68 51.06 96.61 74.67 84.24 
Relation 38.64 14.91 21.52 52.94 35.53 42.52 
Statement 22.22 7.02 10.67 32.00 17.54 22.66 
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Abstract— The Precision Medicine Track in BioCreative VI 
aims to bring together the biomedical text mining community and 
the biocuration community for a novel challenge composed of two 
tasks: 1) Triage task focused on identifying scientific articles that 
describe protein-protein interactions (PPI) being disrupted or 
significantly affected by the presence of genetic mutations, and 2) 
Relation extraction task focused on extracting the affected protein 
pairs. This is a novel challenge for the BioNLP community and, to 
assist system developers and the assessment of such an endeavor, 
we created the first large-scale manually annotated corpus of 
scientific articles that describe such information relevant to 
precision medicine initiative. The training corpus contained 4,082 
articles annotated for triage, of which 598 PubMed articles were 
annotated for relations. The testing corpus contained 1,464 
PubMed articles annotated for both triage and relations. Ten 
teams worldwide participated in the triage task and sent in results 
for 22 distinct text mining models. Six teams participated in the 
relation extraction task and sent in results from 14 different text 
mining systems. When comparing the text mining system 
predictions with human annotations, for the triage task, the best 
F-score was 69.5%, the best precision was 61.6%, the best recall
was 97.9% and the best average precision was 72.8%. For the
relation extraction task, when we account for similar gene
identifiers with HomoloGene database, the best F-score was
37.3%, the best precision was 45.4%, and the best recall was
53.9%.  Given the level of participation and team results we find
our task to be successful in engaging the text-mining research
community, producing a first-of-its-kind, large, manually
annotated corpus of scientific articles relevant for precision
medicine, and providing the first results of automatically
identifying PubMed articles that describe PPI affected by
mutations, and extracting the affected relations.

Keywords—precision medicine, corpus annotation, relation 
extraction, protein-protein interaction, mutation, information 
extraction. 

I. INTRODUCTION 

The goal of the BioCreative challenges (1-8) has been to 
propose tasks that will bring together text mining community 
and biology researchers in order to foster the development of 
systems that can help with biologically relevant problems. One 
such current research area is precision medicine, an emerging 
approach for disease treatment and prevention that takes into 
account variability in genes, environment and lifestyle for each 

person. Because the intricate network of interactions between 
genes contributes to control cellular homeostasis, differences in 
interaction stability, although not resulting in any obvious 
phenotype, can contribute to the development of diseases in 
specific contexts. Annotating how gene mutations or variations 
affect the global behavior of the cellular interaction provides 
additional support to precision medicine efforts.  

Such information can be found in the unstructured text 
within the scientific articles indexed in PubMed (9-14). 
Specialized curation databases, such as IntAct and BioGRID 
have been collecting and cataloging knowledge focused on 
particular areas of biology so that they may enable insights into 
conserved networks and pathways that are relevant to human 
health. Expanding their curation efforts into capturing specific 
sequence-variant-depended molecular interactions may open up 
new possibilities and enable insights that pertain to precision 
medicine. To date, no tool is available to facilitate this kind of 
specific retrieval. The goal of our track is to foster the 
development of text mining algorithms that specialize in 
scanning the published biomedical literature and are capable to 
extract the reported discoveries of protein interactions changing 
in nature due to the presence of genomic variations or artificial 
mutations.  

II. THE PRECISION MEDICINE TRACK

The Precision Medicine Track in BioCreative VI is a 
community challenge that addresses this problem in the form of 
two tasks:  

• Document Triage: Identification of relevant PubMed
citations describing mutations affecting protein-protein
interactions (PPI).

• Relation Extraction: Extraction of experimentally
verified PPI pairs affected by the presence of a genetic
mutation.

A. Training and testing datasets
Our first step was the curation of a manually annotated

corpus that could be used for the training, tuning and 
development of text mining algorithms for such a specialized 
task. Our research on creating and developing our training 
corpus (15) showed that biomedical literature is ripe with 
precision medicine relevant information.  
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TABLE 1 STATISTICS OF THE PRECISION MEDICINE TRACK DATASET 

Dataset Articles Positive Negative Articles with 
relations 

Number of 
relations 

Training 4,082 1,729 2,353 597 752 

Testing 1,464 730 734 688 930 

We verified this by retrieving articles that were publicly 
available in expert curated databases, and re-evaluated them for 
precision medicine purposes. These articles were rich in 
information of molecular interactions that differ based on the 
presence of a specific genetic variant, information which could 
be translated to clinical practice. Moreover, we retrieved articles 
via state-of-the-art test mining tools that described PPI and 
contained identifiable sequence variants. Manual curation, 
again, verified their relevance. 

As a result, we released a set 4,082 PubMed abstracts as the 
Precision Medicine that come from two different sources: 
curated databases 1  and text mining tool selection. PubMed 
articles selected from both sources had slightly different, but 
useful characteristics and as such, novel text mining tools need 
to use both sources of information for best application in this 
new domain.  

Each article in the precision medicine training dataset was 
annotated for relevance, and a subset of relevant articles was 
annotated for relation extraction. Each article annotated for 
relation extraction contained the relation annotations for the 
interacting pair of proteins which were affected by mutations 
identified via their Entrez Gene2 IDs, and in addition, contained 
the mention annotations of the interacting genes in the PubMed 
abstract.  

As track participants worked on their text mining models, 
five BioGRID 3  (16) curators worked on annotating the test 
dataset. As a result of this effort, 1,464 PubMed articles were 
annotated by at least two curators for relevance and the 
interacting genes affected by the presence of a mutation were 
recorded as interacting pairs in 734 articles. Similarly, to the 
training set, the relations were described as a pair of Entrez Gene 
identifiers. Statistics of the dataset are shown in Table 1. 

Finally, track participant teams were provided with the raw 
text of the 1,464 PubMed articles4 in the test dataset and were 
asked to return:  

• A PubMed article label (relevant/not relevant) for
the triage task.

• Pairs of Entrez Gene identifiers, for the relation
extraction task.

Each task participant could contribute up to three runs per 
task and this participation is shown in Table 2. 

1 https://www.ebi.ac.uk/intact/ 
2 https://www.ncbi.nlm.nih.gov/gene/ 
3 https://thebiogrid.org/ 

TABLE 2 PARTICIPATING TEAMS AND THEIR SUBMISSIONS 

Team Number Triage Task Relation Task 

374 3 

375 3 3 

379 1 2 

391 3 

405 1 2 

414 3 

418 3 

419 3 

420 1 3 

421 3 

433 1 1 

Total 10 teams/22 runs 6 teams/14 runs 

B. Evaluation
For the final evaluation of the participating runs, text mining

predictions were compared to manually annotated data using the 
standard evaluation procedures: precision, recall, F-score, and 
average precision. To assist the participants, the organizers set 
up a group e-mail list where information about the task was 
posted periodically and several discussions were held.  

Organizers also set up a PubTator5 (17) view, so that track 
participants could visualize the training data annotations. For the 
evaluation phase, participant teams were provided with the 
evaluation scripts to use on their results. The evaluation scripts 
also served as a self-check to ensure that the data was submitted 
in the correct format for evaluation. Results, in the forms of 
system output in BioC (18) format (XML/JSON) and a short 
paragraph description of the applied method, were submitted via 
e-mail. For each Results Run, organizers asked participants to
submit confidence scores for their predictions, which facilitated
the ranking results.

For the Relation extraction task, organizers employed a two-
level evaluation:  

41,500 PubMed articles were initially released as the test set. However, 36 
articles that were difficult to assign labels were later removed, and not used 
for official evaluation. 
5 https://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/PubTator/ 
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• Exact Match: all system predicted relations were 
checked against the manual annotated ones for 
correctness. A PPI relation is not defined as directional 
in this annotation format, so the order of genes is not 
considered when checking for exact match.  

• HomoloGene 6  Match: All gene identifiers in the 
predicted relations and manually annotated data were 
mapped to common identifiers representing common 
HomoloGene classes, then all predicted relations were 
checked for correctness. If the predicted Gene ID and the 
annotated Gene ID were homologous genes, they were 
counted as a match.  

C. Benchmarking systems 
For comparison purposes, we developed a baseline method 

for both Triage and Relation Extraction Tasks. For the Triage 
Task, we designed a baseline SVM classifier using unigram and 
bigram features from titles and abstracts of the training corpus 
(15). For the Relation Extraction Task, we implemented a simple 
co-occurrence baseline method. The Gene entities in the 
PubMed articles were automatically recognized using our in-
house tools (19-23), and a relation was predicted if two gene 

entities were found in the same sentence, regardless of whether 
a sequence variant had been predicted for that article or not. 

III. RESULTS 
Eleven teams participated in the Precision Medicine Track: 

ten teams in the document triage task, and six teams in the 
relation extraction task. Since each team could submit up to 3 
runs (i.e. 3 different versions of their tool, or contribute three 
different methods) for each task, a total of 36 runs were 
submitted. Participants were from Australia, China, Turkey, 
Greece, Germany, Portugal and the United States.   

For the triage task, we received results of 22 systems (shown 
in Table 3), 16 of which outperformed our baseline in F-score, 
13 on average precision, 2 on precision, and 17 on recall. The 
best F-score is 69.5%, the best average precision is 72.8%, the 
best precision is 61.6% and the best recall is 98.0%. The average 
F-score, average precision, precision and recall were 64.1%, 
63.5%, 56.6% and 75.4% respectively.  

 
 

TABLE 3. TRAGE TASK RESULTS FOR ALL SUBMISSIONS 

Team Number Submission Avg Prec Precision Recall F1 Data Format 
 Run 1 0.6598 0.5916 0.8315 0.6913 JSON 

374 Run 2 0.6654 0.5747 0.8699 0.6921 JSON 
 Run 3 0.6930 0.6092 0.7836 0.6854 JSON 
 Run 1 0.6808 0.5821 0.7575 0.6583 JSON 

375 Run 2 0.6688 0.5946 0.6973 0.6419 JSON 
 Run 3 0.6750 0.5416 0.8822 0.6712 JSON 

379 Run 1 0.4885 0.4622 0.3438 0.3943 XML 

405 Run 1 0.5877 0.5478 0.5575 0.5526 JSON 
 Run 1 0.4886 0.4792 0.5849 0.5268 XML 

414 Run 2 0.5055 0.4957 0.7178 0.5865 XML 
 Run 3 0.5098 0.5075 0.9795 0.6685 XML 
 Run 1 0.6973 0.6164 0.7616 0.6814 XML 

418 Run 2 0.7083 0.5988 0.8096 0.6884 XML 
 Run 3 0.7195 0.6026 0.8205 0.6949 XML 
 Run 1 0.5742 0.5718 0.8068 0.6693 XML 

419 Run 2 0.6010 0.5905 0.5986 0.5946 XML 
 Run 3 0.6330 0.5989 0.6096 0.6042 XML 

420 Run 1 0.6439 0.5473 0.8712 0.6723 JSON 
 Run 1 0.6687 0.5890 0.8068 0.6809 XML 

421 Run 2 0.7284 0.6112 0.7945 0.6909 XML 
 Run 3 0.7103 0.5882 0.8219 0.6857 XML 

433 Run 1 0.6617 0.5482 0.8877 0.6778 JSON 

BASELINE - 0.6500 0.6097 0.6356 0.6224 - 

6 https://www.ncbi.nlm.nih.gov/homologene 
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TABLE 4. RELATIONS TASK HOMOLOGENE RESULTS FOR ALL SUBMISSIONS  

System Submission Precision Recall F1 Data Format 
 Run 1 0.3761 0.3527 0.3640 XML 

375 Run 2 0.3761 0.3527 0.3640 XML 
 Run 3 0.4252 0.3301 0.3717 XML 

379 Run 1 0.3057 0.0753 0.1208 XML 
 Run 2 0.1135 0.5387 0.1875 XML 
 Run 1 0.2360 0.1989 0.2159 XML 

391 Run 2 0.2343 0.1882 0.2087 XML 
 Run 3 0.2378 0.1366 0.1735 XML 

405 Run 1 0.0767 0.0247 0.0374 JSON 
 Run 2 0.1061 0.0376 0.0556 JSON 
 Run 1 0.4321 0.2978 0.3526 JSON 

420 Run 2 0.4544 0.3161 0.3729 JSON 
 Run 3 0.4286 0.3097 0.3596 JSON 

433 Run 1 0.0803 0.2742 0.1242 JSON 

BASELINE - 0.1460 0.5215 0.2282  

 

 

For the relations task, we received results from 14 systems, 
8 of which outperformed the baseline based on the F-score, 10 
on precision, and 1 on recall, when evaluating on Exact Match.  

The HomoloGene evaluation showed a slightly different 
result: 6 systems outperformed the baseline on F-score, 10 on 
precision, and only one on recall. The average F-score, precision 
and recall for the HomoloGene evaluation were 23.6%, 27.7% 
and 24.5%, respectively. The best F-score, precision and recall 
were 37.3%, 45.4% and 53.9%, respectively. These results are 
shown in Table 4.  

IV. DISCUSSION AND CONCLUSIONS 
Given the level of participation and team results we conclude 

that the precision medicine track of BioCreative VI was run 
successfully and is expected to make significant contributions in 
this novel challenge of mining protein-protein interactions 
affected by mutations from scientific literature. The training and 
testing data produced during this effort is novel and substantial 
in size. Collectively, it consists of 5,546 PubMed articles 
manually annotated for precision medicine relevance. In 
addition, the corpus annotations include both text spans and 
normalized concept identifiers for each of the interacting genes 
in the mutation-affected PPI relations. We believe that such data 
will be invaluable in fostering the development of text-mining 
techniques that increase both precision and recall for such tasks. 
Another important characteristic is that annotated relations in 
this corpus are at the abstract level because the majority of such 
relations are expressed across sentence boundaries.  

Participating teams developed systems that specialized in 
predicting PubMed articles that contain precision-medicine 
relevant information. Curators at molecular interaction 
databases will benefit from these text mining systems to select 

with high accuracy articles relevant for curation. The top 
achieved recall was 98% and the top achieved precision was 
62%. And this is only a first step in this direction. In the future, 
we plan to build a system that can intelligently merge the results 
of all individual system submissions with better accuracy.  

The relation extraction task on the other hand, showed a 
somewhat low accuracy. It is to be recognized that this is a very 
difficult task, as we also showed on the corpus description paper. 
And, we believe that the accuracy of systems would improve if 
they were to extract such information from full text. Relation 
extraction at the abstract level is dependent on accurate entity 
recognition and correct normalization, as well as the ability to 
recognize a relation that spans over sentence boundaries, 
therefore necessitating a system that goes towards abstract-level 
understanding.  

This community effort was designed to foster development 
of text mining tools that while mining scientific literature could 
collect information of significant practical value in the clinical 
practice of precision medicine. The success of the precision 
medicine endeavor depends on the development of 
comprehensive knowledge base systems that integrate genomic 
and sequence variation data, information that lead to tumors and 
other possible genetic disorders, with clinical response data and 
outcomes information, as resources for scientists, health care 
professionals and patients. Leveraging the information already 
available in scientific literature, and developing automatic text 
mining methods that facilitate the job of database curators to be 
able to find and curate such valuable information, is the first step 
towards this goal.  
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Abstract— The Precision Medicine Track in BioCreative VI 
aims to bring together the biomedical text mining community for 
a novel challenge: mining the biomedical literature in search of 
information of value to precision medicine initiatives such as 
mutations disrupting/affecting protein-protein interactions (PPI). 
The Precision Medicine track is organized into two tasks: 1) the 
triage task – focusing on selection of relevant PubMed articles 
describing PPI affected by mutations, and 2) the relation 
extraction task – focusing on extracting the interacting gene pairs 
for the interactions that are affected by the presence of a mutation.   

 To support this track with an effective training dataset and 
limited curator time, the track organizers used a two-staged 
approach. First, for the creation of the training dataset, the 
organizers and curators worked on leveraging the information 
from expertly curated and publicly available PPI databases, 
augmenting it with a set of articles selected via publicly available 
state-of-the-art text mining tools. 4,082 PubMed articles were thus 
carefully reviewed, annotated and released for system 
development. They contained 1,729 articles labelled positive for 
curation, out of which, 597 contained 752 curated relations. The 
second stage pertained to the creation of the testing dataset, which 
consisted of 1,464 PubMed articles, previously not curated in any 
of the known PPI databases. These articles were highly likely to 
describe PPI and sequence variants according to several text 
mining tests. Each article in the testing dataset was annotated by 
at least two curators, for relevance relation extraction. Five 
BioGRID annotators participated and reviewed more than 600 
articles each. The testing set contained 730 articles labelled 
positive for curation, out of which, 688 articles contained 930 
curated relations. We detail here the data collection, manual 
review and annotation process. We give a report on the precision 
medicine track corpus characteristics. This analysis will provide 
useful information to developers and researchers for comparing 
and developing innovative text mining approaches for the 

1https://thebiogrid.org/ 

BioCreative VI challenge and other Precision Medicine related 
applications. 

Keywords—corpus creation, manual annotation, protein-protein 
interaction, mutation, relation extraction, information extraction.  

I. INTRODUCTION  
Biological knowledgebases, such as BioGRID 1 , play an 

increasingly important role in the scientific community due to 
the curated, summarized and computable knowledge extracted 
from the literature by expert curators (1, 2). However, their 
ability to keep up with the growth of biomedical literature is 
under scrutiny (3). BioCreative (4-13) has traditionally aimed to 
bridge the gap between the text mining community and 
biological database curators by fostering development of text 
mining tools that have practical applications in extracting with 
high accuracy biological information from unstructured text.  

Precision medicine2  is the emerging approach of disease-
treatment that revolves around the idea that a treatment plan is 
more effective when it takes into account a patient’s individual 
genetic code and the environment they live in. The practice of 
precision medicine will only be possible with the establishment 
of databases that integrate the information of genes and 
mutations with their corresponding biological function. Such 
knowledgebases will be available for healthcare providers to 
reference in order to understand the clinical implications of each 
patient's genetic makeup. The first step towards this goal calls 
for development of novel text mining tools that can facilitate 
such an intricate curation processes, increasing accuracy, 
coverage, and productivity.  

To date, there are no available text mining tools that facilitate 
the specific retrieval of such information which continues to re-
main buried in the unstructured text within the biomedical 
literature. The goal of the Precision Medicine Track of 

2 https://syndication.nih.gov/multimedia/pmi/infographics/pmi-
infographic.pdf 
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BioCreative VI is to foster the development of text mining 
algorithms that specialize in scanning the published biomedical 
literature and to extract the reported discoveries of protein 
interactions changing in nature due to the presence of genomic 
variations or artificial mutations. To achieve this goal, we 
designed the track as a combination of two text mining tasks:  

• Document Triage: Identification of relevant PubMed 
citations describing mutations affecting protein-protein 
interactions. Figure 1 shows a relevant PubMed article 
for this purpose, and the highlighted sentences signify to 
curators that this article describes experimental evidence 
that the interaction is affected by mutation(s). 

• Relation Extraction: Extraction of experimentally 
verified PPI pairs affected by the presence of a genetic 
mutation 

In order to support this task, we designed and organized an 
annotation effort that produced a novel corpus. This dataset 
contains expert human annotations of PPI affected by mutations, 

as described in the scientific literature. In order to overcome the 
biggest challenge in building specialized corpora, that of limited 
reviewer time, we followed several strategies that allowed us to 
maximize this valuable resource:  

First, we built a training dataset consisting of 4,082 PubMed 
articles, as described in (14). Next, we brought together five 
BioGRID curators who manually annotated 1,500 PubMed 
articles for relevance and interacting pairs of proteins that were 
affected by genetic mutations. Each paper was annotated by at 
least two curators.  

In this manuscript, we describe the process of creating this 
valuable resource, its manual annotation, annotation guidelines, 
and inter-annotator agreement. Moreover, we describe how the 
training and testing datasets complement each other in a rich 
corpus to test and develop automatic methods for predicting 
genetically affected protein-protein interactions.  

 

 
 

 
Figure 1 PubMed article relevant for curation. The abstract describes evidence that a protein pair interaction has been affected by a mutation.  

 
 

II. CORPUS DEVELOPMENT 
The biggest challenge for the organizers of the BioCreative 

VI Precision Medicine Track was the creation of a high-quality 
corpus that would serve as a good resource for building 
automatic algorithms to detect such specialized information.  

A possible source for specific PPI information and their 
related mutations would be the IntAct/Mint database (2), whose 
curators have had a wide scope when curating protein 
interactions. Despite the broad coverage and comprehensive 
curation, such information was not easily retrievable. For this 
reason, first, our curators selected articles from the IntAct/Mint 
database that had mutation annotation, and carefully reviewed 
them and categorized them as relevant/not relevant for the 
precision medicine track. In addition, we used state-of-the-art 
text mining methods to select PubMed articles not found in 
curated databases, that were highly likely to describe protein-
protein interactions as well as to contain sequence variations. As 

a result of this exercise, a set of 4,082 PubMed articles was 
curated and released as training data to BioCreative VI Precision 
Medicine Track participants for system development. We 
described the data repurposing method and text mining triage 
and manual validation methods that were used to develop this 
dataset here (14).  

The testing dataset, was decided that it would contain 
previously not annotated articles, and was annotated by five 
BioGRID curators, with each article being annotated by at least 
two curators. We describe this process below. 

A. Annotation Guidelines  
The corpus annotation started with a simple exercise for 

which every PubMed article was categorized based on these 
questions:  

• Does this article describe experimentally verified 
protein-protein interactions?   
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• Does this article describe a known disease mutation or 
a mutational analysis experiment?  

• Are the database curated PPI pairs for this article 
mentioned in the abstract?  

• Is the PPI affected by the mutation?  

Then, based on the above annotations, articles were carefully 
categorized as 1) Positives – articles specifically describing PPI 
influenced by genetic mutations, or 2) Negatives – a category 
which comprises articles describing both PPIs and genetic 
variation analysis with no inference of relation between them, 
articles containing PPI but no mutations, articles containing 
mutations but no PPI, and articles mentioning neither.  

Another important point of consideration was that the 
information needed to be present in the abstract. Database 
curators always look for curatable information in the full text. 
However, the triage process is often conducted on the article’s 
abstract. Thus, for an article to be labelled positive for curation, 
the title or abstract had to contain a statement of evidence 
describing in no ambiguous terms that the interaction between a 

pair of proteins had been affected by the presence of a genetic 
mutation. The degree of the effect was not annotated.  

For the relation extraction task, the interacting proteins 
needed to be named in the title or abstract, but the name or 
description of the specific sequence variant was not required. 
This degree of specificity is unlikely to be found in the abstract, 
although the information would be present in the full text. Given 
the condition that the interacting pair needed to be named, it is 
possible that an article could be labelled positive for the triage 
task, but not be eligible for the relation extraction task.  

Furthermore, protein-protein interactions could be physical 
interactions, biochemical reactions, self-interactions and/or 
aggregations. Examples of molecular interactions which were 
not considered for the relation extraction task are: protein 
complexes, cell-organelle interactions, and colocalizations. It 
was also possible that an abstract could describe experimentally 
verified PPI, as well as include mutations mentions, but the two 
events were not related. All such articles were labelled negative.  

 

 

 
 

Figure 2 PubTator curation view customized for the BioCreative VI Precision Medicine task. Bioconcepts of interest are: gene names, mutations and species. 
Automatic detection of these concepts can be turned on and off to help curators. 
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Regarding mutations, they could be deletions, point 

mutations and possibly allelic variations. In addition, all 
mentioned mutations were considered, whether disease 
mutations or synthetic ones. Often, the mutation was not 
explicitly mentioned, however if mutational analysis occurred, 
then the article was curated. Finally, article curation was not 
limited to any species.   

B. Annotation Process 
The training data exercise helped collect a set of 4,082 

articles which were annotated and distributed for system 
development. For the testing dataset, we wanted to use PubMed 
articles that had not been annotated before, and also that could 
be relevant to curation interests at BioGRID. Starting with a 
curator-designed comprehensive PubMed query to select 
articles, which returned 1.4 Million articles, we applied several 
text mining filters to be able to rank them according to their 
relevance to the task. Our approach used two well-known 
publicly available text mining tools: PIE the search (15) and 
tmVar (16, 17). PIE the search is a web service that ranks 
PubMed articles based on their probability of describing protein-
protein interactions. This algorithm was the winner of 
BioCreative III ACT competition (5). tmVar is another text 
mining tool that is used to recognize sequence variants in 
PubMed literature.  

Using these methods, we narrowed down the set of 1.5 
Million to 5,000. Given the limited curator time, we randomly 
selected a set of 1,500 PubMed articles, whose PIE score 
distribution matched the distribution of scores of the training set, 
and did two tests of randomly annotating sets of 100 articles to 
estimate the ratio of relevant to non-relevant articles. After all of 
these conditions were satisfied, the set of 1,500 PubMed articles 
was decided upon and the annotation phase of the testing dataset 
was ready to begin.  

All articles in the testing dataset were distributed and 
randomly assigned to pairs of curators for annotation. The 
annotation process took place in three phases:  

• Phase 1. All five curators worked on a set of 20 
articles. They spent one week reading and annotating 
the articles independently, and one week discussing 
their decisions, for both positively labelled articles and 
negatively labelled ones. This was the phase where the 
annotation tool was also adapted to fit curator needs.  

• Phase 2. Two sets of 100 articles were assigned to 
three curators at a time. They worked independently for 
ten days, and then used ten more days to discuss their 
decisions in groups of three. During this phase, the 
rules of relation extraction were refined.  

• Phase 3. The remaining articles, divided into sets of 
100, were randomly assigned to pairs of curators. Each 
pair of curators worked on average for a period of 10 
days to curate each set. When both curators were 
finished with a set, a detailed annotation comparison 
document was generated, and the curators had 
independent meetings to review and come to a 

common agreement. The annotation comparison sheets 
were used for computing the inter-annotator 
agreement. 

Curators and organizers met weekly to discuss the corpus 
annotation issues, tool features and report on the progress.  

C. Annotation Tool 
An annotation portal was built based on PubTator as shown 

in Figure 2. Testing data was distributed among five curators 
who accessed the system through private accounts via this 
system. The system allowed for the organizers to collects multi-
annotations for each article and compute annotation 
comparisons.  

When a curator clicks on an article, they view the screen as 
shown in Figure 2. The tool gives curators the capability to 
benefit from text mining tools that are specialized in 
gene/protein, mutation and species identification (mention and 
normalization). They could easily navigate to the next article, or 
go to PubMed for more information. They could keep notes on 
each article. The title and abstract for each article are displayed 
in one screen, and should the text mining tools be selected, the 
predicted entities are shown highlighted on the screen. In 
addition, the predicted list of entities is listed in a table below 
the abstract. Curators could edit this table to adjust problems. 
They could annotate from scratch, by highlighting the text 
mention of interest and selecting the category appearing above 
the annotation box. Completed annotations could be reviewed, 
deleted and or edited. 

Curators could use the tool to annotate a relation by selecting 
the entities of interest from the list of bioconcepts in the entity 
table and clicking on the relation button. The annotated relation 
then, would get listed in the relations table, shown at the bottom 
of the screen. Relations could also be edited further as needed. 
Annotations could be saved, and also exported or downloaded 
locally.    

D. Inter-annotator Agreement 
We computed the degree of agreement between pairs of 

annotators for every set of 100 PubMed articles that was 
annotated, and then found the average of all sets. For the triage 
task, on average, our annotators were in agreement for 82% of 
the articles. The number of articles to be reviewed for 
classification purposes ranged between 3 and 19 for each set of 
100. For each set, on average 2 or 3 articles were difficult to 
assign a clear label. These were ultimately removed and not used 
for the official evaluation of the Triage task. 

The detailed comparison annotation documents showed that, 
for each set of 100, on average, 41 articles were marked positive, 
42 articles were marked negative and the rest needed to be 
reviewed to resolve any discrepancies. Of the positive articles, 
for a typical set of 100 articles, on average, 23 articles needed to 
be reviewed for the curators to come to a consensus on relation 
extraction.  
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TABLE I.  STATISTICS OF THE PRECISION MEDICINE TRACK DATASET 

Dataset Articles Positive Negative Articles with 
relations 

Number of 
relations 

Training 4,082 1,729 2,353 597 752 

Testing 1,464 730 734 688 930 

Total 5,546 2,459 3,087 1,285 1,682 

 

TABLE II.  TRIAGE TASK RESULTS OF THE BASELINE SYSTEM 

 Avg. Prec. Precision Recall F1 

10-fold CV (training data) 0.7225 0.6891 0.6260 0.6561 

Testing data 0.6500 0.6097 0.6356 0.6224 

 

TABLE III.  RELATION EXTRACTION TASK RESULTS OF THE BASELINE SYSTEM (HOMOLOGENE EVALUATION) 

 Precision Recall F1 

Training data 0.1650 0.4753 0.2449 

Testing data 0.1460 0.5215 0.2282 

 

 

Relations mismatch could be categorized as follows:  

• The two curators had picked the same interacting 
mentions, however, they had normalized them to two 
different GeneIDs. 

• One of the curators had marked additional relations. 

• The two curators had marked different interactions, 
which shared a gene.  

• One of the curators, or both, had specifically marked the 
article for further discussion.     

E. Corpus Characteristics 
As shown in Table 1, the Precision Medicine Track dataset 

is a large dataset of 5,546 PubMed articles, manually labelled 
for triage and relations of PPI affected by mutations. In the 
training dataset, the relations were repurposed from the previous 
PPI annotations in the IntAct/Mint databases. The testing dataset 
was richer in relations, since more curator time was devoted to 
their extraction. As a collection, the Precision Medicine Track 
dataset contains 1,285 articles annotated for relations with 1,682 
total relations.   

F. Benchmark results and corpus use 
A baseline SVM method was designed using unigram and 

bigram features from titles and abstracts of the training corpus. 
Results are detailed in Table 2. For the Relation Extraction Task, 
we implemented a simple co-occurrence baseline method, as 
shown in Table 3. The Gene entities were automatically 
recognized using our in-house tools (17-19). The co-occurrence 
method considered every sentence that contained two gene 

mentions and predicted a relation between them. Predictions of 
sequence variants were not considered for this baseline. 
HomoloGene evaluation, considered whether the curator’s 
annotated gene in the relation and the predicted gene were 
homologous genes.  

This dataset was used for the BioCreative VI Precision 
Medicine Task. The results of twenty-two systems were 
submitted for the Triage Task and the results of fourteen systems 
were submitted for the Relation Extraction Task. This is an 
indication of the necessity of developing this dataset. We 
anticipate that more systems will use the released corpus in the 
future.  

III. CONCLUSIONS AND PUBLIC AVAILABILITY 
Scientific articles indexed in PubMed contain a vast amount 

of precision medicine related information, because they often 
detail experimentally verified protein-protein interactions, 
which in some cases are affected by differences in sequence 
variation. Currently, such information can only be extracted by 
skilled domain expert curators.  

The BioCreative VI Precision Medicine Track corpus 
contains 5,546 PubMed articles and is of high quality. It was 
curated by five BioGRID curators and each article was 
annotated by at least two curators, with an inter-annotator 
agreement of 82%.  

By releasing the BioCreative VI Precision Medicine Track 
corpus, we aim to facilitate the curation of precision-medicine-
related information available in published literature. This corpus 
fosters the development of innovative text mining algorithms 
that may help database curators in identifying molecular 
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interactions that differ based on the presence of a specific 
genetic variant, information which could be translated to clinical 
practice.  

In addition, this dataset may provide important insights on 
1) understanding the specific biological information in the 
unstructured text that may be relevant for precision medicine 
purposes, and 2) the best practices for designing automatic 
computational methods that can extract such information.  

The BioCreative VI Precision Medicine training corpus is 
available from the BioCreative website for the scientific 
community. 
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Abstract— In this paper, we describe our submission to the
”Document Triage Task”, of the BioCreative VI Precision
Medicine Track, in which we ranked first among ten teams.
The submitted system is a Hierarchical Bidirectional Attention-
Based Recurrent Neural Network (RNN). Our approach utilizes
the hierarchical nature of documents, which are composed
of sequences of sentences, where sentences are composed of
sequences of words. We propose a reusable sequence encoder
architecture, which is used as sentence and document encoder.
The sequence encoder, is composed of a bidirectional RNN,
equipped with an attention mechanism, which identifies and
captures the most important elements (words or sentences)
in a sequence. Furthermore, we argue that the title of the
paper itself, usually contains important information, compared
to the other sentences of the abstract. For this reason, we
propose a shortcut connection, which integrates the title’s vector
representation, directly to the final feature representation of the
document. We leverage word embeddings, trained on PubMed,
for initializing the embedding layer of our network. Moreover,
our system does not rely on handcrafted features. Furthermore,
we train our system end-to-end using back-propagation, with
stochastic gradient descent. We make the source code available
to the research community1.

Keywords— Document Classification; Hierarchical Recurrent
Neural Network; GRU; Attention Layer

I. INTRODUCTION

The Document Triage Task is one of the two tasks of the
Precision Medicine Track in BioCreative VI. The commu-
nity challenge that addresses is ”identification of relevant
PubMed citations describing mutations affecting protein–
protein interactions” (11).

In this paper we describe our submission to this track,
which we approach as a document classification task, where
we define the document as the concatenation of the title
and abstract of the citation. Usually, document (or text)
classification is approached with methods that represent
documents with sparse lexical features such as bag-of-
words, n-grams, words frequencies (term-frequency and/or
inverse-document-frequency – tfidf) and other sophisticated
handcrafted features. Linear models or kernel methods, such
as variants of Naive Bayes and Support Vector Machines
classifiers, are used to train models from those features (20).

Recently, deep neural networks have become popular in
NLP tasks, because they can learn underlying features au-
tomatically. RNNs have shown great results processing text,
especially the variants Long Short-Term Memory (LSTM)

1https://github.com/afergadis/BC6PM-HRNN
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Fig. 1: Overview of our proposed system. Word Vectors is an matrix of
word embeddings, where M is the maximum number of sentences and
N the maximum number of words in a document. tv refers to the Sent
Encoder representation for the document title and av1, av2, . . . , avM−1

to the representations of the abstract’s sentences.

(10) and Gated Recurrent Units (GRU) (6) in a variety
of tasks (2, 22, 23). Baziotis et al. (2) used a two-layer
bidirectional LSTM equipped with an attention mechanism
for sentiment analysis in Twitter messages. Yang et al. (22)
used a Hierarchical Attention Network with GRU units for
document-level sentiment analysis and (23) used a Attention-
Based Bidirectional LSTM for relation classification. We
employ a hierarchical bidirectional GRU network, equipped
with attention layers, which generates dense vector represen-
tations for each document and uses those representations as
features for classification.

II. SYSTEM OVERVIEW

The model we propose is a hierarchical RNN network as
shown in Fig 1. We equip the RNN layers with an attention
mechanism for identifying the most informative words and
sentences in each document. The first level consists of
an RNN that operates as a sentence encoder, reading the
sequence of words in each sentence and producing a fixed
vector representation (sentence vector). Then, a second RNN
operates as a document encoder, reading the sequence of sen-
tence vectors and producing the final vector representation
for the whole document (title and abstract), which is used
as a feature vector for classification. We propose a shortcut
connection, which integrates the title’s vector representation,
directly into the document’s vector representation.

A. Text Preprocessing

As a first preprocessing step, we perform sentence segmen-
tation, for splitting the document in it’s constituent sentences
and tokenization, for splitting the sentences in tokens. We
used the Natural Language Toolkit (NLTK) sentence splitter
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and word tokenizer to perform these steps (14). We represent
each document as a matrix S ∈ RM×N , where M is the
maximum number of sentences that a document may have
and N is the maximum number of words a sentence may
have.

B. Word Embeddings

Word embeddings are dense vector representations of
words, capturing their syntactic and semantic information.
We leverage the pre-trained word embeddings provided by
(18), in order to initialize the weights of the embedding
layer of our network. These word embeddings are trained
on PubMed articles using word2vec (15) with the skip-
gram model and a window size of 5. The dimensionality
of the word vectors is 200. Out of vocabulary words, for
which we do not have a word embedding, are mapped to a
common <UNK> token. We generate the word embedding of
<UNK>, by sampling from a uniform distribution, with range
(−0.05, 0.05).

C. Recurrent Neural Networks

An RNN processes an input sequentially by performing
the same operation ht = fW (xt, ht−1) on every element
of a sequence, where ht is the hidden state at time-step
t, xt the input at time-step t, ht−1 the hidden state at the
previous time-step and W the weights of the network. After
reading the whole input sequence, ht holds a summary of
the input, which is used as it’s vector representation. Vanilla
RNNs suffer for the problem of vanishing gradients (3),
which limits their ability to learn long-term dependencies. In
order to overcome this limitation, more sophisticated variants
of the RNN have been proposed, such as the LSTM (10)
or GRU (6), which introduce a gating mechanism in order
to ensure proper gradient propagation through the network.
In our experiments we used the GRU variant, which has
a simpler architecture and achieved better results in our
experiments.

D. Attention Mechanism

RNNs have the ability to produce fixed vector represen-
tations, for sequences of variable length. The RNN reads
each element from the sequence and updates it’s hidden
state, which by the end, holds a summary of the information
contained in the sequence. The output produced at the last
time–step, usually a learned non-linear transformation of the
hidden state, is used as the vector representation of the
whole sequence. However, especially in longer sequences,
the RNN does not have the capacity to hold all the relevant
information in it’s state. This means that the information of
certain elements may fade away. In order to amplify the con-
tribution of the important elements in each sequence (words
or sentences) we utilize an attention mechanism (6, 8). The
attention mechanism assigns a weight to the output from
each timestep and the final representation is a weighted
combination of all the outputs.
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Fig. 2: Architecture of our proposed sequence encoder. The same architec-
ture is used for encoding a sequence of word vectors to a sentence vector
(sentence encoder) and a sequence of sentence vectors to a document vector
(document encoder).

III. SYSTEM ARCHITECTURE

The input to the network is a document, which is com-
posed of a title and an abstract. We perform sentence segmen-
tation and obtain a list of sentences for each document, where
the first sentence is the title and the rest of the sentences are
the abstract. We feed the list of M sentences to our neural
network.

A. Embedding Layer

Given a sentence si, which is the i-th sentence of a
document, consisting of a sequence of N words si =
(wi

1, w
i
2, . . . , w

i
N ), we use an embedding layer to project

them to low-dimensional vector space RE , where E is the
size of the embedding layer. We initialize the weights of the
embedding layer, with the pre-trained word2vec word vectors
(Section II-B).

B. Sentence Encoder

After embedding the words to the low-dimensional se-
mantic space, we use the sequence encoder, in order to
obtain a vector representation for each sentence. The se-
quence encoder consists of a Bidirectional GRU (BiGRU)
with an attention layer, which reads the sequence of word
vectors of each sentence and produces a sentence vector. The
architecture of the sequence encoder, is shown in Fig. 2.
Bidirectional GRU. A GRU takes as input the sequence of
word vectors of a sentence and produces a sequence of word
annotations (output), H = (h1, h2, ..., hN ), where hi is the
hidden state of the GRU at time-step i, summarizing all the
information of the sentence up to wi. We use bidirectional
GRU (BiGRU) in order to capture the contextual information
of the words from both their left and their right context. A
bidirectional GRU consists of a forward GRU

−→
fW (·) that

reads the sentence from w1 to wN and a backward GRU←−
fW (·) that reads the sentence from wN to w1. We obtain
the final annotation for each word wi, by concatenating the
annotations from both directions,

hi
j =
−→
hi
j ∥
←−
hi
j , j ∈ [1 . . . N ], hi

j ∈ R2S (1)
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where ∥ denotes concatenation,
−→
hi
j and

←−
hi
j are the hidden

states for the forward and backward GRU respectively at
time-step j and S the size of the sentence-level GRU layer.
Attention Layer. We use an attention layer in order to iden-
tify the most important words in each sentence and enforce
their contribution to the final sentence vector. The attention
layer, assigns a weight aij to each word annotation hi

j . The
sentence vector svi, which is the vector representation of the
whole sentence, is computed as the weighted sum of all the
word annotations hi

j .

eij = tanh(Wwh
i
j + bw) (2)

aij =
exp(eij)∑N
t=1 exp(e

i
t)
, j ∈ [1 . . . N ] (3)

svi =
N∑
j=1

aijh
i
j , svi ∈ R2S (4)

where Ww, bw are the attention layer’s weights and bias and
svi is the vector representation of the i-th sentence.

Moreover, we denote the sentence vector of the title as
tv = sv1 and the sentence vectors of the abstract as avi =
svi, i ∈ [2 . . .M ].

C. Document Encoder

After producing the vector representations for each sen-
tence, we feed them to the document encoder, in order to
obtain the final vector representation for the whole document.
Notably, we do not feed the vector of the title tv to the
sentence encoder, but only the vectors of the abstract avi.
The rationale behind this decision is discussed in Section
IV. The remaining sentence vectors, av1, av2, . . . , avM−1

are feed to the document encoder, in order to get the vector
representation of the whole abstract av. The architecture of
the document encoder, which is identical to the sentence
encoder, is shown in figure 2.
Bidirectional GRU. Similar to the sentence encoder, we use
a BiGRU in order to get annotations for each abstract vector
avi, which summarizes the information form the sentences
around sentence i.

hi =
−→
hi ∥

←−
hi , i ∈ [1 . . .M − 1], hi ∈ R2D (5)

where ∥ denotes concatenation,
−→
hi and

←−
hi are the hidden

states for the forward and backward GRU respectively at
time-step i and D the size of the document-level GRU layer.
Attention Layer. We use an attention layer in order to
identify the most informative sentences of the abstract and
enforce their contribution to the final vector representation
av. The attention layer assigns a weight ai, to each sen-
tence annotation and we aggregate them by computing the
weighted sum of all the sentences annotations.

ei = tanh(Wahi + ba) (6)

ai =
exp(ei)∑M−1

t=1 exp(et)
, i ∈ [1 . . .M − 1] (7)

av =
M−1∑
i=1

aihi, av ∈ R2D (8)

where Wa, ba are the layer’s weights and bias.

D. Output Layer

The final document vector d is computed by concatenating
the representations of title and abstract vectors

d = tv ∥ av, d ∈ R2S+2D (9)

The output layer is a fully connected layer with single
neuron and a logistic (sigmoid) activation function, which
performs the binary classification (logistic regression). It uses
the documents vector representation d as feature vector to
predict the probability of the two classes.

IV. HYPER-PARAMETERS AND TRAINING DETAILS

Title Vector Shortcut Connection. Instead of feeding the
title vector tv in the sentence encoder with the rest of the
sentence vectors (abstract), we create a shortcut connection,
by integrating it directly to the final document feature vector
d. The reasons for this design decision are twofold. First
of all, we argue that the title of a paper contains a lot of
important information, which will be diluted if passed in the
document encoder with the other sentences, even with the
addition of the attention mechanism. By integrating the title
vector tv directly into the document feature vector d, we keep
the title information intact. Secondly, the sentence encoder
is regularized, because (1) it has to produce self-contained
representations, which can be used directly as features for
classification and (2) it has to produce informative represen-
tations as input to the document encoder. This means that
the weights of the sentence encoder (sentence BiGRU and
Attention layer), receive gradients from both directions: from
the output layer and from the document encoder.
Regularization. Neural networks are notoriously prone to
over-fitting (13). For this reason we adopt a series of mea-
sures, in order to regularize our model.

First, we add Gaussian noise to the input (embedding
layer), which limits the amount of information that can
be stored in a network (9). This can also be interpreted
as a random data augmentation technique, distorting the
representation of the words, which means that practically the
network never sees the exact same sentence more than once,
during training. We add noise by sampling from a zero-mean
Gaussian distribution at each batch.

Moreover, we apply dropout to the layers of the net-
work. Dropout randomly disables a certain proportion of
the neurons in a layer on each training example (or batch).
This means that for each training example, a subpart of
the network is trained, which can be thought as a model
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ensembling technique. Dropout improves the network’s per-
formance because it forces each neuron to learn disentangled
features. This way the network learns to recognize the same
patterns in multiple ways, which leads to a better model
(19). We apply dropout on the embedding layer and on the
sentence and document encoders, both on their BiGRU layers
and their attention layers.

Many methods have been used to improve stochastic
gradient descent such as momentum, annealed learning rates
and L2 weight decay. We use Adam (12) optimizer, with
the standard deterministic cross-entropy objective function.
We add a L2 penalty term (weight decay) to the objective
function, in order to discourage large weights and we clip
the norm of the gradients at 5 to prevent exploding gradients
(16).

As a last step, we perform early-stopping. We stop the
training of the network, when the f1-score of the develop-
ment set stops increasing for a certain number of epochs
(17). We decided to monitor f1-score instead of the loss of
the development set because its the official evaluation metric
used and this way we directly optimize our model for the
task.
Hyper-parameter Optimization. The hyper-parameter tun-
ing in neural networks is a very challenging process. In ad-
dition to the time consuming training of the neural network,
usually we have to tune a lot of hyper-parameters, which
are highly correlated (e.g. increasing the number of neurons,
changes the optimal dropout rate). As it has been shown in
(4), grid search is very inefficient and random search finds
consistently better models. However, in our work we adopt
the Bayesian optimization approach (5), in order to perform a
smart search in the high-dimensional hyper-parameter space.
This way, we obtain a set of reasonable hyper-parameters,
in a very small number of trials. Table I shows the optimal
hyper-parameter values that we obtained.
Experimental Setup. We used Keras (7) to develop our
model with Tensorflow (1) as backend. The network was
trained on a GTX1070 for approximately 30 minutes.

V. RESULTS

We participated in BioCreative VI Precision Medicine
Track, in the ”Document Triage Task” as team 418. Ac-
cording to the official ranking, based on the F1 evaluation
metric, our team ranked 1st out of 10 teams, as shown in
the Table II. The training dataset, consists of 4082 PubMed
citations (abstracts) as shown in (Table III). 1730 are anno-
tated as positive (relevant), which means that these abstracts
specifically describe protein–protein interaction influenced

TABLE I: Hyper-parameter values of our proposed model.

Layer Size Dropout Noise (σ)
Embedding 200 0.2 0.2

Sent. Encoder GRU 150 (x2) 0.3 -
Attention 1 0.3 -

Doc. Encoder GRU 150 (x2) 0.3 -
Attention 1 0.3 -

TABLE II: Official Ranking. Displaying the best F1 score for each team.

Rank Team # Avg. Prec. Precision Recall F1
1 418 0,7195 0,6026 0,8205 0,6949
2 374 0,6654 0,5747 0,8699 0,6921
3 421 0,7284 0,6112 0,7945 0,6909
4 433 0,6617 0,5482 0,8877 0,6778
5 420 0,6439 0,5473 0,8712 0,6723
6 419 0,5742 0,5718 0,8068 0,6693
7 414 0,5098 0,5075 0,9795 0,6685
8 375 0,6808 0,5821 0,7575 0,6583
9 405 0,5877 0,5478 0,5575 0,5526

10 379 0,4885 0,4622 0,3438 0,3943

TABLE III: Training data set of Document Triage Task.

Positive Negative Total
1730 (42%) 2352 (58%) 4082

by genetic mutations. The test dataset has a total of 1500
PubMed abstracts.

For our submission we trained our model on 95% of the
training corpus and used a held-out 5% as a development
set for early-stopping. We adopted this approach in order to
ensure that the model used for our submission, did not over-
fit on the training set. We stopped training when the F1 of
the development set stopped increasing, optimizing this way
our model, directly for the evaluation metric of the task.

VI. CONCLUSION

We presented a system for the ”Document Triage Task”
of the BioCreative VI Precision Medicine Track. The key
points of the system are: (a) utilizes the hierarchical nature
of documents, which are composed of sequences of sentences
and sentences are composed of sequences of words, (b) uses
a shortcut connection which integrates the document’s title
directly to the final feature representation of the document,
(c) does not utilize any handcrafted feature, and (d) our
system is trained end-to-end using back-propagation, with
stochastic gradient descent. As future work in this domain,
in order to further improve our model, we propose a series
of approaches.
Text Preprocessing. Sentence splitting, word tokenization
and named entity extraction are crucial steps in text prepro-
cessing. The output of these preprocessing steps has a big
impact on the performance of the models. Using a tokenizer
tailored for biomedical data, will have the ability to better
identify sentence boundaries and difficult tokens such as
genes names.
Entity Embeddings. Entities annotations for genes and
mutations mentions can be obtained using tools, such as
NCBI text-mining web services (21). We plan to utilize these
annotations, by representing them as dense vectors which
can be appended to the word vectors fed in our model.
We hypothesize that this is will improve even further our
performance.
Character-level model. An alternative approach would be to
design a model, which would operate on the character-level.
We argue that such a model, will be able to better model
expressions like protein or gene names, reducing the need
for careful and laborious text preprocessing.
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Abstract— The aim of precision medicine is to select the best 
treatments for different patient groups, considering individual 
variability in genes, environment, and lifestyle. Regarding genetic 
variability, valuable information about variants and how they 
affect protein-protein interactions is available in the scientific 
literature. Extracting and curating this information in an efficient 
manner requires the application of text mining algorithms. In this 
paper, we describe deep learning classifiers for selecting, from the 
literature, documents containing information regarding the 
impact of genetic mutations on protein-protein interactions. Cross-
validation results in the BioCreative VI Precision Medicine task 
corpus reached a precision of 0,698, recall of 0,735 and f-score of 
0,715. 

Keywords—document triage; gene mutations; protein 
interactions; deep learning; long short term memory networks 

I. INTRODUCTION 
 

The Precision Medicine (PM) task, part of the BioCreative 
VI community challenge in biomedical text mining, aimed to 
evaluate TM approaches and tools for identifying and extracting 
information regarding the impact of genetic mutations on 
protein-protein interactions. The challenge consisted of two 
subtasks, namely document triage and relation extraction. This 
paper presents our participation in the first subtask, which 
consisted in identifying PubMed abstracts that mention genetic 
mutations that affect protein-protein interactions (PPIs). 

Document triage is an important first step in assisting 
literature curation workflows, helping expert curators to focus 
on papers containing more information relevant to their task. 
The application of text mining and automatic classification tools 
for document triage was evaluated in the BioCreative III protein-
protein interaction article classification task (PPI-ACT). In this 
task, the aim was to classify and rank articles relevant for 
curating protein-protein interactions. The best system was based 
on a large margin classifier with features derived from gene 
named entity recognition, MeSH terms and dependency parsing, 
and reached an area under the Precision/Recall curve (AUC 
iP/R) of 0,680 and an F-score 0,614. 

In recent works, deep learning techniques have been applied 
succefully in many tasks, most notably in image classification 
but also when applied to text analysis. Deep learning methods 
are composed of multiple data transformation layers that apply 
simple non-linear functions to obtain different levels of 
representation of the input data (2). Combination of these 
transformations allow the methods to learn complex 

classification functions, which gives deep learning its strengths. 
Another great advantage of such representation learning is that 
it eliminates the feature engineering effort that is required in 
more traditional machine learning (2).  

For text based tasks, it is necessary to encode the input data 
in a way that it can be used by the deep network classifier. This 
is achieved by representing words as embedding vectors of a 
relatively small dimension, rather than using the large feature 
space resulting from the traditional one-hot encoding. Word 
embeddings is a technique that consists in deriving vector 
representations of words, such that words with similar semantics 
are represented by vectors that are close to one another in the 
vector space (3). This way, each document is represented by a 
sequence of word vectors which are fed directly to the network. 
Efficient calculation of word embeddings, such as provided by 
Word2Vec (4), allow inferring word representations from large 
unannotated corpora. The use of this representation together 
with deep learning techniques have led to improved results in 
different NLP tasks, including word sense disambiguation (5), 
text classification (6), and named entity recognition (7).  

II. METHODS 
We followed a supervised machine learning approach, and 

evaluated “classical” classifiers against deep learning strategies. 
In both cases, we used word embeddings to represent the words 
in the documents. 

A. Data 
The PM task organizers provided a training set consisting of 

4082 citations from PubMed that were manually classified as 
relevant (1729 documents), that is, containing information 
regarding the impact of gene mutations on protein-protein 
interactions, or not relevant (2353 documents).  

Apart from this annotated dataset, we exploited the use of 
the BioCreative III PPI-ACT corpus as additional data. This 
corpus consists of 12280 Medline abstracts, 2732 of which were 
annotated as containing PPI information. Although this 
annotation does not consider the impact of genetic mutations, as 
is the case of the task considered here, we tried to incorporate 
this data in a self-learning approach. 

B. Word Embeddings 
We used the word2vec implementation in the Gensim 

framework (8) generated word embeddings from the complete 
MEDLINE database, corresponding to 15 million abstracts in 
English language. We created six models, with vector sizes of 
100 and 300 features and windows of 5, 20 and 50. The models 

This work was supported by FCT - Foundation for Science and 
Technology, in the context of the project IF/01694/2013.  
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contain around 775 thousand distinct words. Based on previous 
results both in document triage and biomedical word sense 
disambiguation (9), we used the model with 300 features and 
window size of 50 in all classifiers tested. 

C. Classical Classifiers 
We compared three classifiers, namely k-Nearest Neighbors 

(kNN), Logistic Regression (LR), and Multilayer Perceptron 
(MLP). These classifiers were selected because they provided 
good results in previous document classification works. The 
Scikit-learn library (10) was used for this task. 

To obtain the document representation for the classifier, we 
tokenize the document and obtain the sequence of word vectors 
by simple look-up in the pre-calculated word2vec model. 
However, these classifiers are not directly applicable to 
sequences of distinct length and some form of aggregating these 
sequences is required. This is commonly addressed by summing 
or averaging the word vectors, resulting in a single vector 
representation of the document. We follow a similar approach, 
but use a weighted average of the word vectors, using as weights 
the coefficients of a linear regression between the tf-idf term-
document matrix and the label (0 or 1) of each document in the 
training set.  

D. Deep Learning 
We applied different deep learning models based on 

convolutional and long short term memory (LSTM) layers. 
Convolutional neural networks (CNN) have been extensively 
applied in image recognition and classification problems, with 
very good performance. Various works also demonstrate their 
application in text classification tasks. Nonetheless, the 
sequential nature of natural texts can be better modelled by 
recurrent networks, which contain a feedback loop that allows 
the network to use information regarding the previous state. 
LSTM are a special type of recurrent neural networks (RNN) in 
which a set of information gates is introduced that allow these 
networks to learn long-term dependencies while avoiding the 
vanishing gradient problem.  

An important consideration when defining and training deep 
network models is related to overfitting, which means that the 
network learns the “best” data representation but is not able to 
generalize to unseen data. Various strategies have been proposed 

and are commonly employed to address this problem. In our 
experiments, we applied several strategies to avoid overfitting, 
namely early stopping, dropout, and regularization. Early 
stopping looks at the value of the loss in a validation subset and 
stops the training process when this value stops decreasing. We 
used 10% of the training data, selected randomly at each run, as 
validation set. We applied dropout to the output of the 
embedding and hidden layers so that a random selection of the 
output tensors is not used for updating the model weights, with 
the aim of forcing the model to learn a less biased representation 
of the data. Finally, L2 regularization is applied to the final layer 
to penalize large weights that could otherwise be assigned to 
biased input dimensions. 

E. Submitted Runs 
We empirically tested various network architectures that 

resulted in our final submitted runs for the task, as described 
below. All models were trained using the binary cross-entropy 
loss function and the rmsprop algorithm as optimizer. Models 
were implemented with the Keras framework (11) with the 
TensorFlow backend and executed on a machine with 12 CPU 
cores and 192 GB of memory. 

 

• Run 1 

The network architecture for this run consists of an 
embedding layer, that represents each word in a document by its 
respective word vector, followed by three convolutional layers 
with average pooling. Each convolutional layer uses 128 filters 
with Rectified Linear Unit (ReLU) activation and a kernel size 
of 3. The output is then connected to a bidirectional LSTM layer 
with 128 units, and to a final densely connected layer with a 
sigmoid activation function. L2 regularization with parameter 
0.01 was applied in this final layer. A dropout of 0.1 was 
included after the embedding layer and of 0.2 within the LSTM 
units, to avoid overfitting as discussed above.  

• Run 2 

In this run we followed a self-learning approach to 
incorporate the BioCreative III PPI corpus as additional data. 
Since this corpus is annotated differently, we first applied the 
trained model from run 1 to these documents and selected the 

 

 
Fig. 1. Deep neural network used in run 3. 
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ones that were classified with a confidence value higher than 
0.90. This equated to adding 9673 documents to the training 
data. The same network was then re-trained with the combined 
dataset.  

• Run 3 

In this run, we applied a deeper network composed of three 
convolutional layers and three LSTM layers, as illustrated in 
Fig. 1. 

The first layer of the network is the embedding layer, as in 
the previous runs.   A dropout of 0.2 is applied to the embedding 
vectors, to minimize overfitting. This layer is followed by three 
convolutional layers with average pooling, with 64 units with 
ReLU activation and kernel size set to 5. A dropout of 0.4 is 
applied after each pooling stage. This is then followed by a 
bidirectional LSTM layer and two unidirectional LSTMs. All 
three LSTMs are composed of 128 units and use a dropout of 
0.2. Finally, a dense layer is applied, with sigmoid activation and 
L2 regularization with parameter set to 0.01. 

III. RESULTS 
Table I shows the cross-validation results obtained on the 

training set. In the case of the classical classifiers, we also show 
the best f-score obtained when the classification threshold is 
selected non-blindly.  

The best cross-validation results were obtained by the deeper 
network. This classifier shows an increase of 4 f-score points 
over the LR classifier operating with an optimized threshold, 
and of 11 points over the LR and MLP classifiers operating at 
the default classification threshold. 

Comparing to the classical classifiers tested, the deep 
learning architectures implemented obtained better results in 
terms of recall and f-score, when the classification threshold was 
not tuned. When this threshold was ‘optimized’, the classical 
classifiers provided a higher recall and, in the case of logistic 
regression, a higher f-score than the two first architectures. 
However, since this threshold was selected in a non-blind way, 
the results may overestimate what would be achieved in a blind 
dataset. 

The use of additional data helped improve the results of the 
first deep network, although only by a small margin. 
Nevertheless, this result indicates that careful inclusion of 
related datasets, when available, can lead to better classification 
performance. 

 

 

TABLE I.  CROSS-VALIDATION RESULTS ON TRAINING SET 

Classifier threshold Precision Recall F-score 

kNN 
(k=99) 

0,50 0,618 0,553 0,582 
0,40 0,522 0,845 0,645 

LR 
0,50 0,674 0,546 0,603 
0,35 0,578 0,798 0,670 

MLP 
0,50 0,609 0,598 0,603 
0,25 0,554 0,781 0,648 

Submitted run 1 - 0,637 0,681 0,651 
Submitted run 2 - 0,640 0,692 0,664 
Submitted run 3 - 0,698 0,735 0,715 

aFive-fold cross-validation results on the training set. Different classification 
thresholds were tested for each classifier. The best results for the MLP classifier 
were obtained with the word embeddings model of size 300 and window of 5. 
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Abstract—We describe the University of Melbourne READ-
Biomed team’s participation in the Document Triage and 
Relation Extraction tasks of the Precision Medicine track of 
BioCreative VI. For the Document Triage task, we create term 
lists consisting of terms that are used to describe interactions, 
mutations, and expected effects on interactions mutations may 
have. We apply them along with a range of standard bag-of-word 
features to capture close to 30 features for building classification 
models. The best model provides a roughly 10% (absolute) 
increase in F1-score as compared to baseline results, based on 10-
fold cross-validation in the training data. For the relation 
extraction task we use GNormPlus to recognize and normalize 
gene names. We use two methods, a co-occurrence based method 
and Support vector machine (SVM) for relation extraction. They 
achieve 27.4% and 27.2% F1 scores respectively, based on 5-fold 
cross-validation over the training data. 

Availability—The codes are available from 
https://biodbqual@bitbucket.org/readbiomed/biocreative-vi.git 

Keywords—Document triage; Relation extraction; 

I. INTRODUCTION 

Text mining can play an important role in precision 
medicine by supporting automatic extraction of knowledge 
from ever increasing volumes of scientific literature to 
facilitate clinical analysis [1]. It has been widely applied to 
recognize mutations [2] and to extract protein-protein 
interactions [3]. Nevertheless, little work has addressed the 
integration of these tasks to specifically identify and extract 
protein-protein interactions affected by mutations, which is 
critical in the precision medicine context [4]. The BioCreative 
VI Track 4 aims to bring community effort to tackle this 
challenge. The track contains two tasks: the Document Triage 
task, requiring identification of relevant documents describing 
protein-protein interactions affected by mutations and the 
Relation Extraction task, extracting these specific protein-
protein interactions. 

We summarize our participation in both tasks. For the 
Document Triage task, we develop machine learning models 
leveraging both text mining tools and manually created term 
lists, achieving a ~10% improvement on F1-score compared to 
the baseline results. For the relation extraction task, we used a 
simple rule-based co-occurrence strategy and also attempted 
SVM with ASM kernel approach, achieving the first rank in 
the test collection. 

The project receives funding from the Australian Research Council 
through a Discovery Project grant, DP150101550.  

II. DOCUMENT TRIAGE TASK

Document triage is the process of identifying documents 
that are relevant to a user’s information needs from a large 
collection of documents in an efficient manner, which avoids 
tedious manual document examination [5]. The Document 
Triage task, in the context of the Precision Medicine track of 
BioCreative VI aims to identify relevant documents describing 
protein-protein interactions impacted by mutations. We 
propose a machine learning approach leveraging both standard 
text mining tools and manually created term lists.  

A. Capturing mutations and interactions via BioNLP tools
The notion of relevant documents in this task must satisfy

three conditions: a relevant document must (1) mention at 
least one mutation, (2) describe at least one protein interaction, 
and (3) indicate that there is some change in the interaction 
that can be considered to be caused by the mutation. Text 
mining tools are often used to identify mutations (such as 
tmVar [2] and EMU [6]) and interactions (such as PIE the 
search [7]). Thus, as a preliminary step, we apply a number of 
tools to identify mutations and interactions in documents in 
the training dataset. The training dataset has 4082 documents; 
1729 of them are relevant whereas the rest are not. The 
process for determining whether those documents are relevant 
is detailed in the dataset description [4]. 
TABLE I.  DOCUMENTS BEING IDENTIFIED HAVING MUTATIONS 

Tool Relevant docs 

1729 total 

Irrelevant docs 

2353 total 

tmVar [2] 965 (55.8%)a 1672 

EMU [6] 900 (52.1%) 1518 

SETH [8] 907 (52.5%) 1541 

MutationFinder [9] 881 (51.0%) 1489 

a. The figures show that tmVar found 965 relevant documents having mutations, accounting for
55.8% of total relevant documents. Similar results are seen for other tools.

The results show that text mining tools cannot fully
capture mutations or interactions as relevant for this task. For 
example, TABLE I shows the number of documents in which 
mutations were identified by mutation detection tools. For a 
document to be labelled as relevant requires that the document 
includes a reference to a mutation, yet the best text mining tool 
can only find a specific mutation mention in 56% of these 
documents, which is consistent with the findings in related 
studies [10]. Similar results are found for PIE the search on 
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the task of identifying interactions. The main challenge is that 
many mutations or interactions are mentioned through general 
references rather than precise descriptions: as an example, 
“mutagenesis” is the only term describing mutations in the 
paper PMID:20485264; this general mention is not detected by 
the tools. This preliminary analysis demonstrates the necessity 
to leverage text mining tools and term lists for this task. 

B. Building term lists for mutations, interactions and impacts  
We developed term lists for words or phrases describing 

mutations, interactions and the impacts on interactions due to 
mutations. General mutation terms were derived from the 
Variome corpus [10] and impact terms are selected from 
Molecular interactions ontologies.1  The mutation term list 
contains 22 terms. 13 of these are “strong” terms: mutation, 
delete, mutant, insertion, substitution, -/-, +/-, polymorphism, 
SNP, lesion, mutagenesis, deleterious and variant. These 
terms are “strong” in that they are mostly unambiguously used 
to describe mutations in the literature. In contrast, the 
remaining 9 terms are “weak”: change, exchange, damage, 
remove, replace, disorder, deficiency, virulence and 
truncation. While they are used to describe mutations, they 
may also be used in other contexts; for instance, the term 
change can be used in “DNA base change” but can also be 
used in “changes in the distribution”. We process strong and 
weak terms separately when developing features.  

The interaction term list contains 30 terms describing 
interactions frequently in literature, such as interact, complex, 
bound, bind, regulate, kinase, acetylation, phosphorylation, 
and many others. We further create a list of 23 terms that are 
indicative of the impact a mutation may have on a protein 
interaction. For example, increase is a term often used to 
describe that the presence of a mutation increases the level of 
interaction. Other terms include degrade, decrease, 
strengthen, enhance, reduce, and impair. 

C. Leveraging text mining tools and term lists 
We use 29 features to build classification models using 

machine learning. The features can be categorized into 
document-level mentions, and sentence-level mentions, and 
are calculated for both raw frequencies and probabilities of 
different kinds. Representative features are described below. 

Document-level features capture mutations and 
interactions mentioned per document, either by using tools or 
term lists. The features look for total mentions (total number 
of mutations identified by text mining tools), unique mentions 
(total number of unique genes identified by named entity 
recognition tools) and co-occurrences of mentions (total 
number of mutations and interaction mentions if both exist). 

Sentence-level features are similar to document-level 
features but focus on individual sentences, e.g., the number of 
sentences containing both mutation and interactions, identified 
by either tools or term corpus. We further develop features 

1 From www.ebi.ac.uk/ols/ontologies/mi 

that represent mutation-impact-interaction triples for sentence 
bigrams, that is, co-occurrences of mutations and interactions 
(identified by either tools or terms) exist and the impact terms 
also exist in every two sentences. 

Frequency-based features and probability-based features 
are calculated at both document and sentence levels. 
Frequency-based features include the number of sentences 
containing both interactions and mutations. Probability-based 
features include the average probability of sentences 
containing both interactions and mutations, calculated using 
normalised functions on interaction and mutation frequencies. 

TABLE II.  REPRESENTATIVE FEATURE ENGINEERING RESULTS 

Features Mean F1 score Standard deviation 

Baseline 0.6405 0.0337 

Document-level  0.6850 0.0315 

Sentence-level 1-gram 0.7104 0.0333 

Sentence-level 2-gram 0.7143 0.0385 
Baseline: TF-IDF & Logistic Regression model, Document-level: Baseline & selected document-

level features, Sentence-level 1-gram: Document-level & selected sentence-level features, Sentence-
level 2-gram: Sentence-level 1-gram & features capturing mutation-impact-interaction triplet, F1 score  
and standard deviation are based on 10-fold cross-validation. 

TABLE III.  REPRESENTATIVE MODEL RESULTS 
Metrics Boosting 

Logistic Regression  SVM 

F1 measure 0.7355 0.7097 

Average Precision 
(ranked) 0.7580 0.7479 

AUC 0.8306 0.8212 

The results are based on 10-fold cross-validation. 

D. Experimental results and discussion 
We perform feature engineering, train multiple 

classification models and measure the performance via a range 
of metrics. The representative results are demonstrated in 
TABLE II and TABLE III. To process the texts, documents 
are tokenized and stemmed with stop words removed using 
NLTK. A baseline model is built using TF-IDF weighted 
token features and logistic regression. The evaluation using 
10-fold cross-validation on the baseline model gives ~64% F1, 
which is close to the results reported by task organizers [4]. 
The model is further enhanced by incorporating the features 
developed above.  Document-level and sentence-level features 
can each increase F1 score by ~4%; the mutation related 
features and co-occurrence of mutation and interaction related 
features contribute the most to performance.  

We build three models: Logistic Regression with boosting 
(the results are submitted as Run 1), SVM (Run 2) and 
Random Forest (Run 3); produce a ranked list, where 
documents are ranked based on confidence scores; quantify 
the performance using three metrics: F1-score (summarising 
balanced precision and recall), Average Precision (measuring 
the effectiveness of the retrieved ranked list) and AUC 
(measuring the effectiveness on classifying relevant 
documents). The results illustrate that Logistic Regression 
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with boosting gives the best performance: almost 10% F1 
improvement compared to the baseline score. Its AP score is 
over 75% and AUC is over 83%, showing that it has potential 
to effectively classify relevant documents. SVM results in 
similar AP and AUC scores, but its F1 score is lower. 

III. RELATION EXTRACTION TASK 
The goal of the Relation Extraction subtask is to extract 

protein pairs that interact, where that interaction is impacted 
by a mutation (a PPIm relation). For instance, the following 
sentence “Furthermore, mutagenesis studies indicated that the 
alpha-helical regions of KIS participate in beta-tubulin 
binding”, indicates that the interaction between the proteins 
“KIS” and “beta-tubulin” is impacted by mutation. The 
desired output from the relation extraction task is the pair of 
the normalized Entity Ids, i.e the Gene Entrez IDs of these 
proteins “<817592, 827837>”.   
The dataset for this corpus consists of 597 training documents. 
We analysed 1500 test documents. Limited annotations are 
provided in the training set. Only positive relations, 
specifically the NCBI Gene IDs of the interacting protein pairs 
impacted by mutation, are annotated at the document level. In 
addition, entity annotations are only provided for those 
proteins that are referenced in a relation annotation (that is, 
entity mentions where the entity does not participate in a 
relevant PPIm relation are not identified). The test set does not 
have any entity annotations; performance on the test data is 
therefore inherently limited by the performance of the entity 
recognition method. 

A. Approaches to Relation Extraction 
We explored two approaches for relation extraction. Our 

first approach is a rule-based system wherein a co-occurrence 
of two protein mentions within the scope of a document is 
considered to be in a PPIm relation, if it meets certain 
heuristically designed criteria. In the second approach, we use 
a binary classifier based on dependency graphs to detect if a 
given protein pair is in a “PPIm relation” or not.   

B. Entity Recognition 
Both these approaches require the identification of protein 

mentions in the text. We used GNormPlus [16] to recognise 
and normalise protein mentions. GNormPlus had a recall of 
53.4%, precision 40.5% and F-score of 46.1% for the protein 
name normalisation task on the full training set, with the low 
performance attributable to the fact that not all protein 
mentions are annotated, as stated above. Applying passage 
level co-occurrence using the proteins recognised, which 
considers every possible combination of proteins mentioned 
within a document to produce protein pairs, has a maximum 
recall of 39% for relation extraction, based on analysis of the 
training data. Therefore, even if the relation extraction system 
had a precision of 100%, the maximum possible F-score 
would be 56% using GNormPlus for protein name 
recognition/normalisation task. 

C. Filtered Co-occurrence Relation Extraction (Run 3) 
The co-occurrence based approach to recognising PPIm 

relations makes use of a filtering heuristic that considers 
sentence support, analogous to the notion of support in 
association rule mining algorithms [18]. The approach applies 
the idea that if more than N sentences contain a given protein 
pair within a given document, then that pair can be assumed to 
participate in a PPIm relationship. This heuristic is based on 
the fact that all the documents in the training set were relevant 
to PPIm (i.e, all documents were assumed to have passed the 
Document Triage filter) and hence at least some protein names 
mentioned in the abstracts can be assumed to be involved in 
PPIm relationship. We set the sentence support threshold N to 
2 after experimentation with the training data. 

D. Relation Extraction as supervised classification (Runs 1-2) 
In this approach, we train a binary classifier with protein-

pairs as examples. Following entity recognition, we generate 
all possible pairs of entity mentions within a document as 
instances for our classifier. A given protein pair from a 
document in the training set is considered a positive example 
if the corresponding NCBI Gene IDs are annotated as being in 
a PPIm relation in the relation annotation. Otherwise, it is 
labelled as a negative example. Entity pairs with the same 
Gene ID (self-relations) are excluded from the set of examples 
for the classifier. We train the classifier using the Scikit-learn 
implementation of SVM [15] with the ASM graph kernel [14]. 
In the test phase, every possible protein pair from test 
documents is considered as a candidate instance and the binary 
classifier is used to infer its label. From the examples with a 
positive prediction, the corresponding NCBI Gene IDs are 
extracted. The union of all such Gene ID pairs at the document 
level forms the output of our relation extraction system. 

We used the TEES [12] system for preprocessing the text 
and generating syntactic dependency graphs for sentences. A 
given pair of entity mentions can be within a single sentence 
or could be in two different sentences. For an entity pair, 
whose mentions are within a single sentence, the dependency 
graph of the corresponding sentence is used as the instance for 
classification. We refer to these type of relations as sentence 
level relations. For protein or entity pairs, whose mentions are 
in two different sentences, we connect the root nodes of the 
dependency graphs of the two underlying sentences with an 
artificially introduced root node, to form a single larger graph 
covering the two sentences. We refer to these relations as non-
sentence relations. As depicted in Table IV, most relations in 
the training set are sentence level relations. 
TABLE IV.  PPIM RELATION TRAINING DATA CHARACTERISTICS 

Dataset Number of 
Examples  

Number of 
Positive 
Examples 

Number of 
Negative 
Examples 

Sentence level 
relations  6334 1672 4662 

Non- sentence level 
relations 4567 89 4478 
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Our relation extraction methodology in this task is similar 
to the one we applied for Chemical-Induced-Disease relation 
extraction in [13,17], based on the Approximate Subgraph 
Matching Kernel (ASM) used with an SVM [15] classifier. 
More details about this approach can be found in [14]; it 
hinges on evaluating similarity of the subgraph of the 
dependency graph connecting the entity pairs to those 
observed in the training data. 

Mutation Context: 
As the task requires extraction of interacting pairs in the 

context of a mutation, we attempted to incorporate mutation-
context specific features in our classifier. We added a set of 
binary indicator features for the 30 interaction terms described 
in section II.B. Additionally, a relevance score is computed for 
each document and included as a special feature, using the 
probability of the document being relevant for the Document 
Triage task, as computed by the classifier that was developed 
for that task. We did not observe a notable impact on the 
relation extraction performance by incorporating the mutation 
context and document relevance features on cross validation 
test over training data, likely due to the fact that the mutation 
context is often not incorporated into the same sentence that 
expresses the protein interaction.  
TABLE V.  RESULTS ON THE TRAINING SET (5-FOLD CV FOR SVM) 

Performance Precision Recall F1 

Co-occurrence  30.8% 24.8% 27.4% 
SVM with ASM  30.3% 24.7% 27.2% 

SVM with ASM + 
Mutation Context 30.1% 25.3% 27.5% 

SVM with ASM + 
Mutation Context + 
Document Relevance 
Feature 

29.3% 25.3% 27.2% 

E. Results 
In Table V we present the results on the training set for 

relation extraction, based on 5-fold cross validation for SVM. 
We submitted 3 runs for the official evaluation. The first two 
runs used the predictions from the SVM classifier with ASM 
kernel and Mutation Context and Document Relevance 
Features (both achieving P: 0.3449, R: 0.3287, F1: 0.3366 in 
the official results). The second run added a Logistic 
Regression classifier to compute the probability scores for the 
predictions. The third run was based on the Filtered Co-
occurrence system (achieving a slightly higher Precision but 
lower Recall; P: 0.3890, R: 0.3010, F1: 0.3394 in the official 
results).  

IV. CONCLUSION 
In this paper, we present the approaches developed by the 

University of Melbourne READ-Biomed team for the 
Precision Medicine Track. We develop machine learning 
models by incorporating both text mining tools and manually 
created term lists for the Document Triage task, increasing F1 
score by ~10% compared to the baseline results. Further 

improvements could be to use sentence similarity related 
features and applying extensive optimization. For the Relation 
Extraction task, we achieved similar results with a simple co-
occurrence based approach and a graph-based classification 
approach. Incorporating additional features based on mutation 
context and document relevance did not improve the relation 
classifier substantially. Further, errors in the earlier entity 
recognition phase are likely to have substantially limited the 
relation extraction performance on the test data.  
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Abstract—The BioCreative VI Track IV (Mining protein 
interactions and mutations for precision medicine) challenge is 
presented to support the Precision Medicine Initiative with the 
goal of applying biomedical text mining methods to extract 
interacting protein pairs that are affected by a genetic mutation. 
Herein, we describe systems that we submitted for the two 
challenge tasks and report our results. For the document triage 
task, we report a system performance of 67.23% F1 with a 
precision of 54.73% and recall of 87.12% on the official test set. 
For the relation extraction task, our models placed 2nd when 
using Entrez Gene IDs and 1st when using HomoloGene IDs. 
When using HomoloGene IDs, our system achieves 37.27% F1 
with a precision and recall of 45.44% and 31.61% respectively.   

Keywords— deep learning; named entity recognition; relation 
extraction; protein-protein interactions; gene normalization 

I. INTRODUCTION 
Precision Medicine (PM) is an emerging disease treatment 

paradigm in which healthcare is customized to each individual 
patient. To support this effort, it is important to be able to 
extract useful translational information such as mentions of 
relationships between genes, mutations, and diseases. The 
BioCreative VI Track IV (Mining protein interactions and 
mutations for precision medicine) challenge is presented in an 
effort to identify and study mutations and their effect on 
molecular interactions. This particular track involves two 
distinct tasks: document triage and relation extraction. In the 
first task, participants are asked to build systems able to 
determine whether a PubMed citation is relevant or not 
relevant; i.e., whether or not it describes an interaction affected 
by a genetic mutation. The training set for this first task 
contains 4082 articles with 1729 of them deemed relevant.  

A subset of the aforementioned training documents that are 
relevant, consisting of 597 documents, has been additionally 
annotated with gene mentions and relevant interaction pairs. 
This subset is supplied as training data for task 2. In the second 
task, participants are asked to extract interacting protein pairs 
that are affected by a mutation. We treat the two tasks 
independently and built separate systems for each. We describe 
the system used for the document triage task in Section 2. We 
then describe the system pipeline used for the relation 
extraction task in Section 3. Finally, we discuss our validation 
results in Section 4. 

II. DOCUMENT TRIAGE SYSTEM 
 We propose using a deep neural network architecture 

based on convolutional neural networks (CNNs) to tackle the 
document triage task. The following model is based on the one 
proposed by Kim et al. (1) for text classification. The input is a 
document with words 𝒘 =  (𝑤1, 𝑤2, . . , 𝑤𝑛)  each represented 
by their corresponding index to the vocabulary 𝑉word . The 
words are mapped to word vectors via a word embedding 
matrix 𝐸word ∈ ℝ|𝑉word|×𝑑  to produce a document matrix 𝐷 ∈
ℝ𝑛×𝑑 where 𝑑 is the length of the word representation vectors. 
More concisely, 

𝐷 = (
𝐸word[𝑤1]

⋮
𝐸word[𝑤𝑛]

) 

where 𝐸word[𝑖] is the 𝑖𝑡ℎ  row of 𝐸word . The word embedding 
matrix can be initialized to random or pretrained values; in 
either case, the word vectors are (further) modified via 
backward propagation. The central idea in CNNs is the so 
called convolution operation over the document matrix to 
produce a feature map representation using a convolution filter 
(CF). The convolution operation ∗ is formally defined as the 
sum of the elementwise products of two matrices. That is, for 
two matrices 𝐴  and 𝐵  of same dimensions,  A  ∗  B  =
  ∑ ∑ 𝐴𝑗,𝑘  ⋅  𝐵𝑗,𝑘𝑘  j . With this, a CF is the matrix 𝑊 ∈ ℝℎ×𝑑 
that is applied as a convolution to a window of size ℎ over 𝐷 to 
produce a feature map 𝑣 = [𝑣1, … , 𝑣𝑛−ℎ+1], such that 

𝑣𝑖 = relu(𝑊 ∗ 𝐷𝑖:𝑖+ℎ−1 + 𝑏) 

where 𝐷𝑖:𝑖+ℎ−1 is a window of matrix 𝐷 spanning from row 𝑖 
to row 𝑖 + ℎ − 1, 𝑊  and 𝑏 ∈  ℝ are learned parameters, and 
relu(𝑥) = max(0, 𝑥) is the linear rectifier activation function. 
The goal is to learn multiple CF that can collectively capture 
diverse representations of the same document. Suppose there 
are 𝑘  filters, then we produce 𝑘  corresponding feature maps 
𝑣1, … , 𝑣𝑘  . We select the most distinctive feature of each 
feature map using a max-over-time pooling operation (2) to 
produce the final feature vector 𝑝 ∈ ℝ𝑘 , such that 𝑝 =

[𝑣𝑚𝑎𝑥
1 , … , 𝑣𝑚𝑎𝑥

𝑘 ]  where 𝑣𝑚𝑎𝑥
𝑗

= max(𝒗1
𝑗
, … , 𝒗𝑛−ℎ+1

𝑗
).  

We can also learn different sets of 𝑘  CFs for different 
window sizes ℎ as is typically the practice. Choosing a larger ℎ 
provides more context and thus could be beneficial in 
improving predictive power but might adversely affect 
efficiency given the additional time needed. We can then take 

Our work is primarily supported by the National Library of Medicine 
through grant R21LM012274 and the National Cancer Institute through grant 
R21CA218231. 
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the corresponding feature vector for each window size and 
concatenate them to form the final feature vector. More 
formally, we can parameterize the window sizes as a sequence 
ℎ1, … , ℎ𝐻  of 𝐻  unique sizes. Suppose 𝑝ℎ𝑖  denotes the feature 
vector produced on 𝑘 filters with a window size of ℎ𝑖, then the 
final 𝑘𝐻 × 1 feature vector is 

𝑝∗ = 𝑝ℎ1 ∥ ⋯ ∥ 𝑝ℎ𝐻  

where ∥ is the vector concatenation operation. The output layer 
consists of 𝑚 units (one per each of the 𝑚 target labels) and is 
fully connected to the full feature vector 𝑝∗. The output vector 
𝑞 ∈ ℝ𝑚 is thus defined as 

𝑞 = 𝑊𝑞𝑝
∗ + 𝑏𝑞 

where 𝑊𝑞 ∈ ℝ𝑚×𝑘𝐻 is a parameter matrix and 𝑏𝑞 ∈ ℝ𝑚 is the 
vector of bias terms. In order to get a categorical distribution, 
we apply a softmax layer to the vector 𝑞 such that 

𝑝𝑗 =
𝑒𝑞𝑗

∑ 𝑒𝑞𝑗𝑚
𝑗=1

 

where 𝑝𝑗 ∈ [0,1]  is the probability estimate of the label at 
index 𝑗. We optimize on the standard categorical cross-entropy 
loss via a variant of stochastic gradient descent (SGD) called 
RMSProp (9). Much of the formulation presented is purposely 
kept abstract since it will be re-used in a later section. Clearly, 
the triage task is a binary classification problem where 𝑚 =
 2 . The configuration of the model implementation is as 
follows. We used word embeddings of size 200 pre-trained on 
the PubMed corpus (3). For the convolutional component, we 
use window sizes of 3, 4, and 5 with 200 convolutional filters. 
The model is trained for 30 epochs with a mini-batch size of 8 
and learning rate of 0.001. Since each instance is a collection 
of sentences and the window size is at most 5, we pad four 
zero-vectors at the beginning and the end of the input text as 
well as between sentences. Moreover, we use a dropout rate of 
50%. During training, we checkpoint model parameters at each 
epoch and only keep the checkpoint resulting in the highest F1 
on the development set. We train 10 such models as part of an 
ensemble. Each model of the ensemble is trained and tuned on 
a random split of 80% to 20% and seeded with a different 
value for random parameter initialization. 

III. RELATION EXTRACTION SYSTEM 
For the second task we propose a pipeline system that 

consists of three components: supervised named entity 
recognition (NER) for gene mention detection,  knowledge-
based gene normalization, and  supervised relation 
classification to predict each pair of genes found as either 
positive or negative for an interaction. It is possible to use an 
“out-of-the-box” solution such as GNormPlus (4) that 
identifies both gene mentions and their corresponding gene 
identifier directly; however, we opted for a supervised 
approach that allows us to leverage the generous gene 
annotations provided with the training corpus for this task. We 
describe the NER system used to identify potential gene 
mention spans along with the training corpus in Section 3A. 
We then describe our system for gene normalization in Section 

3B. Lastly, we describe the model we used for relation 
classification in Section 3C. 

A. Gene Mention Identification 
The aim of the first component in the pipeline is to identify 

spans of text that refer to specific genes. To that end, we 
propose the use of a deep neural network system based on a 
CNN-LSTM hybrid model proposed by Chiu et al. (5) for 
NER. This sequence-to-sequence model composes word 
representations with CNNs by convolving over character n-
grams. At the word level, contextual word representations are 
composed using a bi-directional LSTM layer. A separate fully-
connected softmax output layer is present at the output of each 
LSTM unit such that an Inside, Outside, Beginning (IOB) label 
prediction can be made for each token.  

Herein, we formulate the model from the bottom up while 
re-using some notations and definitions established in Section 
2. In this formulation, a word 𝑤𝑖  for 𝑖 ∈ [1, 𝑛] is treated as a 
lowercased character sequence 𝑐1𝑖 , … , 𝑐

𝑇𝑖
𝑖  representing their 

index into the character vocabulary 𝑉char. The corresponding 
character embedding matrix 𝐸char ∈ ℝ|𝑉𝑐ℎ𝑎𝑟|×32  embeds each 
character as a vector of length 32. We use the same embedding 
setup to produce character type embedding vectors of length 8 
indicating the type of character: lowercase, uppercase, 
punctuation, or other. This allows the model to generalize 
specific words while still considering the nuances involved in 
how named entities presented. Suppose the embedding matrix 
for character type is 𝐸ctype ∈ ℝ4×8  and 𝑧1

𝑖 , … , 𝑧
𝑇𝑖
𝑖  represents 

the sequence of enumerated character type for the word at 
position 𝑖. The word at position 𝑖 can then be represented as a 
matrix composition 𝐵𝑖  of its character embeddings, or 
concretely 

𝐵𝑖 = (

𝐸char[𝑐1
𝑖] ∥  𝐸ctype[𝑧1

𝑖]

⋮

𝐸char[𝑐
𝑇𝑖
𝑖 ] ∥  𝐸ctype[𝑧

𝑇𝑖
𝑖 ]

) 

where 𝐸char[𝑗] and 𝐸ctype[𝑗] are the jth rows of 𝐸charand 𝐸ctype 
respectively. We perform a convolution operation over 𝐵𝑖  of 
window size 3 to obtain the feature map 𝑣𝑖 = [𝑣1

𝑖 , … , 𝑣
𝑇𝑖−2
𝑖 ] 

such that 

𝑣𝑗
𝑖 = relu(𝑊char ∗ 𝐵𝑗:𝑗+2

𝑖 + 𝑏char) 

where 𝐵𝑗:𝑗+2
𝑖  is a window of matrix 𝐵𝑖  spanning from row 𝑗 to 

row 𝑗 + 2  and 𝑊char  and 𝑏char  are network parameters. We 
apply 50 filters to obtain 50 corresponding feature maps 
denoted as 𝑣1

𝑖 , … , 𝑣50
𝑖 . Let 𝑣𝑗

𝑖(𝑥) be the 𝑥th  value of 𝑣𝑗
𝑖 , then 

the word representation at position 𝑖 is 𝑢𝑖 = [�̂�1
𝑖 , … , �̂�50

𝑖 ] where 
�̂�𝑗

𝑖 = max (𝑣𝑗
𝑖(1), … , 𝑣𝑗

𝑖(𝑇𝑖 − 2)) . 

Once a word representation is composed for each word, we 
can use a bi-directional LSTM to model the sequence. It is 
important that we also include actual word embeddings as well 
as word type embeddings as input. The latter embeddings serve 
a similar purpose to that of the character types and can 
correspond to one of the five following classes: all lowercase, 
mixed-cased, capitalized, all uppercase, or other. Drawing from 
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the notation presented in Section 2, the input is a sequence of 
word indexes 𝑤1, 𝑤2, . . , 𝑤𝑛  into the word vocabulary 𝑉word 
and the corresponding embedding matrix is denoted as 𝐸word ∈

𝑅|𝑉word|×𝑑. In addition, we denote 𝑧1̅, 𝑧2̅, . . , 𝑧�̅� as a sequence of 
enumerated word types corresponding to the embedding matrix 
Ewtype ∈ R5×32 . The bi-directional LSTM can then be 
composed as 

ℎ⃗ 𝑖 = LSTM→(𝑢𝑖 ∥ 𝐸word[𝑤𝑖] ∥ 𝐸wtype[𝑧�̅�]), 

ℎ⃖⃗𝑖 = LSTM←(𝑢𝑖 ∥ 𝐸word[𝑤𝑖] ∥ 𝐸wtype[𝑧�̅�]), 

ℎ𝑖 = ℎ⃗ 𝑖 ∥ ℎ⃖⃗𝑖        for  𝑖 = 1, … , 𝑛 

where 𝐸word[𝑗] and 𝐸wtype[𝑗] are the 𝑗𝑡ℎ  rows of 𝐸word  and 
𝐸wtype  respectively. Moreover, LSTM→ /LSTM←  represent an 
LSTM unit composition in the forward/backward direction. 
The output at each timestep necessarily has its own softmax 
output layer in order to be able to tag each word with an IOB 
label. The output layer at position 𝑖, or 𝑞𝑖 ∈ ℝ𝑚, is defined as 

𝑞𝑖 = 𝑊𝑞𝑝𝑖 + 𝑏𝑞  

where 𝑊𝑞 ∈ ℝ𝑚×50, 𝑏𝑞 ∈ 𝑅𝑚 are parameters. In order to get a 
categorical distribution, we apply a softmax layer to the vector 
𝑞𝑖 such that 

𝑝𝑖
𝑗
=

𝑒𝑞𝑖
𝑗

∑ 𝑒𝑞
𝑖
𝑗

𝑚
𝑗=1

 

where 𝑝𝑖
𝑗
∈ [0,1]  is the probability estimate of the label at 

index 𝑗 for the word at position 𝑖. Again, we optimize on the 
standard categorical cross-entropy loss. However, since each 
instance may be of a different sequence length, we optimize on 
the mean loss computed over the 𝑛 output layers. 

Since we are only concerned with gene entities, the label 
space consists of: B-GENE, I-GENE, and O. These labels are 
sufficient to indicate whether the token is part of a gene 
mention. This model is trained on the supplied training data 
and additionally on the GNormPlus corpus (4) which include 
re-annotations of the BioCreative II GM/GN corpus (6). The 
core training data consists of 5668 sentence-level training 
examples while the GNormPlus corpus constitutes an 
additional 6389. We used the same pre-trained word 
embedding vectors of size 200 as described in Section 2 for the 
document triage task. The network was trained using SGD with 
an exponential decay rate of 0.95 for a maximum of 10,000 
iterations. On each iteration, we trained the network using a 
mini-batch of 20 random examples. We check-pointed every 
100 iterations and saved only the checkpoint with the best F1 
on the development set. We also deployed early stopping such 
that training is stopped if there are no improvements for 10 
checkpoints. Like in the document triage task, we train 10 such 
models (each with a different seed) as part of an ensemble 
where each model is trained on a smaller random subset of 
only 50% of the original training set. 

B. Entrez Gene ID Normalization 
For the gene normalization component, we initially 

experimented with a naive approach using a the gene lexicon 

provided with the BioCreative II Gene Normalization training 
data as well as mappings provided with the training corpus. 
This served as a reasonable baseline; however, it does not take 
context into consideration during the mapping process. A gene 
mention may be incorrectly mapped to one of its many 
homologs resulting in increased false positives. We report the 
performance of this baseline system in Section 4. The final 
version of our gene normalization system is knowledge-based 
and more sophisticated in that it takes into consideration both 
the gene mention and the context. This system relies on the 
NCBI gene database [7] to identify the candidate gene IDs for 
a particular mention and further narrows it down to a best 
guess based on the document in which it occurred. We define 
two utility functions that serve as the basis for this system. The 
first function, 𝑔𝑒𝑛𝑒_𝑛𝑎𝑚𝑒_𝑙𝑜𝑜𝑘𝑢𝑝, takes as input a mention 
span and returns a list of candidate gene IDs sorted by 
relevance. This is achieved by querying the NCBI gene 
database via the E-utilities API1. This provides a ranked of 
candidate genes for a given gene mention. The intuition here is 
that the top few in this list are either the correct gene or at least 
homologs of the correct gene. We now define the second 
function, 𝑔𝑒𝑛𝑒_𝑝𝑚𝑖𝑑_𝑙𝑜𝑜𝑘𝑢𝑝, which takes as input a PMID 
and returns a list of candidate gene IDs for the article. We 
achieve this by making another query to the NCBI gene 
database using the PMID of the current document as query 
input2. This allows us to narrow down the list of candidate 
gene IDs to ones that have already been identified as appearing 
in the document. The final gene normalization algorithm takes 
as input a gene mention and a PMID and returns either a gene 
ID or NULL. The latter indicates that no match can be found, in 
which case we simply ignore the span entirely for the 
remainder of the pipeline. The algorithm is defined as follows.  

 

For example, suppose the document in question has PMID 
18725399 and we wish to map the gene mention “Utp21” to a 
gene ID. The above algorithm will correctly return 851125 as 
the gene ID which can be verified via footnotes 1 and 2. 

1 An example query for the gene span “Utp21”:  
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=gene&te

rm=Utp21&retmax=100&sort=relevance 
2 An example query for the PMID 18725399: 

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=gene&te
rm=18725399[PMID] 
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C. Relation Classification of Gene Pairs 
For the relation classification component, we use the same 

CNN architecture introduced in Section 2 modified to suit the 
problem of relation classification. The model hyper-parameters 
mirror that of the triage task and the overall task remains 
binary classification. However, each pair of candidate genes in 
an article constitutes a separate instance. For each pair of 
candidate genes, we generate a training instance by performing 
entity binding; i.e., we replace mentions of the pair with 
GENE_A and GENE_B in the corresponding document text. 
For a gene pair (𝐴, 𝐵), we also generate an additional instance 
for the reverse case (𝐵, 𝐴) given directionality does not matter. 
Note that we run both cases of a candidate pair during testing 
and consolidate the predictions. We also generate examples for 
the exception case when the candidate pairs are the same 
genes, i.e. 𝐴 =  𝐵, in which case GENE_S is used for entity 
binding of the single gene ID. We also replace mentions of 
other genes with GENE_N in either case. In total, we generated 
2972 instances from the 597 articles in the training set. At test 
time, we only predict pairs as positive where the mean 
probability is above 50% for the  instance generated from 
(𝐴, 𝐵) and its reverse case (𝐵, 𝐴). In case no pairs meet the 
threshold, we try to make at least one prediction by predicting 
the pair with the highest probability (even if it is ≤ 50%) as 
positive for an interaction. 

IV. RESULTS AND DISCUSSION 
For the document triage task, we evaluated performance by 

training on a held-out set of 70 documents. The system 
achieved 73.88% F1 with a precision and recall of 67.54% and 
81.53% respectively. There may be nuances to this task that is 
not being effectively captured by the model. On the official test 
set, the system achieved 67.23% F1 with a precision of 54.73% 
and recall of 87.12% respectively 

TABLE I.  SYSTEM TEST PERFORMANCE 

System Evaluation Method P (%) R (%) F (%) 

Using Entrez Gene ID 36.53 25.61 30.11 

Using HomoloGene IDs 45.44 31.61 37.29 

 

To evaluate the performance of our system pipeline for the 
relation extraction task, we tested the system on a held-out set 
of 70 documents. The following are evaluations based on the 
individual components and are mutually independent. For the 
NER system, the performance is at 59.48% F1. For the gene 
normalization component, our initial naive approach using a 
gene mention lexicon yielded an accuracy of 49.67%. This 
poor performance may be due to the fact that the lexicon is 
outdated (2008 release) and that the context of a gene mention 
is generally ignored with this approach. The more sophisticated 
version that operates by cross-referencing the NCBI gene 
database yielded a much improved accuracy of 78.90%. The 
final component in the pipeline responsible for relation 
classification yielded an F1 of 81.80% with a precision of 
72.57% and recall of 93.71%.  

We now report end-to-end performance of the system for 
relation extraction on the held-out validation set. If we assume 
perfect gene annotations, we can extract pairs with reasonable 
performance at an F1 of 83.72%. NER and gene normalization 
represent a major barrier to achieving such promising results 
overall. Our initial experiments show that with naive gene 
normalization, the system performed with an F1 score of 
20.62% with a precision and recall of 20.41% and 20.83% 
respectively. The low performance here is expected since 
incorrect gene annotations will propagate to the end of the 
pipeline; nevertheless, it serves as a baseline for comparison. 
The PubTator tool (8), which uses GNormPlus as the backend 
for gene annotations, results in more than double the recall at 
43.72% but still suffers from low precision at 19.27% with an 
overall F1 of 26.75%. If we use the more sophisticated gene 
normalization method from Section 3.2, we observe improved 
precision and recall at 28.82% and 51.04% respectively and an 
overall performance of 36.84% F1 on the validation set.  

The performance of our system on the official test set is 
recorded in Table 1. When evaluating on original Entrez Gene 
IDs, we achieved a system performance of 30.11% F1 with a 
precision and recall of 36.53% and 25.61% respectively which 
ranked second among systems that were submitted. When 
evaluating on HomoloGene IDs, which accounts for 
homologous genes, we achieved a system performance of 
37.27% F1 with a precision and recall of 45.44% and 31.61% 
respectively which ranked first among submitted runs. 
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Abstract—There is a big amount of published articles in the 
biomedical domain. Automatically processing and extracting 
biologically crucial information such as protein-protein 
interactions from the biomedical literature is one of the main 
difficulties for both research and commercial platforms. We 
contributed to the Document Triage Task of the Precision 
Medicine Track of the BioCreative VI challenge assessment by 
developing text mining methods to assist health professionals and 
researchers. We build three methods, which are capable of 
receiving a list of PMIDs and returning a relevance-ranked 
judgement for the articles in order to identify relevant PubMed 
articles, which are about genetic mutations affecting protein-
protein interactions. Our first approach is based on meaning 
calculation, which computes the words’ meaning scores in the 
scope of classes. Meaning computation is based on the Helmholtz 
principle and has been utilized for various applications in the 
field of text mining like feature extraction, information retrieval, 
text classification, and text summarization. Nevertheless, to the 
best of our knowledge, our effort is the first work, which uses 
meaning calculation of the terms retrieved from the Interaction 
Network Ontology (INO) to construct a semantic classifier. Our 
second approach depends on the extraction of the most salient 
terms, generated from Genia Tagger1, taking advantages of the 
term frequency-relevance frequency (TF-RF) metric. This 
methodology also uses sprinkling, which is a process of adding 
further terms corresponding to class labels of documents to the 
training documents in order to strengthen class-based 
relationships in the training phase. Our third approach is based 
on using a Convolutional Neural Network (CNN). In our model, 
the first layer embeds words into low-dimensional vectors. 
Convolutions over the embedded word vectors are performed in 
the next layer by using multiple filter sizes. The next stage is 
max-pooling the result of the convolutional layer into a long 
feature vector. Finally, the results are classified with the softmax 
layer. In order to evaluate our results, we also implemented 
linear kernel with Support Vector Machines (SVM) and Naïve 
Bayes (NB) as the baseline algorithms. According to the 
experiment results the presented methods outperform the 
baseline algorithms. 

Keywords— text mining, meaning, TF-RF, sprinkling, CNN. 
1 http://www.nactem.ac.uk/GENIA/tagger/ 

I. INTRODUCTION  
     The huge volume of published articles in the scientific 
literature continues to enlarge by the contributions of millions 
of people every day. It is vitally important to extract clinically 
useful information that links genes, mutations, and diseases to 
specialized treatments from this published literature for the 
precision medicine initiative (PMI), which aims to find 
individualized treatment for a patient according to his/her 
genetic profile.  
     Protein-protein interactions (PPIs) are crucial for a range of 
biological processes such as cell cycle control, DNA 
replication, signal transduction etc. Mutations may affect the 
stability and affinity of protein-protein interactions. Thus, 
combining the efforts in protein-protein interaction [1, 2] and 
mutation extraction [3] has high significance for precision 
medicine. 
     Donaldson et al. [4] present two classifiers for finding 
protein-protein interaction data in PubMed. According to their 
experiments performed on the BIND database [5], the SVM 
method with linear kernel is reported to give higher 
classification results than a Naïve-Bayesian classifier. 
Mitsumori et al. [6] present one of the other systems where 
SVM is used. They use the bag-of-words (BOW) feature 
representation for the words that are closest to the protein 
names in order to get protein-protein interactions. They 
compare their own system’s capability on extracting protein-
protein interactions, to that of other systems’ in the literature. 
A semi-supervised information extraction approach for 
identifying sentences in text that show an interaction relation 
between two proteins is suggested in [7]. This methodology 
depends on the analysis of the paths between two protein 
names in the dependency parse trees of the sentences. They 
mention that they get significant improvement over the results 
of the existing methods in the literature. Participants in the 
Protein-Protein Interaction tasks of the BioCreative II and 
BioCreative III Challenges also attempt to develop methods 
that aim to detect interaction relevant articles by using 
numerous techniques. Alex et al. [8] apply a SVM classifier 
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with the usage of pre-processing, part-of-speech (POS) 
tagging, sentence splitting and shallow parsing. They report 
70% precision, 86% recall and 77% F-score. Another study 
present a methodology which integrates  protein name 
detection and abbreviation resolution systems by also using 
SVM and obtain 78% F- score [9]. 

     In this paper, we present our participation in the Document 
Triage Task of PrecMed Track of the BioCreative VI 
Challenge assessment by developing text-mining methods to 
assist health professionals and researchers. We present three 
methods for identifying the articles about genetic mutations 
affecting protein-protein interactions. Our approaches are 
based on class-based semantic values of terms, ontology and 
convolutional neural networks. 

II. RELATED WORK 
Term Frequency-Relevance Frequency (TF-RF)  
 
      Term Frequency-Relative Frequency (TF-RF) is presented 
by Lan et al. [9] and is a supervised term weighting method, 
which is based on the number of positive and negative 
documents that a term occurs in. In a text classification setting 
a selected category is labeled as the positive category, while 
all other categories in the same dataset are labeled as the 
negative category. The formula of TF-RF is: 











),1max(
2log

c
atfRFTF w

          (1)           

where tfw shows the term frequency of word w, a denotes the 
number of documents in the positive category which include 
word w, and c is the number of documents in the negative 
category which include word w. According to an explanatory 
example given in [9]; in contrast to IDF, with RF methodology 
each word is assigned more appropriate weights from the point 
of different categories since RF considers the category 
information. 
 
Helmholtz Principle from Gestalt Theory and Meaning 
Calculation 
 

According to the Helmholtz principle in human perception 
from Gestalt Theory, humans easily notice events with a large 
deviation from noise or randomness [10]. A number of 
explanatory examples are given by Balinsky et al. [10] and 
these examples show that interesting events and meaningful 
features appear in great deviations from randomness. 

 Textual data comprise structures like sentences, 
paragraphs and documents. Balinsky et al. [10] try to describe 
the meaningfulness of these structures by utilizing the 
Helmholtz principle. A meaning value is given to each word 
for modeling the meaningfulness of these structures. Balinsky 
et al. [10] mention that a sharp rise in frequencies can be used 
in quick modification discovery. A burst is a period of 
increased and quick modifications in an event as mentioned in 
[11].  

 The meaning value of a term (word) w in a class cj is 
computed with Eq. (2) [10]: 

 Nm
m
K

m
cwmeaning j log)1(log1),( 













        (2) 

 where w denotes a word, m shows the occurrence of term w in 
class cj, K specifies the frequency of term w in the whole 
dataset.  N=L/B; L represents the length of the dataset and B 
represents the length of the class cj in number of terms [12]. If 
a word’s meaning score in a specific class is larger, then this 
means that this word is more informative for that class.  A 
meaning value of a word essentially shows how high this 
word’s frequency is likely to be in a class of documents 
compared to the other classes of documents. 
 
Sprinkling 
 
        Sprinkling is a process of adding further terms 
corresponding to class labels of documents to the training 
documents in order to strengthen class-based relationships in 
the training phase. For instance, in [13] Latent Semantic 
Indexing (LSI) is performed both on standard term-document 
matrix and term-documents matrix augmented with sprinkled 
terms. The sprinkling process is shown in Figure 1: 
 
 
 

    Sprinkling 
                                                                      
  
  
                     
 
(a)Original term-document matrix (b) Sprinkled term-document matrix 
 
Figure 1. (a) Original term-document matrix with r documents and j 
terms. (b) term-document matrix after sprinkling with n terms. These 
new additional terms show the class labels of the corresponding 
documents. For instance, d1 belongs to class c1, d2 belongs to class c2, 
d3 belongs to class c1, di belongs to class c2…. etc.  
 
     Chakraborti et al. [13] drop sprinkling terms after 
performing LSI. Test documents are classified using k-Nearest 
Neighbors (kNN) with the Euclidean distance metric. 
According to their experimental results the presence of 
sprinkling terms improves the classification performance. For 
instance, the classification accuracies of Sprinkled-LSI on four 
different subgroups of 20NewsGroups1 dataset are reported as 
86.99%, 80.60%, 80.42%, and 93.89% while the classification 
accuracies of LSI are reported as 79.32%, 72.55%, 66.30% 
and 91.17%; respectively [13]. They state that the integration 
of further knowledge, which represents the latent class 
structure, improves the classification performance.  
 
 

1 http://qwone.com/~jason/20Newsgroups/ 

       t1   t2      t3   …tj    c1  c2 c3 …cn 
d1     1      0      1        1    1    0   0       0 
d2     0      1      1        0      0    1   0      0   
d3     1      1      1        1    1    0   0       0 

... 
di    1     1       0       0  0    1   0      0   
… 
dr       0    0        0          1      0    0   1    0 
 

 

      t1   t2     t3     …  tj  
d1     1      0        1         1 
d2     0      1        1         0         
d3     1      1        1         1 

... 

 
di    1     1       0         0 
       
… 
dr      0    0        0              

1 
 

 

111



3 
 

Consequently; with sprinkling process, documents related to 
the same class are located closer to each other. 
 
Convolutional Neural Network (CNN)  
 

Convolutional neural networks apply layers with 
convolving filters, which are used as local features [17]. CNN 
models have achieved a notable performance in the natural 
language processing field, particularly in the task of sentence 
classification [14, 15, 16).  

A CNN architecture with multiple convolution layers was 
proposed by Kalchbrenner [15]. This model consists of 
positing latent, dense and low-dimensional word vectors 
(initialized to random values) as inputs.  

Kim’s [14] model, shown in figure 2, proved that CNN 
can obtain state-of-the-art results with a simple one layer 
architecture. This model uses pre-trained word vectors as 
inputs. This is followed by a convolution and maxpooling 
layer, and a softmax classifier.  

 
Figure 2.  Model architecture with two channels for an example 

sentence [14].  
 

A similar model is proposed by Johnson and Zhang [16], 
but they used high dimensional ‘one-hot’ vector 
representations of words as CNN inputs. Their focus was on 
classification of longer texts, rather than sentences.  

III. METHODS 

A. Semantic Meaning Classifier with INO (SMC-INO) 
In a novel text classification algorithm named Supervised 

Meaning Classifier (SMC) [18], the authors calculate the 
meaning scores of the words in a document for a certain 
category and sum them to obtain a relative class membership 
value of the document for that category. In other words, the 
class membership of a particular document is determined by 
the sum of the meaning or the importance of its terms for that 
particular class. This is somewhat similar to the Naive Bayes 
algorithm where the class conditional document probability 
P(D|C) is calculated by multiplying probabilities of the class 
conditional term probabilities P(w|C) in addition to a class 
prior probability P(C). The SMC classifier uses meaning 
calculations as explained in Section II. Ganiz et al. [18] 
calculate the meaning scores of each word in the training set 
for each class, which constitutes the training phase. In the 

classification phase, for an unlabeled new test instance, 
meaning scores of the words for a particular class are summed 
up to obtain class membership value.  The class with largest 
membership value is chosen as the label of the instance. SMC 
is show to be superior to Multinomial NB and SVM with 
linear kernel, especially on inadequate training data [18]. 

In our experiment setting, we first find interaction terms by 
using the Interaction Network Ontology (INO) [19] and 
generate training and test datasets according to these terms. 
Then, we use the SMC algorithm for classifying the 
documents. 

B. Sprinkled Relevance Value Classifier (S-RVC) 
We implemented a Relevance Value Classifier similar to 

SMC with the only difference that the class-based term values 
are calculated by using the TF-RF metric described in Section 
II. We developed Sprinkled Relevance Value Classifier (S-
RVC) which has the same architecture with RVC with the 
only difference that; S-RVC uses additional terms which 
represent the class relationships between documents. In other 
words, class labels are added into the standard term-document 
matrix in order to enrich the class knowledge in the training 
corpus and add this information into the classification model. 

C. Convolutional Neural Network (CNN)  
The CNN model architecture, which is related to Kim 

Yoon’s model [14], includes several layers such as 
embedding, convolution, max-pooling, dropout and softmax. 
In the first layer that defines the embedding layer, vocabulary 
word indices correspond to low-dimensional vectors and 
embeddings are learned from scratch. Then convolutions are 
performed on the embedding matrix via linear filters of 
different sizes (3, 4, 5). Each filter operates for generating a 
feature map for a window of words. This is followed by a 
max-pooling operation [16], which is applied, to each feature 
mapping for inducing a particular feature vector. For 
regularization, the dropout method is used which avoids co-
adaptations of hidden units to decrease overfitting. Finally, 
with the softmax layer normalized probabilities over labels are 
generated. In our experiments, the hyperparameters, which are 
the number and sizes of convolutional filters, dropout rate, and 
mini-batch size, are chosen with investigating their impacts on 
performance during the training phase.  

IV. EXPERIMENT SETUP 

A. Data set 
The training dataset of Biocreative VI Document Triage 

Task has 4082 PubMed articles. These articles are manually 
labelled as relevant (i.e. describing genetic mutations affecting 
protein-protein interactions) or not relevant by BioGRID 
database curators. This dataset has skewed class distribution, 
since 1729 of these documents are labelled as relevant while 
2353 of them are labelled as not relevant. There are 17765 
words in the training dataset of Biocreative VI Document 
Triage Task. The provided training set is further split into 
training (70%) and test (30%) sets for evaluation purposes as 
shown in Table 1. 
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Table 1. Overview of training and test splits of the dataset 
 

Dataset # Relevant 
citations 

#Not Relevant 
citations 

#total 
citations 

Training  1210 1769 2979 
Test  519 584 1103 

 

Interaction Network Ontology (INO) and Genia Tagger 

The Interaction Network Ontology [19] was used to select 
protein related interaction keywords from the literature. We 
obtained a sequence of literature mining keywords common in 
the training dataset, which includes 437 tokens. Named entity 
tags, which are cell lines, cell types, DNA, RNA and protein 
names, are extracted from the training dataset with the Genia 
Tagger [20]. In our experiment settings, we used the detected 
terms via INO and Genia Tagger to increase the performance 
of the document classification algorithms.  

B. Experiment Setting and Evaluation 
We apply stemming and stopword filtering to these datasets. 

After running the algorithms on 10 random training and test 
splits, we report the average of these 10 results. The evaluation 
metrics in our experiments are precision/recall and F-Measure. 

C. Baseline Algorithms 
We use two baseline algorithms in order to evaluate the 

results of our methods. The first baseline algorithm is the 
customary linear kernel of SVM. The secondly baseline 
algorithm is Naïve Bayes. 

V. RESULTS AND DISCUSSION 
We evaluate and compare the three proposed methods with 

the two baseline algorithms, which are commonly used high 
accuracy techniques in the text classification field. The 
experiment results are shown in Table 2. According to Table 2, 
the F-scores of the baseline algorithms are 60.3% and 61.4%, 
for SVM with linear kernel and Naive Bayes, respectively. It is 
important to note that linear kernel is the traditional state of the 
art algorithm in SVM for text classificationin domain [21,22]. 
We achieve our best F-score performance of 88.6% with CNN, 
which outperforms the two baseline algorithms with a 
significant difference. While SVM with linear kernel achieves 
the highest precision of 92.0%, it performs remarkably worse 
than all other algorithms in terms of F-score. Furhermore, our 
other two algorithms, S-RVC, SMC-INO, obtain 75.9% and 
86.2% F-scores as shown in Table 2. The algorithm which gets 
the lowest F-score among our algorithms is S-RVC; still it 
obtains higher F-score in comparison to both linear kernel and 
Naive Bayes. The superioty of S-RVC over both baseline 
algorithms could be explained with the usage of class-based 
relavence values of terms and additional sprinkled terms. 
Similarly, the superiority of SMC-INO over both baseline 
algorithms could be explained with the usage of class-based 
meaning values with the integration of terms retrieved from 
INO. The advantages of semantic text classification over the 
traditional text classification are analyzed and discussed in 
several studies in the literature such as [23, 24, 25, 26]. On the 
other hand, we get the highest F-score performance over the 

baseline algorithms with CNN. This may not be surprising, 
since the high performance of deep learning algorithms in 
comparison to other existing algorithms are presented in many 
recent studies [27, 28, 29; 30].  

Table 2. Experiment results 

Method Precision Recall F-Measure 

linear kernel 0.920 0.437 0.603 

Naive Bayes 0.832 0.461 0.614 

SMC-INO 0.774 0.921 0.862 

S-RVC 0.755 0.745 0.759 

CNN  0.863 0.912 0.886 

  

 Furthermore, SMC-INO, S-RVC and CNN obtain the 
following precision, recall and F1 values on the real test dataset 
of the Document Triage Task of the Precision Medicine Track 
of the BioCreative VI challenge: SMC-INO obtain 0.4886 
average precision, 0.5849 recall and 0.5268 F1; S-RVC  obtain 
0.5055 average precision, 0.7178 recall and 0.5865 F1;CNN 
obtain 0.5098 average precision, 0.9795 recall and 0.6685 F1. 

VI. CONCLUSION AND FUTURE DIRECTIONS 
We contributed to the Document Triage Task of PrecMed 

Track of the BioCreative VI challenge assessment by 
presenting three methods identifying PubMed articles which 
are relevant to genetic mutations affecting protein-protein 
interactions. We also implement two baseline algorithms. We 
achieve our best F-score performance of 88.6% with CNN, 
which outperforms the two baseline algorithms with a large 
margin. Our experimental results show the promise of our 
novel techniques, S-RVC and SMC-INO. To the best of our 
knowledge, our’s is the first attempt to build these approaches 
and apply them in the BioNLP domain. Moreover, CNN shows 
remarkable superiority over the baseline algorithms and it 
forms a foundation that is open to several improvements. As  
future work, we would like to analyze and shed light on how 
our new approaches and CNN implicitly capture semantic 
information in the context of a class when calculating the 
similarity between two documents. We also would like to 
develop a semantic kernel and compare it with the traditional 
linear kernel. In addition, we plan to implement an algorithm 
for the relation extraction Task of the PrecMed Track of the 
BioCreative VI challenge assessment and further improve our 
approaches. 
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Abstract—Extracting Protein-Protein Interaction (PPI) from 
biomedical literature is an essential step towards precision 
medicine. This paper proposes a novel PPI extraction approach, 
which leverages prior knowledge about protein-protein pair with 
memory network. The proposed memory network-based model 
(MNM) captures important context clues related to knowledge 
representations learned from Knowledge Bases (KBs). We 
perform 5-fold cross validation on the BioCreative VI PPI 
training set and achieve a F1-score of 59.67%, which 
demonstrates the effectiveness of memory network-based 
approach for the PPI extraction. 

Keywords—protein-protein interaction; relation extraction; 
memory network; prior knowledge 

I. INTRODUCTION 
With the rapidly growing of biomedical literature, it is 

becoming urgent and significant for natural language 
processing (NLP) experts to develop entity relation automatic 
extraction technique. The BioCreative VI proposes a challenge 
task of automated PPI extraction from the biomedical literature, 
which aims to extract interaction relations between protein 
entities mentioned within a document. Traditional feature-
based relation classification methods [1-4] apply machine 
learning technique to learn models with the one-hot 
represented lexical and syntactic features. However, these 
methods need extensive feature engineering and complicate 
linguistic analysis, which suffer from time consuming and may 
lead to error propagation. Recently, deep learning techniques 
have achieved great success in relation extraction tasks. 
Without the effort of feature engineering, deep neural networks 
could effectively extract semantic information for relation 
extraction. Zeng et al. [5] first employ Convolutional Neural 
Networks (CNN) [6] to capture the lexical and position 
information for relation classification, and get better 
performance than the traditional feature-based classifiers. Peng 
et al. [7] apply CNN for PPI extraction. Except the embeddings 
vector of each word in the sentence, they also add the 
embeddings of the head of each word. Gu et al. [8] adopt CNN 
to integrate context information and dependency information 
for chemical-disease relation (CDR) extraction. 

Apart from CNN, Recurrent Neural Network (RNN) [9] is 
another widely used deep neural networks, which shows 
competitive in relation classification. Zhang and Wang [10] 
employ RNN to tackle the problem of long-distance 
dependency between entity pairs. Zhou et al. [11] combine a 
long short-term memory (LSTM) [12] network with a kernel-

based model to capture semantic information and syntactic 
information. Zhou et al. [13] use bidirectional LSTM (Bi-
LSTM) for relation classification. Moreover, an attention 
mechanism is applied on Bi-LSTM to merge hidden 
representations from each time step into a sentence-level vector. 

All methods mentioned above use texts as resources. 
Nevertheless, biomedical experts have built many large-scale 
KBs, which contains PPI triples of protein entity pairs and their 
interaction relation, such as IntAct [14], BioGrid [15], UniProt 
[16]. These prior knowledge are crucial resources for PPI 
extraction. 

Recently, neural-based representation learning (RL) 
methods are also applied to encode relational knowledge with 
low-dimensional embeddings of entities and relations. Many 
methods have been proposed for knowledge representations 
(KRs) learning, among which translation-based models [17-19] 
are simple and effective with the state-of-the-art performance. 
TransE [17] is a typical translation-based method, which 
regards a relation r  as a translation from the head entity h  to 
the tail entity t  with the  h r t in the embedding space, if 
the triple ( , , )h r t  holds. 

This paper employs TransE to learn embeddings of protein 
entities and relations from KBs, which are then introduced to a 
memory network [20-21] to combined with context 
embeddings. Experiments on the BioCreative VI PPI dataset 
show that our approach could be effectively leverage prior 
knowledge to improve PPI extraction performance. Our 
approach does not rely on feature engineering and is 
computationally efficient. 

II. METHODS 

A. Preprocessing 
Each protein pair in a given document is regarded as a 

candidate instance except that the two proteins occur over more 
than one sentence. Our model takes word embeddings of 
sequences between protein pairs and knowledge 
representations learned from KBs as input to calculate the 
probability of interaction relation. The numbers in the context 
are replaced by a specific string, such as “NUMBER”. And 
some special characters, such as “*”, are removed. 
Additionally, we replace all the entity mentions as “gene0” 
except the pair entities need to classify. Finally, based on the 
positive statistics of training data, we select the protein pairs, 
whose distance is more than 5 and less than 50 characters, to be 
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the final instances. We use Word2Vec tool1 [22] to pre-train 
word embeddings on the datasets (about 9,308MB) 
downloaded from PubMed2. 

B. Knowledge representation learning 
We employ TransE model [17] to learn knowledge 

representations based on the entity-relation triples in protein 
KBs IntAct [14], BioGrid [15] and UniProt [16]. 

Note that entity embeddings are initialized with the 
averaged embeddings of words contained in entity mention and 
relation embeddings are initialized randomly. We introduce 
such prior knowledge, embeddings of entity and relation, into 
the memory network to improve the extraction performance. 

C. Architechture of the approach 
Memory network is a recurrent attention model over a 

possibly large external memory which allows to read and write 
to [20]. To leverage entity embeddings of protein pair, two 
memory networks are applied to pay attention to the two entity 
embeddings respectively to select important context words as 
shown in Fig 1. The two memory networks share the same set 
of parameters to learn the weights of the context words 
between the two entities. In addition, the attention mechanism 
in the two memory networks also share the same parameters, 
which could enable the two entities to communicate with each 
other, just like using same eyes to watch two things that may 
be relevant. 

In each memory network, there are two computational 
layers, each of which contains an attention layer and a linear 
layer. The outputs of the two networks are concatenated with 
relation embeddings learned from KBs for relation 
classification. 

Word 
embeddings

Entity1
embedding

Relation
embedding

...

Entity2
embedding

Softmax

Max

Linear Linear

Linear

Max

Max

Linear

Max

Attention Attention

AttentionAttention

 

Fig. 1. The architecture of the proposed memory network-based model 
(MNM). Entity1, Entity2 and Relation representtaions are learned by TransE. 
Our approach consists of two memory networks, each of which contains two 
attention layers which share the same parameters. Note that the two memory 
networks also share the common parameters, namely, that the same attention 
operation is applied to both Entity1 and Entity2. Finally, the two output 

                                                           
1  https://code.google.com/p/word2vec/ 
2 http://www.ncbi.nlm.nih.gov/pubmed/ 

vectors of the two memory networks and the relation embeddings are 
concatenated and sent to the softmax layer for relation classification. 

D. Memory network model (MNM) 
a) Attention mechanism: Given a word sequence 

between a pair of protein entities in a document 
1 2{ , ,..., ,..., }i ns w w w w , the corresponding word 

embeddings 1 2{ , ,..., ..., }i ne e e e  is regard as the memory 
d nm  , where d

ie   is a d-dimensional word vector. As 
for each attention layer, one entity embedding is concatenated 
to each piece of memory im  to select important evidences as 
follows: 

 tanh( [ ; ] )i a i entity ag W m e b   

where [ ; ]i entitym e  denotes the concatenation of 1d
im   and 

protein embedding 1d
entitye  , 1 2d

aW  , and 1 1
ab  . 

After obtaining 1 2{ , ,..., }ng g g , the attention weight of each 
word can be defined as follows: 


1

exp( )
exp( )

i
i n

jj

g
g







 

The attention layer output 1d
aoutput   is then calculated as 

a weighted sum of each piece of memory in m :  


1

n

a i i
i

output m


  

b) Dimension-wise max pooling: To take an optimal 
over the context embeddings and entity embedding, we do a 
dimension-wise max pooling on the attention layer output 

aoutput  and the linear transformation of entity embedding 

entitye . And the max pooling vector is considered as the new 

entity embedding entitye  for the next layer. For the other entity, 
the same operations are applied. Finally, we concatenate the 
two max pooling vectors of the second computational layer 
and the relation embeddings learned from KBs, and fed it to a 
softmax layer to perform relation classification. 

c) Location impaction: Following Sukhbaatar [20]，we 
control the input percentage of each piece of memory by its 
relative distance to the entity mention. Each percentage is 
calculated as follows: 

 , (1 / ) ( / )(1 2 / )i k i iper p n k d p n      
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Where n  is sequence length, k is the number of current layer, 
ip is the relative distance between current word and entity 

mention, d  is the dimension of word embeddings. Therefore, 
the actual memory vector is computed with , ,i k i i km e per  . 

III. RESULTS AND DISCUSSION 
We use the BioCreative VI PPI training dataset which has 

annotated some protein pairs that have relation, and perform a 
5-fold cross validation on it. Protein entity recognition and 
normalization are accomplished with GNormPlus [23] toolkits. 
The dimension of word, entity, and relation embedding are all 
100. The memory network model is trained by using Adam 
technique [24] with a learning rate 0.001. The whole 
framework is developed by PyTorch. 

A. Effects of prior knowledge 
In the experiments, the proposed MNM is compared with 

the following baseline methods: 

AE (Averaged Entity Embeddings): This method represents 
entities as an average of their constituting word embeddings, 
but does not concatenate relation embeddings to the outputs of 
memory networks. Only entity embeddings are employed. And 
relation embeddings are not used. 

TE (TransE-based Entity Embeddings): This method 
employs TransE-based entity embeddings learned from KBs, 
but does not concatenate relation embeddings to the outputs of 
memory networks. Only entity embeddings are employed. And 
relation embeddings are not used. 

AE-TR (Averaged Entity Embeddings and TransE-based 
Relation Embeddings): This method represents entities as an 
average of their constituting word embeddings, and 
concatenate TransE-based relation embeddings learned from 
KBs to the outputs of memory networks. Both entity 
embeddings and relation embeddings are applied. 

Table I lists the comparison results. Seen from the table, the 
proposed MNM outperforms all three baseline methods. 
Among the three baselines, the best one is AE-TR, which 
employs relation embeddings learned from KBs. Actually, AE-
TR is similar to MNM except that entity embeddings are not 
learned from KBs. 

Compared with AE, AE-TR simply add the relation 
embeddings and the F1-score is improved by 12.71%, which 
indicates that relation embeddings could provide effective 
clues about PPI relations to classifier. In MNM, both entity 
embeddings and relation embeddings are learned from KBs, 
and F1-score is 59.67%, which is 1.04% higher than AE-TR. 
That illustrates structured information contained in TransE-
based entity embeddings is more effective than the implicit 
semantic information expressed by word embeddings for 
relation classification. However, TE makes F1-score drop 
1.46% compared with AE. It perhaps because that without 
relation embeddings, structured prior knowledge in TransE-
based entity embeddings is hard been captured by our model. 

Note that if a protein entity is absent in KBs, the entity 
embedding is randomly initialized in MNM training. And for 

protein pairs not found in KBs, relation embedding is 
initialized as zero vectors.  

TABLE I.  EFFECTS OF PRIOR KNOWLEDGE 

Prior knowledge
Evaluation Measurement (%) 

p r F1-score 

AE 41.33 54.47 45.92 

TE 36.54 57.76 44.46 

AE-TR 50.53 70.13 58.63 

MNM 50.91 72.50 59.67 

B. Sharing attention operation 
Table II shows the effect of sharing attention operation. As 

can be seen from the table, not sharing attention operation 
causes F1-score to drop 0.66%. We believe that different 
attention operations to the two relevant entities would 
introduce more noises, which are not helpful to relation 
classification.  

TABLE II.  SHARING ATTENTION OPERATION 

Sharing or not 
Evaluation Measurement (%) 

p r F1-score 

Not sharing  50.50 72.24 59.01 

Sharing 50.91 72.50 59.67 

C. Effects of computational layer number 
We try several computational layers and the results are 

shown in Table III. Our MNM with different numbers of 
computational layers are expressed as MNM (k), where k is 
the number of computational layers. Among all models from 
single computational layer to four, we can observe that two 
and three layers get better performance. The best performance 
is achieved when the model contains two computational layers. 

TABLE III.  EFFECTS OF COMPUTATIONAL LAYER NUMBER 

Computational 
layer number 

Evaluation Measurement (%) 
p r F1-score 

MNM(1)  50.81 70.92 59.07 

MNM(2) 50.91 72.50 59.67 

MNM(3) 49.78 74.08 59.49 

MNM(4) 49.61 72.63 58.83 

D. Comparison with LSTM 
Table IV compares our memory network-based model 

(MNM) with bidirectional long short-term memory (Bi-LSTM) 
networks [13], which is the other state-of-art networks in 
relation classification. Different from [13], we introduce 
knowledge representations learned from KBs to our Bi-LSTM 
model. Each entity embeddings is concatenated with context 
word embeddings 1 2{ , ,..., ..., }i ne e e e  as each direction input.  

Attention mechanism is applied to produce a weight vector, 
and merge hidden representations from each time step into a 
sequence-level vector. The concatenation of bidirectional 
sequence-level vectors is concatenated with relation 
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embeddings further for relation classification. From the table 
we can see that the proposed memory network-based model 
(MNM) is more powerful in taking advantage of prior 
knowledge than LSTM architecture. 

TABLE IV.  COMPARISON WITH LSTM 

Model structure 
Evaluation Measurement (%) 

p r F1-score 

Bi-LSTM 49.77 71.71 58.60 

MNM 50.91 72.50 59.67 

E. Attention visualization 
To better demonstrate the effectiveness of attention 

mechanism, attention weights of two example sequences are 
visualized in the form of heat map in Fig. 2. For each sequence, 
the upper visible layers shows the weights of the context words 
toward Entity1, and the lower shows the weights of the context 
words toward Entity2. In the first example, “found” and 
“phosphorylated” have the maximum weights when paying 
attention to the entity “28984” and entity “207” respectively. 
As for the second example, “controls” has the maximum 
weight no matter which entity we pay attention to. From Fig. 2, 
we observe that our MNM could identify the important word 
effectively. 

 
Fig. 2. Visualization of attention weight by heat map. 

IV. CONCLUSION 
In this paper, we propose a memory network-based PPI 

extraction approach. The proposed approach calculates the 
weight of context words toward two protein entities by 
leveraging prior knowledge with attention mechanism in two 
memory networks. The experimental results show that the 
proposed memory network-based approach is better than 
LSTM architecture, and knowledge representations learned 
from KBs could significantly improve the PPI performance.  
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Abstract—The precision medicine initiative promises to 
identify individualized treatment depending on a patients’ 
genetic profile and their related responses. In order to help 
health professionals and researchers in the precision medicine 
endeavor, the BioCreative VI Precision Medicine Track focuses 
on mining protein-protein interactions (PPIs) affected by genetic 
mutations from the scientific published literature. This paper 
describes our method used to create our submissions to the 
document triage subtask. In our method, several deep learning 
models for document triage are used, and the ensemble of them 
performs better than any individual model. Our best submission 
achieves an F-score of 0.6909 on the test set. 

Keywords—Document Triage; Precision Medicine; Deep 
Learning; Ensemble 

I. INTRODUCTION 
The precision medicine initiative (PMI) promises to 

identify individualized treatment depending on a patients’ 
genetic profile and their related responses. In order to help 
health professionals and researchers in the precision medicine 
endeavor, one goal is to leverage the knowledge available in 
the scientific published literature and extract clinically useful 
information that links genes, mutations, and diseases to 
specialized treatments (1). Therefore, automatic text mining 
technique has received much attention. 

Despite previous studies in protein-protein interaction (2,3) 
and mutation extraction (4), no one has investigated how to 
combine these efforts in order to help assessing and curating 
the clinical significance of genetic variants, an essential step 
towards precision medicine. Thus, the precision medicine (PM) 
task in BioCreative VI aims to bring together the biomedical 
text mining community in a new BioCreative challenge task 
focusing on identifying and extracting from the biomedical 
literature protein-protein interactions (PPIs) changed by 
genetic mutations. This challenge consists of two subtasks. The 
first subtask is Document Triage, which focuses on identifying 
relevant PubMed citations describing genetic mutations 
affecting PPIs. The second subtask is Relation Extraction. 
Participants in this task will be expected to build automated 
methods that are capable of extracting experimentally verified 
PPIs affected by the presence of a genetic mutation.  

For the challenge, we participated in the first subtask 
(Document Triage Task) and our submissions to the subtask 

are created by the deep learning models. We presented an 
ensemble system that combines the results from five individual 
neural network models to identify relevant articles describing 
genetic mutations affecting PPIs from biomedical literature. 
The overview of our system architecture is shown in Fig. 1. 
Firstly, some preprocessing steps including text sentence 
splitting, tokenization and lowercasing are performed. 
Secondly, a word embedding is learned with large amounts of 
unlabeled data with the fastText tool (5). Moreover, the 
additional feature embeddings (POS and NER embedding) are 
introduced into the model. Then with the embeddings as input, 
five models are trained by the annotated training set. Finally, 
the results from the five models are combined by the weighted 
majority voting. The process is described in details in the 
following sections. 

II. FEATURES 
Currently word embedding is widely used in the field of 

NLP, especially based on the deep learning methods (6). In our 
method, we used it as the features of our baselines. Moreover, 
to investigate the effects of other features (such as part of 
speech (POS) and named entity recognition (NER)), these 
features are added into the baselines as additional features. All 
feature embeddings are parameters of the neural network 
model, and they can be optimized when the model is trained. 
Details of each of features are presented as follows. 

A. Word Embedding 
Word embedding, also known as distributed word 

representation, can capture both the semantic and syntactic 
information of words from a large unlabeled corpus and has 
attracted considerable attention from many researchers. 
Compared with the bag-of-words (BOW) representation, word 
embedding is low-dimensional and dense. In recent years, 
several tools, such as word2vec (7) and fastText (5), have been 
widely used in the field of NLP. To achieve a high-quality 
word embedding, we downloaded a total of 1,322,107 
MEDLINE abstracts from the PubMed website with the query 
string “protein” as the unlabeled data. Then the data and the 
training dataset (a total of 4,082 abstracts) provided in the PM 
document triage task were used to train 50-dimensional word 
embedding by the fastText tool as pre-trained word embedding.  
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B. Additional Features 
Due to the complexity of the natural language, some 

linguistic features are often employed in traditional machine 
learning methods. We also explored the effect of additional 
features (such as POS and NER). The POS information of each 
word were generated by the Stanford CoreNLP tool (8). In 
addition, NER tags information (including gene, chemical, 
disease and mutation entities) generated by the PubTator tagger 
(9) was also used as a feature. The dimensions of the POS and 
NER embedding are both five and they were initialized 
randomly. 

III. DESCRIPTION OF THE MODELS 
In this section we describe in details the five models used in 

our system, which include 1) LSTM, 2) CNN, 3) BiLSTM-
CNN, 4) RCNN and 5) HieLSTM. 

A. LSTM 
A recurrent neural network model, namely long-short term 

memory (LSTM) (10), is used in our ensemble system. For the 
tth word in the article, an LSTM takes as input xt, and produces 
ht based on the following formulas: 

 -1 -1xi t hi t ci t iti = (W x + W h + W c +b )   (1) 

 1 1(1 ) tanh( )t t t t xc t hc t c     c i c i W x W h b   (2) 

 1( )t xo t ho t co t o    o W x W h W c b   (3) 

 tanh( )t t th o c   (4) 

where   is the element-wise sigmoid function, and  is the 
element-wise product. {Wij} is the weight matrix set. {bi} is 
the bias vector set.  

Then the sequence of vectors h1:n output from all LSTM 
cells are combined into a single vector that represents the 
article by the max pooling layer. At last, a softmax function is 
used on this feature vector to compute the predictive 
probabilities of the article types. 

B. CNN 
In the convolutional neural network (CNN) model, a 

convolution operation is applied to produce local features. 
Given an input sequence X=[x1,x2,…,xi,...,xn], a fixed size k 
window approach is used to capture each element’s context 
information. Then a matrix operation, as shown in formula (5), 
is applied to each successive window in the sequence: 

 : 1ReLU( )con t t k f  C = W X b   (5) 

where Wcon is the transformation matrix that is the same across 
all windows in the article, ReLU is the rectified linear unit 
function (11), and C is the convolutional layer result. 

In our CNN model, two consecutive convolutional layers 
(window size k=3) are stacked to extract convolutional features. 
Then a max pooling operation and a fully connected hidden 
layer are used after convolutional features. Finally, a softmax 
function is used to classify articles. 

C. BiLSTM-CNN 
In general, CNN is capable of extracting local information 

and LSTM can capture long-distance dependency. So we 
combined the two neural network architectures into a model, 
namely BiLSTM-CNN. The model consist two parts, a 
bidirectional LSTM (BiLSTM) layer and a convolution layer. 
Firstly, an article is represented as a sequence of embeddings 
by the embedding layer. Next, the embeddings are given as 
input to a BiLSTM layer. In the BiLSTM layer, a forward 
LSTM computes a representation of the sequence from left to 
right, and another backward LSTM computes a representation 
of the same sequence in reverse. These two distinct networks 
use different parameters, and then the representation of a word 
is obtained by concatenating its left and right context 
representations. Then a tanh layer on top of the BiLSTM is 
used to learn higher features. Next the features are fed into a 
convolution layer and a max pooling operation is used to 
extract global features from the convolution layer. Finally, a 
softmax function is used to classify articles.  

D. RCNN 
Similar with the BiLSTM-CNN model, Lai et al. proposed 

a recurrent convolutional neural network (RCNN) for 
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Fig. 1. The overview of the system architecture. 

120



document classification (12). In the model, the recurrent 
structure to capture the contextual information to the greatest 
extent possible when learning word representations of articles, 
which may introduce considerably less noise compared to a 
traditional window-based neural network. Moreover, the model 
can reserve a large range of the word ordering when learning 
representations of articles. A max pooling layer is also 
employed that automatically judges which features in articles 
play key roles. 

E. Hie-LSTM 
Recently, Yang et al. proposed a hierarchical attention 

network (HAN) for document classification (13). The model is 
designed to capture two basic insights about document 
structure. First, since documents have a hierarchical structure 
(words form sentences, sentences form a document), a 
document representation is constructed by first building 
representations of sentences and then those are aggregated into 
a document representation. Second, it is observed that different 
words and sentences in a document are differentially 
informative.  

Our implementation of the model (Hie-LSTM) is similar to 
HAN, which has a hierarchical structure of documents using 
two LSTMs instead of two bidirectional GRUs in HAN. And 
the max-pooling layer is used in our model instead of the 
original attention layer in HAN. 

IV. MODEL ENSEMBLE 
In our method, the results of the above mentioned models 

are combined via the weighted majority voting (14). In the 
method, only the class labels are available from the classifier 
outputs. We define the decision of the tth classifier as 

, {0,1}t jd  . The ensemble result then chooses class J that 
receives the largest total vote: 

 , ,11 1
max

T TC

t t J t t jjt t
w d w d


 

    (6) 

where wt is the weight of classifier t, ∑wt=1 and dt,j is 1 or 0 
depending on whether classifier t chooses j or not.  

We found the best setting of weights via brute force grid 
search, quantizing the coefficient values in the interval [0, 1] at 
increments of 0.1. The search was evaluated on our 
development set to avoid overfitting. 

V. RESULTS 
The organizers of the BioCreative VI PM document triage 

tasks provided a corpus including the training and test sets. The 
training set consists of 4,082 annotated PubMed articles (title 
and abstract) as relevant or not relevant, and the test set 
consists of 1,500 unannotated articles. In our experiments, we 
randomly selected the 10% of the training set as the 
development set to tune the hyper-parameters. And the 
document triage performance was measured with an F-score 
which attributes equal importance to precision and recall (F1 
score). In addition, an Accuracy (Acc) measure is also used to 
evaluate the performance.  

A.  Training settings 
In our method, the parameters of the model in the word 

embedding are initialized with pre-trained word embeddings 
and other parameters are initialized at random from a uniform 
distribution. Then all parameters of models (except for the 
CNN using Adadelta (15)) are optimized using RMSprop (16) 
to minimize categorical cross-entropy. Our models were 
implemented using open-source deep learning library keras 
(https://keras.io) and trained on a NVIDIA Tesla K40 GPU. 

B. Performance of Individual Models 
Table I reports the results of each individual model on our 

development set. We found that the CNN model performed the 
worst, with BiLSTM-CNN slightly better than RCNN and Hie-
LSTM. The most competitive model is the LSTM model.  

C. The Effect of Additional Features on Performance 
We also investigated the effect of two additional features 

(POS and NER embeddings mentioned in the section II.B) on 
the performance of the models (LSTM, CNN and BiLSTM-
CNN) and Table II shows the results of different combinations 
of these features. 

The results show that F-scores generally decrease when 
these additional features are added into the models. When only 
POS feature is added, the models perform the worst. One 

TABLE I.  PERFORMANCE OF INDIVIDUAL MODELS ON OUR 
DEVELOPMENT SET 

Model Precision Recall F-score ACC 
LSTM 0.7157 0.8650 0.7833 0.8088 
CNN 0.6784 0.8282 0.7459 0.7745 
BiLSTM-CNN 0.6908 0.8773 0.7730 0.7941 
RCNN 0.6878 0.8650 0.7663 0.7892 
Hie-LSTM 0.7181 0.8282 0.7692 0.8015 

 

TABLE II.  THE EFFECT OF ADDITIONAL FEATURES ON PERFORMANCE 
ON OUR DEVELOPMENT SET 

Model Precision Recall F-score ACC 
LSTM 0.7157 0.8650 0.7833 0.8088 
+POS 0.6441 0.8773 0.7429 0.7574 
+NER 0.6460 0.8957 0.7506 0.7623 
+POS+NER 0.6307 0.9325 0.7525 0.7549 
CNN 0.6784 0.8282 0.7459 0.7745 
+POS 0.6650 0.8160 0.7328 0.7623 
+NER 0.6250 0.9203 0.7444 0.7476 
+POS+NER 0.6717 0.8160 0.7368 0.7672 
BiLSTM-CNN 0.6908 0.8773 0.7730 0.7941 
+POS 0.7167 0.7914 0.7522 0.7917 
+NER 0.6904 0.8344 0.7556 0.7843 
+POS+NER 0.6636 0.8712 0.7533 0.7721 
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plausible reason is that POS information is not necessary for 
the biomedical document triage task. Moreover, the noise may 
be introduced into the model by the errors of the POS and NER 
tools. 

D. Performance of Different Model Combinations 
Finally, the results of the previous models are combined 

into an ensemble. The results of our submitted runs on our 
development set and official results of the runs on the test set 
are shown in Table III. Our best submission achieves an F-
score of 0.6909 on the test set. On our development set, 
although F-scores generally decrease when the additional 
features are added into the models, they can help boost the 
performance of the ensemble system. When the results of 
LSTM, BiLSTM-CNN, Hie-LSTM, CNN with additional 
features and BiLSTM-CNN with additional features are 
combined, the highest F-score of 0.8101 is achieved on our 
development set. Moreover, the weights of models show that 
LSTM, BiLSTM-CNN and Hie-LSTM models have more 
contribution for the overall ensemble performance.  
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TABLE III.  PERFORMANCE OF DIFFERENT MODEL COMBINATIONS ON OUR DEVELOPMENT SET AND THE TEST SET 

Model 
 Our Development Set Official Test Set 
Weighted Precision Recall F-score ACC Precision Recall F-score ACC 

LSTM 1.0 0.7157 0.8650 0.7833 0.8088 0.5890 0.8068 0.6809 0.6687 
LSTM 
CNN 
BiLSTM-CNN 
RCNN 
Hie-LSTM 

0.2 
0.1 
0.3 
0.1 
0.3 

0.7398 0.8896 0.8078 0.8309 0.6112 0.7945 0.6909 0.7284 

LSTM 
CNN+ 
BiLSTM-CNN 
BiLSTM-CNN+ 
Hie-LSTM 

0.3 
0.1 
0.3 
0.1 
0.2 

0.7436 0.8896 0.8101 0.8333 0.5882 0.8219 0.6857 0.7103 

+means the model using the additional POS and NER embedding 
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Abstract—Identifying mutation induced protein-protein 
interaction (PPI) is a prime concern in the advancement of precision 
medicine (PM). The aim of this study is to develop an automatic tool 
to identify mutation-induced PPI from biomedical literature. 
Identification of such interactions is important for understanding the 
complex network of pathways that make up heterogeneous diseases. 
In the work, we applied two machine learning algorithms to deal with 
the problem. The first is the support vector machine. We proposed 
features including n-gram and article-meta information and train two 
SVM models with the linear kernel. The second is the neural network. 
We proposed a new network structure based on the convolutional 
neural network (CNN) which integrates convolved context features 
from different paragraphs and handcrafted features for MeSH term 
information. The performance of the developed models was 
evaluated on the training set of the BioCreative VI PM document 
triage task. The SVM-based approaches achieved the best overall F-
score, while CNN models have better precision.In the future, we will 
release the tool and continue to improve the performance of the 
developed CNN models by replacing the randomized initialized 
embedding layer with pre-trained word vectors and including more 
meta-information with. 

Keywords— precision medicine, personalized medicine, 
targeted therapeutics, CNN, PPI 

I. INTRODUCTION 
Precision medicine (PM) has been founded on the concept 

of specifically designing treatment based on molecular targets.   
Owing to the recent advances in high-throughput screening of 
patients’ tumors, disease prevention and treatment can be 
tailored based on the individual patient’s genetic profile 
(Pavelić, Martinović, & Kraljević Pavelić, 2015; Tannock & 
Hickman, 2016). The “one size, fits all” approach is no longer 
feasible, especially for patients diagnosed with heterogeneous 
diseases. 

However, a gap still exists in the process of identifying 
these molecular targets and how they function within pathways. 
The unprecedented growth of biomedical literature provides a 

unique opportunity to bridge this existing gap. Biomedical 
literature can provide valuable information of the functional 
influence of genetic variations and alterations to protein-
protein interactions (PPIs). Identification of such interactions is 
important for understanding the complex network of pathways 
that make up heterogeneous diseases. An example is in 
glioblastoma (GBM). GBM is a devastating malignant tumor 
in the brain with a highly heterogeneous characteristic found 
between and within patient tumors (T. Jue, Hovey, Davis, 
Carleton, & McDonald, 2015; T. R. Jue & McDonald, 2016). 
Due to high heterogeneity, treatment options have been limited 
for GBM patients. Manually identifying molecular/genetic 
targets and their interaction in pathways from publicly 
available literature has been cost-, labor- and time-intensive. 
Text mining becomes an inevitable technique in identifying 
significant genotype-phenotype data buried in the biomedical 
literature that can be translated into clinical use. Text mining 
can impact the drug discovery process, especially in 
heterogeneous diseases such as GBM. 

In this study, we present our text mining efforts to 
automatically identify PubMed articles with genetic mutations 
affecting PPIs using the dataset published by (Doğan et al., 
2017). We propose several features and train them with the 
support vector machine (SVM) (Vapnik, 1995). On the other 
hand, considering the recent resurgence in neural network, 
which provides a way to avoid the complicated process of 
feature engineering in supervised natural language processing 
tasks such as text classification(Rios & Kavuluru, 2017), 
named entity recognition (Lample, Ballesteros, Subramanian, 
Kawakami, & Dyer, 2016) and machine translation (Sutskever, 
Vinyals, & Le, 2014), we apply the convolutional neural 
network (CNN) architecture and study its performance for the 
task of identifying relevant PubMed articles that demonstrate 
the role of genetic mutations in changing PPIs. CNN model has 
achieved great success in the image classification challenge 
(Krizhevsky, Sutskever, & Hinton, 2012) and widely applied in 
several text classification tasks (Hsieh et al., 2016; Kim, 2014; 
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Zhang & LeCun, 2015; Zhang, Zhao, & LeCun, 2015). Based 
on the fundamental network architecture, we propose a new 
neural network architecture for our application and compare its 
performance with the SVM models and traditional CNN 
architecture. 

II. METHODS 

A. SVM-based Systems  
We first present the systems developed base on SVM. First 

of all, for each article, we used the NCBI E-Utilities to 
determine the MeSH terms associated with it. In total of 5,376 
unique MeSH terms were collected. The author names and 
their affiliation information were also collected as the meta-
information of the given article. We then tokenized the title and 
the abstract of each article by using GENIA tagger (Tsuruoka 
et al., 2005) and removed tokens which were listed as stop 
words in the PubMed stop word1. 

For each article, we extract the following features and used 
the sequential minimal optimization algorithm to train our 
SVM models with the linear kernel. 

 n-gram (n=1~3) features: We used TF-IDF as the 
weighing scheme to extract the features 

 MeSH term information: The MeSH terms assigned to 
the article are extracted as features. 

 Author names and their affiliation information: We 
derive two novel feature sets. First, the author names 
and their affiliation information are listed as two 
nominal features. For the second feature set, we use 
cosine similarity to calculate a similarity score between 
authors’ department details, title and abstract, and 
represent the scores as a numerical feature.  

 
Fig. 1. The fundamental CNN network architecture for bindary calssfication 
task. 

B. Fundamental CNN Architecture for Text Classification 
CNN is a feed-forward neural network with convolution 

layers interleaved with pooling layers. Fig. 1 shows the 
fundamental network architecture employed by most of the 
CNN-based text classification works. The input layer is 
composed of the word sequence appearing in the given text. 
For our task, the existing words in a given PubMed abstract 
form the input layer. The word sequence can be represented as 
a word matrix, in which each row is a vector corresponding to 
one word appearing in the sequence in one-hot form, and the 
dimension of the vector is equal to the vocabulary size 
determined by the number of unique words of the given dataset. 

1https://www.ncbi.nlm.nih.gov/books/NBK3827/table/pubmed
help.T.stopwords/ 

These vectors are mapped to low-dimensional representations 
through a matrix product which is illustrated as the word 
embedding layer in Fig1. 

The embedding layer then goes through the convolution 
layer, which applies convolutions over the embedded word 
input to compute its output. Let 𝑥𝑖 ∈ R𝑘 be the k-dimensional 
word embedding vector corresponding to the ith word of the 
input sequence. The input text x of length n can be represented 
as  

 𝑥1:𝑛 = 𝑥1⨁𝑥2⨁…⨁𝑥𝑛 

A convolution can be consider as executing a sliding 
window function f that slides over full rows of the given word 
matrix. We use h to indicate the size of the window. Therefore, 
the word vectors of a context window with a length of h can be 
represented as xi:i+h-1, where xi:i+h-1 refer to the concatenation of 
words xi,xi+1,…, xi+h-1. This sliding window function f as 
defined in (2) serves the similar function of the kernel during 
image processing for extracting features. 

 𝑐𝑖 = 𝑓(𝐰 ∙ 𝑥𝑖:𝑖+ℎ−1 + 𝑏) 

Equation (2) shows the feature ci generated from a window of 
words xi:i+h-1. Here b is a bias value and f is a non-linear 
function. The function is known as a filter or convolution 
matrix in image processing. 

This function is applied to each possible window in the 
input sequence {x1:h, x2:h+1, …, xn-h+1:n} by multiplying its 
values element-wise with the words in the window and sums 
them up. It then slides over the whole matrix to obtain the 
convolution result, which is referred to as a feature map as 
defined in (3). 

 𝐜 = [𝑐1, 𝑐2, … , 𝑐𝑛−ℎ+1] 

The convolution step indicated in Fig. 1 connects each 
region composing of three-word vectors of the input matrix to 
oneoutput neuron.For each feature map, we apply the max-
over-time pooling operation to output the maximum activation 
value (4). 

 �̂� = max(𝐜) 

Therefore, the max-pooling layer following the convolutional 
layer can subsample the feature maps and induce a fixed-length 
vector composed of the most important features. 

Finally, similar to regular neural networks, all outputs from 
the max-pooling layer are concatenated to form a fixed-length 
feature vector, which is then fully connected to a softmax layer 
for generating an output with a probability distribution over the 
possible classes. 

C. Proposed CNN Architecture  
This section delineates the proposed CNN architecture for 

the mutation-induced PPI document triage task. Considering 
the input of our classification system is a biomedical abstract, 
we enhance the network architecture presented in Fig. 1 from 
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two ways. First we decorate the max-pooled vectors with 
article meta-information. In this study, we leveraged the MeSH 
term information associated with each article to enhance the 
max pooled vector. We represent the feature vector of the 
MeSH terms by the one-hot encoding scheme. Because the 
numbers of unique MeSH terms observed in the training set is 
5,376, the size of the feature vector encoding all MeSH terms 
is 5,376. 

Furthermore, sentences described in abstracts of biomedical 
papers could be sequentially divided into sections like 
objective, methods, results and conclusion(Lin, Dai, Bow, Chiu, 
& Tsai, 2009) and the words used in each of which may 
convey different semantics. We therefore propose to capture 
the information in different paragraphs by using different 
CNNs. The max-pooled vectors generated by all of the CNNs 
are then concatenated with each other to form a dense vector. 
The vector is finally fully connected to a softmax layer for the 
classification outcome. Fig. 2 shows the proposed CNN 
architecture developed for our application. 

 
Fig. 2. The proposed CNN network architecture for the document triage task. 

As shown in Fig. 2, we construct five CNNs in our network. 
We connect the nodes representing the word sequence from the 
article title to the first CNN only. For every two sentences 
sequentially appeared in the abstract, we connect them to the 
second to fourth CNNs. For the remaining sentences, we 
connect them to the last CNN. 

III. RESULTS 

A. Experimental Setup 
The training set from (Doğan et al., 2017)was used in this 

study. It contains 1,729 positive instances and 2,253 negative 
instances.Various configurations’ performance was assessed in 
this study. “Basic CNN” configuration refers to the standard 
CNN architecture illustrated in Fig. 1. The “proposed CNN” 
configuration is the network architecture contains the five 
CNNs as depicted in Fig. 2. The “Proposed CNN + MeSH” is 
the multi-CNN architecture along with the MeSH information.  

In the “SVM Baseline” configuration, the training set is 
generated by removing stop-words. This configuration was 
extended by further including the MeSH term information 
associated with each article (indicated as “SVM Baseline + 
MeSH”). Finally, the “SVM Baseline + MeSH + Similarity” 
configuration includes all features described earlier. The 
second SVM-based system, denoted as “SVM Baseline 

(NER)”, was developed by removing sentences without 
containing any entities mentions such as genes, mutations, and 
chemical names. We used the recognition results of PubTator 
(Wei, Kao, & Lu, 2013) to conduct the filtering process. 
Furthermore, all entity mentions recognized by PubTator were 
replaced with their categorization tags in the training set.  

We applied three-fold cross validation on the training set. 
For all experiments related to CNN, we used a word vector of 
size 300. The value of each word vector is randomly initialized. 
We set the context window and number of feature maps as 3 
and 50, respectively. The toolkit used for implementing the 
CNN model is CNTK5. We used Weka to implement the model 
trained with SVM algorithms. The standard metrics including 
precision (P), recall (R) and F-measure (F) were used to report 
the performance of the developed models.  

B. Experimental Results 
Table 1 presents the results on the training set. The best 

precision among all studied methods is 0.627 which can be 
attributed to the basic CNN model. Comparing with the basic 
network architecture, the proposed CNN architecture has better 
recall and results in an improved F-score by 0.008. By 
decorating the proposed architecture with the MeSH term 
information, the precision can be further improved to 0.613 
leading to a better F-score. We can learn from the results that 
the proposed network architecture has a better generalization 
power while the basic CNN model can precisely identify 
documents related to mutations affecting PPIs. 

TABLE I.  THREE FOLD CROSS VALIDATION RESTULS ON THE 
TRAINING SET 

Configuration P R F 

Basic CNN 0.627 0.618 0.623 

Proposed CNN 0.604 0.659 0.631 

Proposed CNN+MeSH 0.613 0.655 0.633 

SVM Baseline 0.592 0.800 0.680 

SVM Baseline + MeSH 0.607 0.790 0.686 

SVM Baseline + MeSH + Similarity 0.615 0.778 0.687 

SVM Baseline (NER) 0.603 0.751 0.669 

SVM Baseline (NER) + MeSH 0.614 0.751 0.676 

 

The performance of SVM-based approaches has better 
overall F-scores but lower precisions. The best recall (0.8) was 
achieved by the SVM baseline. We can also recognize that the 
precision of the SVM-based methods can be improved with the 
inclusion of more handcraft features. The best precision 
achieved by SVM is 0.615, which is attributed to the model 
with all proposed features. The results demonstrated the 
capability of the SVM models for generalizing the context 
relevant to mutations affecting PPIs is better that the studied 
CNN models. However, the models require more handcraft 
features to achieve a better precision. 

Finally, we can see that the SVM-based models trained 
with NER information have lower F-scores. After analyzing 
the results, we believe this is due to that some abstracts of the 

5https://www.cntk.ai/ 
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training set haven’t be processed by PubTator, therefore no 
entity information is available for them. 

IV. CONCLUSION 
In this study, we applied two popular text classification 

algorithms for automatically identify PubMed articles with 
genetic mutations affecting PPIs. In addition to the basic n-
gram features, we proposed to encode article-meta information 
including MeSH terms and authorship as features to improve 
the performance of SVM. The three-fold cross validation on 
the training set demonstrated that the proposed features can 
improve both the precision and F-scores. We also adapted the 
traditional CNN architecture for our task. Comparing with 
SVM, the CNN-based model had a better precision but lower 
precision and F-measure. We believed that it may be due to the 
parameter sharing scheme used in the traditional CNN model. 
We therefore proposed new network architecture to capture 
different semantic features buried in different paragraphs. The 
proposed architecture can also encode handcrafted features like 
MeSH term information. Compared the performance of the 
proposed architecture with that of the traditional CNN, the 
results demonstrated the proposed architecture can improve the 
recall and F-measure of the traditional CNN architecture. In the 
future, we will release the tool and continue to improve the 
performance of the developed CNN models by replacing the 
randomized initialized embedding layer with pre-trained word 
vectors. We will also include more meta-information and 
incorporate techniques for embedding author and MeSH term 
information into low-dimensional vector spaces to provide 
better representations. 
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Abstract—This paper describes our participation in both 
tasks of the BioCreative VI Precision Medicine track: Document 
Triage Task and Relation Extraction Task. We propose Entity-
enhanced Hierarchical Attention Neural Networks (EHANN) for 
tackling both tasks. The EHANN model leverages three attention 
mechanisms to combine and differentiate three different kinds of 
information from the biomedical texts, i.e., word, entity, and 
sentence, when constructing a document representation. The 
proposed model was evaluated on the provided training data 
using 10-fold cross-validation. We achieved average accuracy of 
96.65% for the Document Triage Task and that of 96.31% for 
the Relation Extraction Task. The experimental results show that 
the EHANN is an effective model for mining protein interactions 
from biomedical texts. 

Keywords—neural networks; deep learning; attention 
mechanism; named entity recognition; protein-protein interactions 

I. INTRODUCTION 
In 2015 President Obama announced a research initiative 

that aims to accelerate progress toward a new era of precision 
medicine (PM). With the recent development of large-scale 
biologic databases, powerful methods for characterizing 
patients, and computational tools for analyzing large sets of 
data, the prospect of applying the concept of PM broadly has 
been dramatically improved (1). Since a large amount of 
knowledge is available in the scientific published literature, 
extracting clinically useful information, such as relations 
between genes, mutations, and diseases, from the literature 
could help health providers make specialized decisions for 
diagnosis and treatments (2). Discovering the knowledge of 
protein-protein interaction (PPI) changed by genetic mutations 
from the biomedical literature is an essential step towards PM 
since how genetic background influence signaling pathways of 
PPI is crucial for predicting disease phenotypes (3).  

BioCreative VI PM track is a new BioCreative challenge 
task focusing on identifying and extracting from the 
biomedical literature protein-protein interactions changed by 
genetic mutations. This track has two tasks: 1) identifying 
relevant PubMed articles describing genetic mutations 
affecting PPIs (Document Triage Task), and 2) extracting 
experimentally verified PPI affected by the presence of a 
genetic mutation from PubMed articles (Relation Extraction 
Task). In the Document Triage Task, the organizer provide a 
training dataset that contains PubMed articles (title and abstract) 
with manually created labels (relevant/nonrelevant) by 
BioGRID database curators and participants need to implement 

automatic methods capable of return a relevance-ranked 
judgement for a list of testing Pubmed articles. In the Relation 
Extraction Task, a training dataset is also provided with 
manually annotated relevant interacting protein pairs. Given a 
testing data set (PubMed title and abstract), participants need to 
firstly recognize and identify gene/proteins mentioned in the 
text and normalize them to Entrez Gene ID, and secondly 
return the set of interacting protein pairs (and their 
corresponding Gene Entrez IDs) mentioned in the text that are 
affected by a genetic mutation.  

This paper describes our participation in both tasks. We 
view the first task as a classification task and the second as a 
combination of a named entity recognition task and a 
classification task. We propose Entity-enhanced Hierarchical 
Attention Neural Networks (EHANN), a novel neural 
architecture, for the classification tasks. EHANN is an 
extension to the Hierarchical Attention Network (HAN) (4). 
HAN includes two attention mechanisms at the word and 
sentence level so that the model could pay more or less 
attention to individual words and sentences when constructing 
the representation of a document. Different from the HAN, the 
proposed EHANN constructs a document representation by 
aggregating representations of entities in addition to word and 
sentence representations as in HAN. This will enable EHANN 
to especially capture entity relation information beyond word 
and sentence information. Moreover, the proposed EHANN 
leverages one more attention mechanism at the entity level in 
addition to the two attention mechanisms so that different 
entities are differentially treated. We leveraged BELminer, a 
previously developed system (5), for extracting entities in both 
tasks.  

II. METHODS 

A. Entity-enhanced Hierarchical Attention Neural Networks 
The architecture of the proposed EHANN is shown in 

Figure 1. It consists of eight neural network layers (from 
bottom to top, they are word/entity representation layer, 
bidirectional gated recurrent unit (GRU) layer, attention layer, 
sentence and entity representation layer, bidirectional GRU 
layer, attention layer, document representation layer, and 
classification layer), which can be categorized into five main 
parts, namely, word/entity sequence encoder, word/entity level 
attention layer, sentence/entity-bunch encoder, sentence and 
entity-bunch level attention layer, classification layer. At the 
beginning, the word or entity sequences are fed into a word or 
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entity sequence encoder and represented by a word or entity 
annotation. Subsequently, word or entity level attention 
mechanisms take a word or entity annotation as input and 
output a sentence or entity-bunch (we call a combination of 
entities from a sentence as an entity-bunch) representation.  
Then the sentence or entity-bunch representation is fed into 
another attention mechanism simultaneously and generates a 
document representation. Eventually, a softmax function layer 
is used on the document representation for classification. We 
explain each part below and focus on the entity information 
flow (authors can refer to (4) for the word information flow).  

a) Entity Sequence Encoder. Suppose the ith sentence 
𝑠! , 𝑖 = 1, 2,… , 𝐿 in a document contains 𝑀 types of entities 
(e.g., gene entity type and chemical entity type), we denote 𝑒!"

!  
as the tth (𝑡 = 1, 2,… ,𝑁) entity of entity type 𝑗 (𝑗 = 1,2,… ,𝑀) 
in the sentence 𝑠! . The entities are embedded into vectors 
using a pre-trained embedding matrix 𝐸, which results in the 
entity representation 𝑒!"

! = 𝐸𝑒!"
! .  

b) Bidirectional GRU. We use a bidirectional GRU (6) 
to incorporate the contextual information from both directions 
of entities, i.e., a forward GRU reads the input sequence as it 
is ordered from 𝑒!!

!  to 𝑒!"
!  and a backward GRU reads the 

sequence in the reverse order from 𝑒!"
!  to 𝑒!!

! . The forward 
GRU results in  a sequence of forward hidden states 
(ℎ!!

! , ℎ!!
! ,… , ℎ!"

! )  by the following equations: 

ℎ!"
! = 1 − 𝑧!"

! ∘ ℎ! !!!
! + 𝑧!"

! ∘ ℎ! !!!
! , 

where 
ℎ! !!!
! = 𝑡𝑎𝑛ℎ(𝑊!𝑒!"

! + 𝑈!(𝑟!"
! ∘ ℎ! !!!

! )) 

𝑧!"
! = 𝜎(𝑊!

!𝑒!"
! + 𝑈!

!ℎ! !!!
! ) 

𝑟!" = 𝜎 𝑊!
!𝑒!"

! + 𝑈!
!ℎ! !!!

! , 

and 𝑊! ,𝑊!
! , 𝑊!

! , 𝑈! , 𝑈!
! , 𝑈!

!  are weight matrices associated 
with entity type 𝑗, 𝜎(∙) is a logistic sigmoid function, and 𝑧!"

!  
and 𝑟!"

! are update gate and reset gate, respectively. Similarly, 
the backward GRU results in a sequence of backward hidden 
states (ℎ!!

! , ℎ!!
! ,… , ℎ!"

! ) which can be computed similarly. By 
concatenating ℎ!"

!  and ℎ!"
! , we have an annotation denoted as 

ℎ!"
!  (i.e., ℎ!"

! = [ℎ!"; ℎ!"] ) for the entity 𝑒!"
!  capturing both 

preceding entities and following entities.  
c) Entity Level Attention Layer. Since the entities 

contribute differentially to understand the sentence, we use 
attention mechanism to let the model pay more attention to 
individual entities that are important for the classification task. 
We use a softmax function on the entity annotation ℎ!"

!  to 
obtain a normalized importance weight 𝛼!"

! : 

𝛼!"
! =

𝑒𝑥𝑝(𝑢!"
! ′𝛿!

!  )
𝑢!"
! 𝛿!

!
!

 

where 𝑢!"
! = tanh(𝑊!

!ℎ!"
! + 𝑈!

!) is a hidden representation of 
ℎ!"
!  and 𝛿!

! is a high level representation learned during training 
indicating the importance of entities. Then the entity-bunch 𝑏!

! 
can be computed by 𝑏!

! = 𝛼!"
! ℎ!"

!
!  with the focus on 

important entities of entity type 𝑗 from the sentence 𝑠!.  

d) Entity-Bunch Encoder. Since a document contains 𝐿 
entity bunches (i.e., 𝐿 sentences), we use a bidirectional GRU 
to encode the entity-bunch 𝑏!

!. The forward GRU is computed 
by: 

ℎ!
! = 1 − 𝑧!

! ∘ ℎ!!!
! + 𝑧!

! ∘ ℎ!!!
!  

Fig. 1. Architecture of Entity-enhanced Hierarchical Attention Neural Networks. 
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and the back ward GRU ℎ!
! is computed similarly. We get an 

annotation for the entity-bunch by concatenating ℎ!
! and ℎ!

!, i.e., 
ℎ!
! = [ℎ!

!; ℎ!
!]. 

e) Sentence and Entity-Bunch Level Attention Layer. To 
pay more attention on the sentences and entity-bunches that 
are important to classify a document, we also leverage 
attention mechanism to take the sentences and entity-bunches 
as input simultaneously. By doing so, the model is able to  
focus more or less on a combination of words (i.e., sentences) 
or a combination of entities (i.e., entity-bunch). We feed the 
sentence annotations and entity-bunch annotations into an 
attention mechanism by 

 𝛼! =
𝑒𝑥𝑝(𝑢!

!′𝛿)
𝑢!
!′𝛿!

 

where 𝑢!
! = tanh(𝑊!ℎ!

! + 𝑈!) . We can obtain a document 
representation by summing over all the entity-bunches and the 
sentence: 

𝑑 = 𝛼!ℎ!

!

!

+ 𝛼!
!ℎ!

!
!

!

!

!

. 

f) Classification Layer.We use a softmax function on 
the document representation 𝑑  and obtain the label by 

𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥! 𝑝(𝑦|𝑑),  
𝑝 𝑦 𝑑 = 𝜑 𝑊!𝑑 + 𝑈!  

where y is the label for document d, 𝜑(∙) is a softmax function, 
and 𝑊! and 𝑈! are weight matrices. 

B. Entity Recognition and Normalization 
In the Document Triage Task, a named entity recognition 

tool we developed in our previous studies (5, 7) was utilized to 
extract the entities from the given texts. For the named entity 
normalization, we used TaggerOne (8), a trainable semi-
Markov structured linear classifier for any entity types. We did 
joint training for the genes and chemicals using diverse corpus 
from prior BioCreative shared task data sets.  We 
supplemented the annotations provided by TaggerOne with 
annotations from other third-party tools such as beCAS (9) and 
Reach (10). Our strategy was to build consensus across 
multiple named entity recognition tools for the genes and 
chemicals.  

For the Relation Extraction Task, we also utilized the above 
tool but differently we extracted genes and mutations by 
additionally using the annotations of tmVar (11).    

III. EXPERIMENTS AND RESULTS  

A. Document Triage Task 
The organizers provided 4,082 annotated PubMed articles 

(title and abstract), of which 1,729 (42.4%) were relevant 
documents describing genetic mutations affecting PPIs and 
2,353 (57.6%) were non-relevant (see Table I). A set of 1,500 
PubMed articles (title and abstract) was given as testing data to 
be classified into relevant or non-relevant document. 

 

TABLE I.  STATISTICS OF THE TRAINING DATA OF DOCUMENT TRIAGE 
TASK 

Document # Relevant Docs # Non-relevant Docs # 

4,082 1,729 2,353 

 

We merged the title and abstract into a document and 
extracted two types of entities, i.e., genes and chemicals, from 
the document. In addition, we also obtained MeSH Terms 
using MetaMap (12) for each PubMed article. Though MeSH 
Terms were not entities, they could be fed into the proposed 
model effortlessly. Thus, there were totally three types of 
entities (𝑀=3) utilized in the EHANN. 

B. Relation Extraction Task 
In the Relation Extraction Task, the organizers provided 

597 training PubMed articles (title and abstract), with 
annotated proteins (and the corresponding Gene Entrez IDs) 
and interacting protein pairs mentioned in the text that are 
affected by a genetic mutation. Table II lists the statistics of 
this training data. The same set of 1,500 testing PubMed 
articles is given to recognize proteins (i.e., genes) first and then 
classify each protein pair into interacted or non-interacted pair 
by gene mutations. 

TABLE II.  STATISTICS OF THE TRAINING DATA OF RELATION 
EXTRACTION TASK 

Document 
# 

Gene 
ID # 

Unique 
Gene ID 

# 

Relation 
# 

Avg # of 
Gene IDs 
per Doc 

Avg # of 
Relations 
per Doc 

597 8,833 1,316 760 14.8 1.3 

 

To prepare the training data for the EHANN, for each pair 
of genes (e.g., Gene A and B) extracted by our tool from the 
given texts, we created a document consisting of all single 
sentences that contained both genes and all the intervals 
between two genes if they were located in different sentences 
(including Gene A and B). By doing so, each pair of genes was 
associated with a document. In addition, since the task aims to 
detect the mapping of gene products functional regions through 
the identification and study mutation that affecting the stability 
and affinity of molecular interactions, which means the 
detection of PPIs changed by genetic mutations is a crucial step 
(PPIM relationship). To achieve this goal, we considered the 
gene pairs between which one or more mutations occurred. 
Then we labeled the document as 1 if the relation of the 
corresponding gene pair was found in the given annotated data, 
and 0 otherwise.  

C. Model Parameters 
For both tasks, we evaluated the proposed model and tuned 

the hyperparamters on the training data using 10-fold cross-
validation with random shuffling. We pre-trained the word 
embedding 𝐸  on 1.25 million PubMed open access articles 
retrieved in March 2016. The dimension of  𝐸 is set to 100. We 
set the GRU dimension to be 100. In each training process, we 
set epoch to 30 and batch size to 50. For training the model, we 
use categorical cross entropy as the loss function and RMSprop 
optimizer as the rate learning method. 
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D. Results 
For the Relation Extraction Task, Table III shows the 

results of the named entity recognition. We extracted a total of 
8,808 gene IDs from the training data, where there were 1,276 
unique gene IDs. Note that those gene IDs are not necessarily 
occurred in the given annotated data. The precision, recall and 
F-measure for the gene entity recognition are 0.644, 0.642, and 
0.643, respectively. Using the genes extracted by our tool, we 
created 9,047 pairs of genes. Among these pairs, 1,262 pairs 
were annotated as interacting pairs in the provided training data, 
so we assigned label ‘1’ to these pairs and ‘0’ to the rest of 
pairs. By doing so, we built a set of training data for the 
proposed model.  

TABLE III.  RESULTS OF NAMED ENTITY RECOGNITION FOR THE 
RELATION EXTRACTION TASK 

# of 
Extracted 
Gene IDs 

# of Extracted 
Unique Gene 

IDs 

# of 
Gene 
Pairs  

# of Gene 
Pairs with 
Relation 

# of Gene 
Pairs without 

Relation 
8,808 1,276 9,047 1,262 7,785 

 

Table IV shows the classification results of the EHANN 
model for both tasks. The measurement is the average accuracy 
of 10-fold cross-validation on the training data. We achieved 
average accuracy of 96.65% (standard deviation is 9.57%) for 
the Document Triage Task and slightly lower average accuracy 
of 96.31% (standard deviation is 1.43%) for the Relation 
Extraction Task. 

TABLE IV.  EXPERIMENTAL RESULTS OF THE EHANN MODEL ON THE 
TRAINING DATA  

Task Average Accuracy (Std.) 
Document Triage Task 96.65% (+/- 9.57%) 

Relation Extraction Task 96.31 %(+/- 1.43%) 
 

IV. DISCUSSION  
As shown in Table IV, the performance of the proposed 

EHANN model is promising for both task based on the 
evaluation on the training data. We also observe that the 
standard deviation for the Document Triage Task is higher than 
the Relation Extraction Task. The reason might be that the data 
size of the former task is smaller than the latter task. For 
example, there are 3.6k documents in each round of the 10-fold 
cross validation used for training in the former task while there 
are 8.1k documents in the latter task.  

A limitation in this work is the gene entity recognition tool 
used for the Relation Extraction Task. Since the precision and 

recall of extracting gene entities are low, the actual 
classification accuracy might drop significantly. Therefore, we 
will focus on gene entity recognition in the future work. 

V. CONCLUSION  
This paper describes the methods utilized in our 

participation of two tasks in the BioCreative VI PM track. We 
propose an Entity-enhanced Hierarchical Attention Neural 
Network (EHANN), which leverages three attention 
mechanisms to enable the model focus more on the important 
words, entities and sentences for the tasks. The experimental 
results show that the proposed EHANN model is effective for 
mining protein interactions from biomedical texts. 
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Abstract— The knowledge on the protein/gene interactions 
that are affected by mutations helps understand phenotype-
genotype associations and predict disease prognosis and 
responses to treatments. Such information is scattered around in 
scientific literature and its manual curation is very time and 
resource consuming. Although much research has been done in 
the past to extract protein-protein interaction (PPI) information 
automatically from literature, much less has been done on 
extracting PPIs affected by mutations. An important step 
towards extracting such information is automatically retrieving 
the relevant articles. In this study, we classify abstracts as 
relevant or irrelevant, where being relevant means the article 
contains information that at least one PPI is affected by a 
mutation. We started out with a bag-of-words and bigrams 
model, and then added some frequency statistics. Interactions are 
modeled by triplets, where a triplet is defined as two protein 
names and an interaction word in a sentence. The Stanford 
Dependency Parser, which helps find the dependency graph for 
each sentence, was used to further calculate the shortest path 
distances for each of the three pairs of words in a triplet. We also 
used a model to estimate the probabilities that a triplet forms a 
true interaction. The shortest paths between protein name and 
mutation word pairs in the sentences were computed as well. 
Features based on all these above were used in a Gradient 
Boosting Trees model. Our model achieved satisfactory 
performance in the training data of the Biocreative VI challenge. 

Keywords— Protein-protein interactions; mutations; text 
mining; biomedical literature retrieval; protein interactions 
affected by mutations  

I. INTRODUCTION 
The publications in biomedical literature have been 

increasing at an accelerated speed. Reading all the literature in 
a particular domain of interest has become less and less 
feasible in recent years. And the gap between the number of 
papers a researcher can read and the number of all the papers 
he/she needs to read will only become wider over time. 
Searching literature using keywords at literature databases such 
as PubMed has been a very popular approach for finding 
relevant scientific articles. However, such searches can often 
return hundreds or even thousands of papers, many of which 
are not highly relevant to the topics a user aims to find. 
Biomedical literature triage (or retrieval) has been a popular 
topic in recent years [1-12]. Most of the methods use machine 
learning methods to retrieve relevant articles related to a 
particular topic. Literature triage tasks vary widely depending 
on the subdomain of the literature and also on the particular 

information one aims to retrieve.  

In this study, we address the problem raised in the 
Biocreative challenge VI track 4, mining protein interactions 
and mutations for precision medicine. This challenge consists 
of two subtasks: (1) Document triage: identify relevant 
PubMed citations describing genetic mutations affecting 
protein-protein interactions; and (2) Relation extraction: extract 
experimentally verified protein-protein interactions (PPI) 
affected by the presence of a genetic mutation. Much research 
has been done in the past to extract protein-protein interaction 
(PPI) information automatically from literature [13-24]. 
Extracting PPIs affected by mutations is very challenging in 
that not only one needs to deal with information on PPIs, but 
also on whether they are affected by mutations. The 
information on whether a PPI is affected by mutations often 
occurs in sentences different from the one where PPIs are 
mentioned, which makes the tasks more challenging.  

For document triage task, the training dataset consists of a 
set of ~4K PubMed articles. These articles are manually 
labelled as relevant/not relevant by BioGRID database [25] 
curators. The goal is to build automatic methods capable of 
receiving a list of PMIDs and return a relevance-ranked 
judgement of the test set for triage purposes.  

For relation extraction task, a subset of the relevant articles 
in document triage task was manually annotated with relevant 
interacting protein pairs. Each PubMed article in this set has at 
least one interacting pair which is listed with the Gene Entrez 
ID of the two interactors. These protein-protein interactions 
have been experimentally verified and the analysis of natural 
occurring or synthetic mutations has identified protein residues 
crucial for the interaction. The goal is to build automated 
methods that are capable of receiving a set of PMID documents 
and return the set of interacting protein pairs (and their 
corresponding Gene Entrez IDs) mentioned in the text that are 
affected by a genetic mutation. 

The validity of the text mining methods is evaluated using 
standard metrics such as average precision, f-measure, etc. In 
addition, we also used Area Under the Curve (AUC) to 
evaluate different models. 

In the rest of the paper, we will first describe the method 
we developed for both tasks. We will then present our result on 
mainly the first task. We end the paper with conclusion and 
discussion. 

This study was partially supported by a grant from NIGMS of National 
Institute of Health under award number R01GM126558. 
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II. METHODS 

A. Data  
The data used in this work are from PubMed articles. The 

dataset consists of titles and abstracts from 4082 papers, each 
manually labeled by BioGRID database curators as relevant or 
not relevant, for the training data, and 1500 papers for the test 
data.  

B. Manual curation of mutation related words 
Mutation related words were first manually curated from a 

list of words with a high TF-IDF between the true and false 
labels. When using cross validation to tune the model, mutation 
words not included in the training fold were excluded to avoid 
a potential information leak. 

C. Feature extraction and model building 
1) Triplet based modeling for protein-protein interactions 
Protein-protein interactions (PPI) were modeled based on a 

triplet concept we developed in a previous study [26], where a 
triplet is defined as two protein names and an interaction word 
describing their interaction or relationship in the same 
sentence. The dictionary of interaction words were developed 
by a combination of manual and computational approach [26]. 
The method was later successfully used in knowledge 
discovery and other applications [27-30]. 

2) Bag-of-words and bigrams model  
We started out with a Bag-of-words and bigrams model, 

and then added some frequency statistics from the title and 
body parts of the abstract, given that the title and the body have 
different information for triage. Treating the whole document 
as a bag, a word’s potential to become a feature for training 
classifiers will depend on its term frequency in each abstract 
compared with its occurrence through the whole document. 
This way the words that appear often in the whole bag will be 
weighted less when deciding features. Besides the features 
from Bag-of-words, some frequency statistics were proved to 
be contributive in our initial Support Vector Machine model. 
These include: the percentage counts of protein/gene names, 
mutation words and interaction words, the percentages of 
sentences in an abstract that have 1, 2 or 3 and above pairs of 
protein name and mutation word within the sentence, the 
percentage count of within-sentence protein name and mutation 
word pairs in an abstract, and an indicator of whether a protein 
name and mutation word both appear in the title. Table 1 
shows some of the most frequent words identified and kept in 
the model at this step.  

We took this linear support vector machine (SVM) as our 
baseline model. It achieved an ROC-AUC score of 0.724 (std 
0.0812) an F1 score of 0.5999 (std 0.05073). This linear SVM 
with bag-of-words features gives a baseline for our models 
performance. 

TABLE I.  MOST FREQUENT VOCABULARY AFTER BAG-OF-WORDS 

 
3) Stanford Dependency Parser 
The Stanford Dependency Parser was used to find the 

dependency graph for each sentence. For each triplet consisting 
of two protein names and an interaction word in a sentence, we 
computed the shortest path in the dependency graph between 
every pair of words in the triplet. Imagine each word is a node, 
each typed dependency is an edge that connects two nodes, 
then the parser can give the network graph of a sentence. Given 
two nodes, for example, Protein 1 and Protein 2, or Protein 1 
and its interaction word with Protein 2, we need to find which 
path that connects these two nodes are the shortest. We can 
then obtained the Abstract-level features based on this 
information. For instance, the percentage counts of the triplets 
in an abstract that have the shortest path distances equaling 1, 
2, 3, falling in the range 4 to 6, falling in the range 7 to 11, or 
equaling 12 and above, the percentage of sentences that have 
shortest path information in an abstract, etc.   

We also used a model developed by another member of our 
group to extract true PPIs from the abstracts [26, 28, 31]. This 
model also uses information of the dependency graph 
generated by the Stanford Dependency Parser. Intuitively the 
shortest path features give us information to distinguish true 
PPIs among all the triplets. Triplets consisting of two proteins 
and an interaction word in the same sentence were then 
extracted from the abstracts and the model was used to 
estimate the probabilities that they form a true interaction. 
Therefore, by estimating the probabilities for triplets in an 
abstract to be true (PPIs), we added more features such as the 
percentage counts of the triplets with certain probability 
ranges. (We took the three equally sized bins [0, 1/3) (1/3, 2/3], 
(2/3,1].) We would then count the  frequency of triplets with 
predicted probability falling into each bin.   

The previous features give an idea of how many protein, 
interaction, and mutation words are contained in an abstract 
and an estimate for how many true PPIs are contained, but we 
have not yet done anything that connects the mutations to PPIs.  

We  computed the shortest paths in the dependency graphs 
between protein names and mutation words and added 
additional features based on these. For each protein word 
mutation word pair, we computed the shortest path between 
them. For each such pair, we computed the maximum 
probability given by our PPI extraction method over all triples 
containing the given protein. The probabilities were again put 
into bins [0 <= p < 1/3], [1/3 <= p < 2/3], [2/3 <= p <=1]. 
Shortest path lengths were again placed into the bins 1, 2, 3, 4-
6, 7-11, 12 and above as before, then binned again according to 
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max PPI probability. For example, suppose there is a path 
connecting the protein tubulin with the mutation words SNP of 
length 8. This path will fit into the bin [7 <= sp <=11]. If our 
PPI extraction model gives a maximum probability of 0.56 that 
a triplet containing tubulin is a true PPI then this path will go 
into a bin with [7 <= sp <= 11] and [1/3 < p <= 2/3] since there 
are three probability bins and 6 shortest path length bins, there 
are a total of 18 bins a path length can go into. For each 
abstract, we take as a feature, the frequency of shortest paths 
lengths in each bin. For convenience we will call the 
probability bins: [0 <= p < 1/3] as bin 0, [1/3 < p < 2/3] as bin 
1, [2/3 <= p <= 1] as bin 2.  

We also employ a bag of words and bigrams approach to 
the words along each shortest path and to the dependencies 
along each path. If a path has a max PPI probability falling into 
bin 2, we append 2 to the end of each word in the path as 
follows: Tyorosines___2 recognized___2 trapped___2. 

And similarly for dependencies. This shortest path had a 
max PPI probability falling into bin 1, so we have appended a 1 
to each value. This is done so we can distinguish between paths 
connecting mutation words to proteins that have interactions 
from paths connecting to proteins that don’t have any listed 
interactions: Xcomp___1 dep___1 xcomp___1 acl:relcl___1 
root___1 dep___1 advmod___1 acl___1. 

Frequencies of protein words, interaction words, and 
mutation words were also computed along the shortest paths. 

4) Gradient boosting trees model 
We tested three classifier types, a Linear SVM, a Random 

Forest, and a Gradient Boosted Trees model. The first two 
implemented in Python’s scikit-learn. We used the popular 
XGBoost library[32] for gradient boosted trees. The number of 
words included in the bag of words and bigrams features was 
limited in the XGBoost model to avoid overfitting. The models 
were tuned using ROC-AUC scoring. The probability scores 
for the best model was then calibrated using Platt scaling[33]. 
Then cross validation was used to find a cutoff threshold to 
maximize the F1 score. A cutoff of p = 0.35 was chosen to 
predict abstracts as relevant. The model’s performance on the 
training data was reasonable, with a cross-validated ROC-AUC 
score of 0.793 (std 0.018) and F1 score of 0.709 (std 0.0090).  

III. RESULTS 
The following results were computed using ten-fold cross 

validation. Our baseline Linear SVM model using bag of 
words features and some count statistics received an 
ROC_AUC score of 0.74276. It was found that the SVM’s 
Performance was sensitive to the choice of transformer 
weights in the scikit-learn FeatureUnion transformer. These 
weights were tuned with cross validation. We then enriched 
the feature set with information from the Stanford 
Dependency Parser and a PPI extraction model developed in-
house based on some previous studies of ours [26, 28, 31]. We 
tried both a linear SVM and a Random Forest to the data with 
these additional features. With the additional features the 
ROC_AUC score of the linear SVM changed very slightly to 
0.7428. A random forest with 1000 estimators, min samples 
leaf set at 2 and a Gini splitting criterion (these parameter 

values were found through cross-validation) achieved an 
ROC-AUC score of 0.78825 with these features, giving 
significantly better results than the SVM. Applying a tuned 
XGBoost to this same set of features yielded an ROC_AUC 
score of 0.78686. With all features included, the best scoring 
model was a tuned XGBoost with an ROC_AUC score of 
0.79304. In this case, the performance of the Random Forest 
barely improved with the addition of the new features. 

When tested on test data set, our method gave an F-1 
score of 0.6778, recall of 0.8877, a precision of 0.5482. We 
ranked the fourth among all the participating teams based on 
F-1 score. 
 

IV. CONCLUSIONS AND DISCUSSIONS 
In this study, we tackled the problem of retrieving abstracts 

which contains at least one protein-protein interactions (PPI) 
affected by a mutation. We developed natural language 
processing (NLP) based methods, extracted a set of diverse 
features, and experimented with several popular machine 
learning methods. The performance on the training data of 
Biocreative VI was quite satisfactory.  

There is still much room for further improvement of our 
models, especially in terms of optimizing the set of features we 
will use for the machine learning models. These will be the 
subject of future studies. 
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Abstract—Precision Medicine has recently been attracting 
increased interest from the scientific community. This is to be 
attributed both to availability of gold standard data sets as well as 
advances in text mining. We approached a task as a three step 
process, each dealing with one of the IE problems: document 
triage/classification, named entity recognition and relationship 
extraction as a joint task and finally named entity normalization. 
Our work relies on a combination of rule based dictionary/string 
matching, machine learning as well as neural networks. 

Keywords—protein-protein interaction, named entity recognition, 
named entity normalization, document classification, precision 
medicine 

I. INTRODUCTION (HEADING 1) 
Recent advances in the automation of machine based 

analysis of written human language has led to an increased 
(research) interest in developing practical applications in a wide 
range of application domains. Biomedical Natural Language 
Processing (BioNLP) is one of the application domains where 
the impact of this automation has yielded a fast progress as well 
as offered even more complex pipelines to be built. The purpose 
of these pipelines is to assist specialists in resolving actual 
issues/diagnoses, by minimizing or even eliminating the need for 
manual effort. 

Precision Medicine (PM) is a recent field, attracting a 
significant amount of attention from the research community.   
PM focuses on using genetic profiles of individuals in 
developing treatments by analyzing links between genes, 
mutations, and diseases with (specialized) treatments which are 
available in scientific/research literature (1). As such, it presents 
a novel task for the BioNLP community. To be able to provide 
proper PM services to working physicians, and extract complex 
information from unstructured text, there is a growing need to 
develop and implement automation pipelines which look for 
various entities, which were changed, or manipulated in any 
other way, by various factors. One such challenge is presented 
with the BioCreative VI Track 41. The focus of this years track 
is the identification of protein-protein interactions but with a 
single distinction; the focus is extended to finding such entities 
where the proteins were affected by genetic mutations. This 
promises to give a more detailed view in the patients medical 

1http://www.biocreative.org/tasks/biocreative-vi/track-4/ 

profile, and increase chances for a successful diagnosis and 
treatment. 

As presented, this task is divided in two parts, each dealing 
with one of the fundamental text mining (TM) tasks in NLP: 
document classification/triage and relation extraction (RE). 
Furthermore, to solve the second part of the challenge one needs 
to solve two additional problems, namely named entity 
recognition (NER) (with regards to genes/proteins mentioned in 
the text) and named entity normalization (NEN), against NCBI 
Gene Database. In solving these tasks, and combining them into 
an automated system, we used several approaches. For NER and 
RE we utilized neural networks, for document triage we used a 
standard supervised machine learning approach and for NEN we 
relied on string/dictionary matching, backed up with using 
available online resources. 

This paper is structured as follows: next, we give an 
overview of related work, with regard to the 4 recognized tasks. 
This is followed by a detailed presentation of our approach, for 
each of the relevant tasks, with obtained results based on the 
training data (where available). This is followed by a discussion 
of encountered problems as well as (possible) future work. 

II. RELATED WORK 
Text mining has a long tradition in the filed of BioNLP. It 

was used to solve a wide range of tasks, thus increasing the level 
of possible automation in this application domain. There has 
been a number of extensive work done with information related 
to cancer (a good overview of the field is presented in (1)–(12)). 
Machine learning have shown to produce state of the art results 
for a wide range of NLP tasks. Recently, as with other NLP tasks, 
the focus has shifted toward neural networks (NN), as in (13). 
Additionally, the use of word embeddings, as feature 
representation, has greatly helped in improving upon current 
state-of-the-art results. 

Document triage/classification is one of the oldest tasks in 
NLP. Recent work has shown that the best performing approach 
largely depends on the type of text in the corpus (e.g. tweets vs. 
full text documents). Recent advances in this task focus on the 
use of word embeddings, such es word2vec (14), GloVe (15), 
FastText (16) or Starspace (17) which also greatly improves 
achieved results. While word2vec and GloVe represent state-of-
the-art representations, where each token is represented by an N 

135



dimensional feature vector instead (and thus using the 
information about the context of the token as well as the token), 
FastText and Starspace offer the possibility to simultaneously 
learn word embeddings and solve one or more of NLP tasks 
through their interface (e.g. document classification). 

Both NER and RE can be seen as subtasks of information 
extraction (18). While early approaches rely on knowledge-
based approaches making use of external ontologies like 
WordNet 2 , recent advances in research on artificial neural 
networks have led to a variety of methods. Current state of the 
art, in various (Bio)NLP tasks is the use of bi-directional Long 
Short Term Memory (LSTM) with word or character 
embeddings. There is a large corpora of research articles where 
this combination outperforms other approaches (e.g (19)–(21)). 
Recently, the use of Convolutional Neural Network (CNN) 
architectures has show to be on par with LSTM, but offering a 
great improvement in the computational speed. Liu et. al (22) 
use a CNN to extract relations using additional semantic 
information via synonym dictionaries. Without using any 
external information (23) achieves state-of-the-art results, 
being among the first methods to utilize recurrent neural 
networks. Building on this, (24) models the tasks of NER and 
RE jointly, additionally introducing bidirectional recurrent 
layers to better exploit the structural features of the text. This is 
the model we use for our analysis. There also are various 
available tools which address, with a varying success rate, the 
problem of NER for various entities. For identifying genes from 
free text there are various tools: GnormPlus (25), Neji (26), 
GNAT (27) to name a few. Additionally, some of these tools 
perform entity normalization as well (to one of the possible 
standards). Another important field, which is of use in solving 
the task of the track 4, is finding mentions of mutations in free 
text. Genetic mutations represent changes in the human DNA 
and are result of errors which occurred during DNA replication. 
This has been researched extensively as well. Therefore there are 
tools which can be used as a black box. tmVar (28), Nala (5) 
and SETH (29) currently produce state-of-the-art results on 
available training corpora. NER and NEN are often seen an 
accompanying steps in extraction various entities from text. 

Entity normalization is a common task in the BioNLP text 
mining pipeline, mostly due to a number of standards that 
coexist for the same entity (type). Entity normalization has been 
addressed by a number of work in scientific community. To 
solve this task one usually has to approach it as a word sense 
disambiguation (WSD) problem, as there usually exist several 
possible candidates to choose the identifier from. A valuable 
resource for this task was presented through the BioCreative II 
gene normalization task (30). As such, it represents a good 
starting point as it offers gold standard data sets. The task was 
repeated in the BioCreative III challenge (18). These efforts have 
resulted in an increased research effort as well as plethora of 
approaches and tools, of which we will mention a few. The 
majority of approaches still focus on the use of dictionaries, 
(various) knowledge sources and string matching for 
normalization. This has also inspired our work in this challenge. 
Another challenge in normalization is normalizing identifiers 
related to a specific species. For example, PgenN (32) is focused 

2https://wordnet.princeton.edu/ 

on genes normalization for plants, (33) extends normalization 
across species while NTTMUNSW BioC module (21) extends the 
normalization to full texts. ProNormz (35) also utilizes 
dictionaries “with of 15 string matching rules and a 
disambiguation module to achieve the normalization”. 
Hakenberg et al. (36)  approach the task “by using background 
knowledge on each gene, namely annotations related to function, 
location, disease, and so on”. Various other tools also perform 
the same action, e.g. (37)–(39). An important resources is also 
represented through the UniProt interface (40). 

III. METHODOLOGY 
As presented before, our pipeline is defined through four 

tasks to be performed. Here a brief description of each of the 
steps in the pipeline is given. 

A. Document Triage 
As the first step in the pipeline, the focus of this task is on 

automatic classification of documents which carry relevant 
information for the task. We approached this step as a binary 
classification problem, with documents being either relevant or 
not relevant. Although the use of word embeddings, as 
mentioned in the previous section, usually offers state-of-the-art 
results, we did not make any use of them in this step. Our work 
relied on testing various machine learning algorithms to create 
the best performing model, where word embeddings are not 
useful. Instead, we heavily relied on feature engineering with 
automatic exploration and optimization of hyperparameter space 
of tested models. 

To achieve best results, we have implemented a pipeline 
which trains and evaluates several machine learning models, 
using word n-grams, with n in range from (1,1) to (1,3). 
Additionally, we have explored two features spaces with respect 
how the used vocabulary has been created. In the first approach 
we selected features which were relative complements of 
features with respect to the two classes (important, not 
important). In the second approach, we relied on an automatic 
creation of the feature space, with feature selection based on chi2 
test (with a cut off of 10% most important features). The results 
of this step are presented in Figure 1. 

 

The best performing model was Multinomial Naive Bayes 
with automatic vocabulary and 2-gram based feature space, 

 
Figure 1: Performance of used Machine Learning models 
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followed closely by Multi-layer Perceptron (MLP) based on   
manually created vocabulary and 3-gram based features space. 
The other tested models were Decision Trees, Random Forests, 
Lasso, Stohastic Gradient Descent, Linear Support Vector 
Machine, Elastic Net, Support Vector Machine and Logistic 
Regression 

B. Named Entity Recognition and Relation Extraction 
Both problems of NER and RE are handled jointly following 

the recent approach of (24). In general, we assume that 
relations appear on a sentence level. Hence, we apply a two stage 
process per sentence of a document that has been labeled as 
relevant. In the first stage, we identify all named entities that 
appear in the sentence. To do so, we first generate a set of 
features for each token in the sentence (a character 
representation based on character embeddings per token, a word 
embedding as learned from word2vec and the POS tag as learned 
from the Stanford NLP toolkit) and then feed a concatenated 
feature vector through a recurrent neural network. The 
architecture of choice here is a bidirectional LSTM layer, on top 
of which a fully connected activation layer is placed, and finally 
a softmax layer is used to generate the binary classification per 
token. 

After having identified candidate named entities we extract 
the sequence between each pair of candidates, again generate a 
feature vector based on this sequence and feed this through 
another bidirectional LSTM layer. The parameters of both 
bidirectional layers are shared between the NER and RE tasks. 
In this way, both tasks can benefit from a type of transfer 
learning of related tasks. Finally, the LSTM layer output is again 
directed through a fully connected layer which is finally 
followed by a softmax layer for classifying a present or 
nonexistent relation between the candidates. 

The described model has been implemented using the Python 
package Keras 3  and optimization is performed using the 
categorical cross entropy loss function and the Adam optimizer 
(41). 

C. Named Entity Normalization 
As the last step in the pipeline, NEN tries to find the 

appropriate Entrez gene ID for the input text. It heavily relies on 
the second step in the pipeline, NER, as the errors in that step 
propagate on to this stage. For NEN we have built a pipeline 
which utilizes several data sources and tries to normalize the 
input text, with respect to a possible species type, against the 
NCBI Entrez gene ID database.  An overview of the pipeline has 
been given in Figure 2. The input to this part of the pipeline is a 
triple (PubMed ID, Gene Name 1, Gene Name 2). 

3https://keras.io/ 

 

Our pipeline utilizes a combination of dictionary lookup and 
string matching approach against multiple sources, both offline 
as well as online, which were available for use during the 
development. Each of the normalization sources returns none or 
more possible candidates, with the maximum limit set to 10 per 
source. After the candidates have been received from all sources, 
a count based heuristic is used to select the most suitable, single 
candidate. In case of multiple IDs with the same maximal count, 
the first identifier is used. As such, this approach performs 
admirably in case of a few possible candidates generated in the 
pipeline and underperforms when multiple valid candidates (e.g. 
with the same count value) have been identified. As expected, 
this part of the pipeline impacts the final results in a negative 
way. The results are shown in table 1. 

Precision Recall F-Score 

0.56 0.56 0.55 

Table 1. Performance of Named Entity Normalization 

IV. DISCUSSION AND (POSSIBLE) FUTURE WORK 
In this work we presented our pipeline developed for solving 

the task presented in the BioCreative VI track 4. As this 
represents a complex pipeline, which combines solution(s) to 
several mentioned problems in BioNLP, the performance is as 
good as the weakest link in the chain. 

Our approach, and the achieved results (as evaluated on the 
available gold standard train data), can be viewed more as a 
strong baseline than a final solution. There are several aspects of 
our work which need additional focus. That is especially true for 
the last step in the pipeline, NEN, where a dictionary lookup and 
string matching approach has shown to be lacking, especially in 
the case when multiple valid candidates can be chosen as the 
final ID. One direction this can be taken to is the use of machine 
learning and, possibly, neural networks with word embedding 
feature representation. 

Although our approach to solve the NER and RE tasks of the 
pipeline have proven satisfactory, this approach has also shown 
shortcomings. As the current approach is still a two-stage 
approach, we found it difficult to prevent errors made in the first 
stage to propagate to the second one. We are planning to 
incorporate regularization structures such as drop-out layers into 
the network to mitigate overfitting and error propagation. 
Another interesting step towards a truly joint model of named 

 
Figure 2: Named Entity Normalization process 
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entities and their relations would be to construct a network that 
does not learn entities and relations separately. 
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Abstract—Despite the considerable number of available 

systems that recognize automatically mentions of genes/proteins 
and chemicals in text, only a limited number of attempts were 
made so far to extract interactions between them. Most 
biomedical relation extraction systems focus on the extraction of 
protein-protein or gene/chemical-disease relations. The detection 
of interactions between drugs and proteins/genes is of key 
relevance for pharmacological and clinical research, playing an 
important role for drug discovery, understanding of molecular 
mechanism of adverse drug reactions, describing drug 
metabolism or drawing regulatory networks of importance for 
systems pharmacology. The BioCreative VI - ChemProt track 
represents the first attempt to promote the development of 
systems for extracting chemical-protein interactions (CPIs), of 
relevance for precision medicine as well as for drug discovery 
and basic biomedical research. The novel ChemProt corpus 
consists of text exhaustively annotated by hand with mentions of 
chemical compounds/drugs and genes/proteins, as well as 22 
different types of compound-protein relations. To focus on a 
subset of important relations, 5 relation classes were used for 
evaluation purposes, including agonist, antagonist, inhibitor, 
activator and substrate/product relations. A total of 13 
participating teams returned 45 runs for this track. Despite the 
biological complexity of the considered relation types, top-scoring 
teams could obtain an F-measure across relation classes of 
64.10%. Performance varied depending on the relation class: for 
the antagonist relation class the best team obtained an F-measure 
of 72.56% (precision of 80.75%, recall of 65.87%) while for 
inhibition/down-regulation the best value was of 71.48% (with a 
precision of 76.51% and a recall of 67.07%). 

Keywords—text mining; chemical compound; drug; protein; drug 
target; agonist; antagonist, inhibitor; activator; gene regulation; 
chemical-protein relation  

I. INTRODUCTION 
A growing amount of scientific articles, medicinal 

chemistry patents and other biomedical documents provide 
descriptions of interactions between chemical compounds and 
gene products. Compared to the extraction of protein-protein 

(1) or gene/chemical-disease relations (2), the detection of 
associations between chemical entities (e.g. drugs or active 
pharmaceutical ingredients) and proteins/genes is an 
underexplored biomedical text mining research area.   

There is an increasing interest in the integration of chemical 
and biomedical data understood as the curation of relationships 
between biological and chemical entities from text and storing 
such information in form of structured annotation databases. 
Such databases are of key relevance not only for biological but 
also for pharmacological and clinical research. Certain types of 
chemical-protein/gene interactions are of key relevance for 
biomedicine, including metabolic relations (e.g. substrates, 
products), antagonist, agonist, inhibitor or activator 
associations. 

Despite the existence of competitive named entity 
recognition tools for tagging chemicals and genes/proteins, the 
retrieval of certain relationships between these two types of 
entities using text mining and information extraction 
approaches has only be attempted by a limited number of 
systems. A comprehensive review of previously published text 
mining systems for different types of chemical-protein 
relations is summarized in Krallinger et al. 2017 (3). For 
instance, Rindflesch et al. introduced an early system called 
EDGAR (4) that extracted drug-gene relations (drugs altering 
gene expression) and gene-drug relations (gene/protein altering 
drug activity) by exploiting syntactic information and relational 
vocabulary. The drug-target interaction resource SuperTarget 
(5) applied the EBIMed tool to select text passages potentially 
describing drug-target associations (6). Tari et al. applied 
syntactic dependencies to recover gene-drug relations (7) while 
Czarnecki et al. (8) published a pattern-matching and rule-
based approach for detecting metabolic reaction relations. The 
LimTox online server incorporates both pattern matching and 
machine learning techniques to retrieve gene expression 
induction, inhibition and metabolism relations between 
cytochromes P-450 (CYPs) and drugs (9). The relation patterns 
used by LimTox, including also protein-protein interactions 



patterns, were released as part of the LimTox resource 
collection. The reasons for missing publicly available text 
mining resources for chemical-protein interaction extraction 
lay mainly in: (a) the difficulty to define chemical-protein 
interactions in the first place, despite some attempts to define 
the underlying relation concepts, (b) the lack of large corpora 
of manually curated text bound annotations of mentions of 
chemical entities and genes/proteins and their interactions, 
done by domain experts and (c) the lack of publicly shared 
annotation guidelines and rules for labeling mentions of 
chemicals, genes and proteins relationships.  

Due to the critical importance of CPI we have posed a track 
specially devoted to this kind of biological relation at the 
BioCreative VI community evaluation effort.  

II. THE CHEMPROT TRACK AND CORPUS 

The ChemProt track aimed to promote the development of 
systems able to extract chemical-protein interactions that are 
relevant for precision medicine, drug discovery and basic 
biomedical research. To carry out the ChemProt track it was 
necessary to create a novel manually annotated corpus that 
annotates exhaustively all the mentions of the underlying entity 
types, namely chemical compounds and drugs as well as genes 
and proteins. In order to make this feasible in practice, and to 
focus on types of text that are easily accessible, we restricted 
the annotation process to PubMed abstracts essentially 
published between 2005 and 2014. Domain experts with 
experience in text annotation and database curation tasks 
annotated by hand all abstracts. The manual labeling of 
chemicals and genes was done separately to avoid cross-
influence during the annotation process. The labeling of 
mentions of chemical entities, genes and proteins was done 
following the annotation process and guidelines previously 
used for several BioCreative tasks (10–12). Gene/protein 
mentions were manually normalized to their corresponding 
database identifiers whenever possible and classified as either 
normalizable to databases (tag: GENE-Y) or non normalizable 
mentions (GENE-N). Participanting teams were only provided 
with this classification of gene mentions and not the actual 
database identifier to avoid usage of external knowledgebases 
for producing their predictions. 

After the completion of chemical and gene annotations, all 
mention annotations were merged in order to carry out the 
relation annotation process. To enable the annotation of 
chemical-protein interactions, the ChemProt track organizers 
constructed very granular relation annotation rules described in 
a 33 pages annotation guidelines document. These guidelines 
were refined during an iterative process based on the 
annotation of sample documents.  
The guidelines provided the basic details of the chemical-
protein interaction annotation task and the conventions that 
had to be followed during the corpus construction process. 
They incorporated suggestions made by curators as well as 
observations of annotation inconsistencies encountered when 
comparing results from different human curators. 
In brief, the annotated ChemProt interactions included direct 
interactions (when a physical contact exists between a 

chemical and a gene/protein) as well as indirect regulatory 
interactions that alter either the function or the quantity of the 
gene/gene product. The aim of the iterative manual annotation 
cycles was to improve the quality and consistency of the 
guidelines, in order to make them more intuitive and easier to 
follow. During the preparation of the guidelines some rules 
had to be reformulated to make them more explicit and 
additional rules were added wherever necessary to better cover 
the practical annotation scenario and for being more complete. 
The manual annotation task basically consisted of labeling or 
marking up manually through a customized web-interface the 
mentions of CHEMPROT interactions in text. Figure 1 
summarizes the ChemProt relation types included in the 
annotation guidelines and ChemProt corpus.  
 
 

 
 

 
Fig. 1. Overview of the ChemProt track relation types and classification.  

The annotation carried out for the ChemProt track was 
exhaustive for the types of interactions previously specified. 
This implied that mentions of other relationships between 
chemicals and genes (e.g. phenotypic and biological 
responses) were not annotated. The ChemProt relations are 
directed in the sense that only relations of “what a chemical 
does to a gene/protein" (chemical → gene/protein direction) 
were annotated, and not vice versa. 
In order to establish a homogenous nomenclature and avoid 
redundant class definitions, we reviewed several chemical 
repositories that incorporate chemical – biology information. 
We thus inspected DrugBank (13), the Therapeutic Targets 
Database (TTD) (14) and ChEMBL (15), assay normalization 
ontologies (BAO) (16) and previously existing formalizations 
for the annotation of relationships: the Biological Expression 
Language (BEL) (17,18), curation guidelines for transcription 
regulation interactions (DNA-binding transcription factor – 
target gene interaction) and SIGNOR, a database of causal 
relationships between biological entities (19). 
Each of these resources inspired the definition of the 
subclasses DIRECT REGULATOR (e.g. DrugBank, 
ChEMBL, BAO and SIGNOR) and the INDIRECT 
REGULATOR (e.g. BEL, curation guidelines for transcription 



regulation interactions and SIGNOR). For example, DrugBank 
relationships for drugs included a total of 22 definitions, some 
of them overlapping with CHEMPROT subclasses (e.g. 
“Inhibitor”, “Antagonist”, “Agonist”,…), some of them being 
regarded as highly specific for the purpose of this task (e.g. 
“intercalation”, “cross-linking/alkylation”) or referring to 
biological roles (e.g. “Antibody”, “Incorporation into and 
Destabilization”) and others, partially overlapping between 
them (e.g. “Binder” and “Ligand”), that were merged into a 
single class. Concerning indirect regulatory aspects, the five 
classes of casual relationships between a subject and an object 
term defined by BEL (“decreases”, “directlyDecreases”, 
“increases”, “directlyIncreases” and “causesNoChange”) were 
highly inspiring. Subclasses definitions of pharmacological 
modes of action were defined according to the UPHAR/BPS 
Guide to Pharmacology in 2016 (20,21). 
 
For the CHEMPROT track a very granular chemical-protein 
relation annotation was carried out, with the aim to cover most 
of the relations that are of importance from the point of view 
of biochemical and pharmacological/biomedical perspective. 
Nevertheless, to simplify the CHEMPROT track, and to focus 
mainly on a subset of key relevant relation types, all the 
annotated CHEMPROT relations (CPRs) were grouped into 
10 semantically related classes that do share some underlying 
biological properties. Those groups were labeled as [CPR:1, 
CPR:2, … CPR:10] ; and are detailed in Figure 2. For 
evaluation purposes only five groups labeled with ‘Y’ were 
used, that is: CPR:3, CPR:4, CPR:5, CPR:6, CPR:9. 
 

 
Fig. 2. Overview of the ChemProt track relation groups (CPRs).  

Four different randomly sampled data subsets (Table 1) were 
released for the ChemProt track:  
 

• An initial sample set of 50 abstracts to illustrate the type 
of chemical-protein relations and annotations that were 
used for the track, together with annotation guidelines 
for labeling the chemicals, genes/proteins and chemical-
protein interaction relations. The sample set also 
contains an illustrative prediction example in the 
chemprot track format. 

• A training set of 1,020 abstracts annotated exhaustively 
with chemicals, genes/proteins and chemical-gene 
interactions. 

• A development set of 612 abstracts annotated 
exhaustively with chemicals, genes/proteins and 
chemical-gene interactions. 

• A test set of 800 abstracts annotated exhaustively with 
chemical, genes/proteins and blinded chemical-gene 
interactions. Also, 2,599 additional abstracts were 
included in order to avoid manual corrections of team 
submissions and assure that systems could process 
larger datasets. Teams had to return results for the entire 
set of 3,399 records. 

TABLE I.  OVERVIEW OF CHEMPROT DATA SETS 

Dataset 
Annotations 

Chemicals Genes All CPI * 
relations 

Evaluated 
CPI 

Sample 683 606 339 239 

Training 13,017 12,735 6,437  4,157 

Development 8,004 7,563 3,558 2,416 

Test  10,810 10,018 5,744 3,458 

* Chemical-protein interaction (CPI)  

 

In practice, chemical-protein relation annotations prepared 
for the ChemProt track consisted of simple tab-separated 
columns containing: 

1. Article identifier (PMID) 

2. Chemical-Protein relation (CPR) group* 

3. Evaluation type (Y: group evaluated, N: group not 
evaluated – extra annotation). 

4. CHEMPROT relation (CPR) 

5. interactor argument 1 (chemical entity followed by 
the interactor term identifier) 

6. Interactor argument 2 (gene/protein entity followed by 
the interactor term identifier) 

 

Track participants had to return for the collection of test set 
document identifiers the detected pairs of entities (one 
corresponding to a chemical entity and another to a 
gene/protein) together with the corresponding CPR group of 
the predicted relation. Only relations between a chemical and a 
gene/protein were allowed. Relations between a chemical and 
another chemical or between a gene/protein and another 
gene/protein were not permitted. Moreover participants were 
allowed to return for a given entity pair multiple relation 
groups. A total of 5 runs were accepted per team.  

In addition to the ChemProt track data sets, a special evaluation 
script was available at the track webpage (22). For evaluation 
purposes we considered the micro-averaged precision, recall 
and, in particular, balanced micro F1-score.  

 

III. RESULTS 
The Markyt evaluation platform was used to register and 
upload the team submissions (23). A total of 13 teams returned 
overall 45 submissions for the ChemProt track. A detailed 
description of the underlying strategy used by each of the 



participating teams can be found in the systems description 
papers published in the BioCreative VI workshop proceedings. 
Table 2 shows a summary of the participating teams.  

TABLE II.  OVERVIEW OF CHEMPROT PARTICIPATING TEAMS 

Team 
Id 

Details 
Team Leader Institution Nr. runs 

374 Sérgio Matos Universidade de Aveiro 5 

379 Sijia Liu Mayo Clinic 4 

394 Neha Warikoo Academia Sinica 5 

397 Atakan Yüksel Boğaziçi University 1 

403 Peter Corbett Royal Society of 
Chemistry 1 

404 Ignacio Tripodi University of Colorado 5 

417 Farrokh Mehryary University of Turku 5 

421 Cong Sun DaLian University of 
Technology 1 

424 Sangrak Lim  Korea University 2 

427 Wei Wang National University of 
Defense Technology 5 

430 Yifan Peng NCBI, NLM, NIH 5 

432 Pat Verga UMass Amherst 4 

433 Pei-Yau Lung Florida State University 2 

 

In addition to evaluate all the team predictions, we prepared 
two simple baseline predictions. These consisted of predictions 
of all CPR classes for all the co-occurrence of chemical entities 
and genes, either within the entire abstracts, or within 
individual sentences. These baseline predictions can be 
considered as a sort of upper boundaries in terms of recall and 
lower boundaries in terms of precision when using simple 
entity co-mention. Table 3 illustrates the results obtained for 
each of the evaluated runs of all participating teams. Taking 
into account the complexity of the chemical-protein relations 
examined for this task, the results obtained by participating 
teams are very promising. The best F-measure, across all CPI 
relations, was reached by team 430 (run 5) with a score of 
64.10%. Overall, the results were better in terms of precision 
when compared to recall, in particular for the top performing 
teams. Team 430 could obtain particularly high precision 
values for all runs, reaching up to 74.37% for run 1. The best 
recall values were obtained by team 403 (run 1) with a score of 
67.84% followed by run 5 of team 427 (66.63%).  

TABLE III.  LIST OF CHEMPROT RESULTS PER TEAM AND RUN 

Team	  Id	   Run	   Precision	   Recall	   F-‐Score	  
Co-‐
mention	   Abstract	   0.0050	   1.0000	   0.0099	  
Co-‐
mention	   Sentence	   0.0437	   0.9803	   0.0837	  

TEAM_374	   RUN_1	   0.6419	   0.2577	   0.3677	  

TEAM_374	   RUN_2	   0.5156	   0.4670	   0.4901	  

TEAM_374	   RUN_3	   0.5919	   0.2403	   0.3418	  

TEAM_374	   RUN_4	   0.4024	   0.4193	   0.4107	  

TEAM_374	   RUN_5	   0.5738	   0.4722	   0.5181	  

TEAM_379	   RUN_1	   0.4773	   0.4375	   0.4565	  

TEAM_379	   RUN_2	   0.4849	   0.4913	   0.4881	  

TEAM_379	   RUN_4	   0.5072	   0.4306	   0.4657	  

TEAM_379	   RUN_5	   0.5301	   0.4639	   0.4948	  

TEAM_394	   RUN_1	   0.2446	   0.3407	   0.2847	  

TEAM_394	   RUN_2	   0.2563	   0.3456	   0.2943	  

TEAM_394	   RUN_3	   0.2932	   0.3271	   0.3092	  

TEAM_394	   RUN_4	   0.0729	   0.0150	   0.0249	  

TEAM_394	   RUN_5	   0.2587	   0.3456	   0.2959	  

TEAM_397	   RUN_1	   0.6057	   0.1102	   0.1864	  

TEAM_403	   RUN_1	   0.5610	   0.6784	   0.6141	  

TEAM_404	   RUN_1	   0.3460	   0.3913	   0.3673	  

TEAM_404	   RUN_2	   0.3387	   0.4078	   0.3700	  

TEAM_404	   RUN_3	   0.3305	   0.1666	   0.2215	  

TEAM_404	   RUN_4	   0.3307	   0.3641	   0.3466	  

TEAM_404	   RUN_5	   0.3058	   0.3603	   0.3309	  

TEAM_417	   RUN_1	   0.6373	   0.4462	   0.5249	  

TEAM_417	   RUN_2	   0.6337	   0.4387	   0.5185	  

TEAM_417	   RUN_3	   0.6608	   0.5662	   0.6099	  

TEAM_417	   RUN_4	   0.6105	   0.6006	   0.6055	  

TEAM_417	   RUN_5	   0.6088	   0.5989	   0.6038	  

TEAM_421	   RUN_1	   0.1618	   0.3409	   0.2195	  

TEAM_424	   RUN_1	   0.6760	   0.5159	   0.5852	  

TEAM_424	   RUN_2	   0.6704	   0.5194	   0.5853	  

TEAM_427	   RUN_1	   0.2496	   0.6417	   0.3594	  

TEAM_427	   RUN_2	   0.2535	   0.6478	   0.3643	  

TEAM_427	   RUN_3	   0.2634	   0.6622	   0.3769	  

TEAM_427	   RUN_4	   0.2674	   0.6602	   0.3806	  

TEAM_427	   RUN_5	   0.2696	   0.6663	   0.3839	  

TEAM_430	   RUN_1	   0.7437	   0.5529	   0.6343	  

TEAM_430	   RUN_2	   0.7283	   0.5503	   0.6269	  

TEAM_430	   RUN_3	   0.7426	   0.5382	   0.6241	  

TEAM_430	   RUN_4	   0.7311	   0.5685	   0.6397	  

TEAM_430	   RUN_5	   0.7266	   0.5735	   0.6410	  

TEAM_432	   RUN_1	   0.2211	   0.2024	   0.2114	  

TEAM_432	   RUN_2	   0.5491	   0.2021	   0.2955	  

TEAM_432	   RUN_3	   0.4073	   0.4783	   0.4400	  

TEAM_432	   RUN_4	   0.4718	   0.4453	   0.4582	  

TEAM_433	   RUN_1	   0.6276	   0.4858	   0.5477	  

TEAM_433	   RUN_2	   0.6352	   0.5121	   0.5671	  
 



 

Performance varied also depending on the particular class of 
chemical-protein relations. For the antagonist relation class the 
best team obtained an F-measure of 72.56% (precision of 
80.75%, recall of 65.87%) while for inhibition/down-regulation 
it was of 71.48% (with a precision of 76.51% and a recall of 
67.07%). 

 

IV. DISCUSSION AND CONCLUSIONS 
The ChemProt track could engage a considerable number 

of teams, opening up further research on this topic. Systems 
resulting from this track can result in valuable contributions to 
improve the curation of chemical and biological data and 
promote the extraction of various types of chemical-protein 
interactions demanded by drug-discovery, metabolic reaction, 
gene regulatory network and systems biology analysis 
pipelines.  

The ChemProt corpus comprises a large collection of 
manually annotated mentions of chemical compounds and 
genes/proteins that can serve to improve and validate bio-entity 
recognition tools, while the granular interaction types 
annotated for this task can foster more sophisticated bio-entity 
relation extraction pipelines. Only five general CPI classes 
were tested for this track, implying that the remaining relation 
classes and the actual granular relation types remain largely 
unexplored. We plan to promote additional efforts focusing on 
these more granular relation types, and provide the annotation 
of gene mention normalizations, i.e. biological database 
identifiers for the ChemProt corpus together with inter-
annotator agreement results. When examining the underlying 
methodologies tested by participating teams, it becomes clear 
that machine learning techniques, and especially the use of 
artificial neural network approaches represent highly 
competitive strategies for chemical-gene interaction extraction 
tasks.  
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Abstract—Text mining the relations between chemicals and 
proteins is an increasingly important task. The CHEMPROT 
track at BioCreative VI aims to promote the development and 
evaluation of systems that can automatically detect the 
chemical-protein relations in running text (PubMed abstracts). 
This manuscript describes our submission, which is an 
ensemble of three systems, including a Support Vector 
Machine, a Convolutional Neural Network, and a Recurrent 
Neural Network. Their output is combined using a decision 
based on majority voting or stacking. Our CHEMPROT 
system obtained 0.7266 in precision and 0.5735 in recall for an 
f-score of 0.6410, demonstrating the effectiveness of machine 
learning-based approaches for automatic relation extraction 
from biomedical literature. Our submission achieved the 
highest performance in the task during the 2017 challenge. 

Keywords—relation extraction; deep learning; chemical; 
protein 

I. INTRODUCTION 
Recognizing the relations between chemicals and proteins 

is crucial in various tasks such as precision medicine, drug 
discovery, and basic biomedical research. Biomedical 
researchers have studied various associations between 
chemicals and proteins and published their findings in 
biomedical literature. While manually extracting chemical-
protein relations from biomedical literature is possible, it is 
often costly and time-consuming. Alternatively, text mining 
methods could automatically detect these relations effectively. 
The BioCreative VI track 5 CHEMPROT task 1  aims to 
promote the development and evaluation of systems that are 
able to automatically detect in running text (PubMed abstracts) 
relations between chemical compounds/drug and 
genes/proteins. In this paper, we describe our approaches and 
results for this task.  

II. METHODS 
In the CHEMPROT track, the organizers developed a 

chemical-protein relation corpus composed of 4,966 PubMed 
abstracts, which were divided into a training set (1,020 
abstracts), development set (612 abstracts) and test set (8,00  
abstracts).  

Unlike other relation corpora (1, 2), cross-sentence 
relations are rare in the corpus, appearing only in less than 1% 

1 http://www.biocreative.org/tasks/biocreative-vi/track-5/ 

in the training set. We also noticed that some chemical-protein 
pairs have multiple labels, but they only appear 10 times in the 
training set. As a result, our system treated the relation 
extraction task as a multiclass classification problem, and to 
simplify the problem, our system only focuses on the chemical-
protein relations occurring in a single sentence. 

We addressed the CHEMPROT task using two ensemble 
systems that combine the results from 3 individual models, 
similar to our previous BioCreative submissions (3). An 
overview of the system architecture is shown in Figure 1. The 
individual systems included are a Support Vector Machine 
(SVM), a Convolutional Neural Network (CNN), and a 
Recurrent Neural Network (RNN) (4-6). We will describe 
these models together with the ensemble algorithms in the 
following subsections. 

A. Rich Feature SVM 
In our SVM system, the following features are exploited. 

Words surrounding the chemical and gene mentions of 
interest: These features include the lemma form of a word, its 
part-of-speech tag, and chunk types. We used the Genia Tagger 
to extract the features (7). The window size is 5. 

Bag-of-words between the chemical and gene mentions of 
interest in a sentence: These features include the lemma form 
of a word and its relative position to the target pair of entities 
(before, middle, after). 

 
Fig. 1 Architecture of the systems for the CHEMPROT task 
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The distance (the number of words) between two entity 
mentions in a sentence.  

The existence of a keyword between two mentions often 
implies a specific type of a relation, such as “inhibit” for 
relation “CPR:4” and “agonism” for relation “CPR:5”. 
Therefore, we manually built the keyword list from the training 
set and used them as features as well.  

Shortest-path features include vertex walks (v-walks) and 
edge walks (e-walks) on the target pair in a dependency parse 
graph (8). An e-walk includes one word and its two 
dependencies. A v-walk includes two words and their 
dependency. For example, the shortest path of <Gemfibrozil, 
nitric-oxide synthase> extracted from the sentence 
“GemfibrozilCHEMICAL, a lipid-lowering drug, inhibits the 
induction of nitric-oxide synthaseGENE-N in human astrocytes.” 
is “Gemfibrozil  nsubj  inhibits  dobj  induction  
nmod:of  nitric-oxide synthase”. Thus the e-walks are “nsubj 
– inhibits – dobj” and “dobj – induction – nmod:of – nitric-
oxide synthase”. The v-walks are “Gemfibrozil – nsubj – 
inhibits”, “inhibits – dobj – induction”, and “induction – 
nmod:of – nitrix-oxide synthase”.  

We trained the SVM system using a linear kernel2. In our 
submissions, the penalty parameter C is 1 and the tolerance for 
stopping criteria is 1e-3. We also balanced the feature instances 
by adjusting their weights inversely proportional to class 
frequencies in the training set. We used one-vs-rest multiclass 
strategy. 

B. Convolutional Neural Networks 
We followed the work of Peng and Lu (9)  to build the 

CNN model. Instead of using multichannels, we applied one 
channel but used two input layers (Fig. 2). One is the sentence 
sequence and the other is the shortest path between the pair of 
entity mentions in the target relation.  

In our model, each word in either a sentence or a shortest 
path is represented by concatenating embeddings of its words, 
part-of-speech tags, chunks, named entities, dependencies, and 
positions relatively to two mentions of interest. The pre-trained 
word embedding vectors was learned on PubMed articles using 
the gensim word2vec implementation with the dimensionality  

2 http://scikit-learn.org/ 

set to 300 (10). The part-of-speech tags, chunks, and named 
entities were obtained from Genia Tagger (7).  

The dependency information was obtained using the Bllip 
parser with the biomedical model and the Stanford 
dependencies converter (11-13). For each word, we used the 
dependency label of the “incoming” edge of that word in the 
dependency graph. 

For each input layer, we applied convolution to inputs to 
get local features with window sizes of 3 and 5. ReLU function 
used as the activation unit and 1-max pooling was then 
performed to get the most useful global feature from the entire 
sentence. 

In the fully connected layer, we concatenate the global 
features from both the sentence and the shortest path and then 
applied a fully connected layer to the feature vectors and a final 
softmax to classify the 6 classes (5 positive + 1 negative). We 
also used the dropout technique to prevent overfitting. 

All parameters were trained using the Adam algorithm to 
optimize the cross entropy loss on a mini-batch with a batch 
size of 32 (14). 

C. Recurrent Neural Netwoks 
For our RNN model, we build on the work of Kavuluru et 

al. (15). Specifically, we train a bi-directional long-short term-
memory (Bi-LSTM) recurrent model (Fig. 3), where the input 
to the model is a sentence. In this work, we don’t consider the 
character level Bi-LSTM.  

Similar to our CNN model, we concatenate the word 
embedding with the part-of-speech, IOB-chunk tag, and two 
position embeddings. The two position embeddings represent 
the relative location of the word with respect to the two entity 
mentions. It is important to note that we update the embeddings 
(word, part-of-speech, chunk, and position) during training. 

 After passing a sentence through our Bi-LSTM model, we 
obtain two hidden representations for each word. One 
representing the forward context, and the other representing the 

 
Fig. 2 Overview of the CNN model 

 
Fig. 3 Overview of the RNN model 

148



backward. We concatenate the two representations to obtain 
the final representation of each word. To obtain a 
representation of the sentence, we use max-over-time (1-max) 
pooling across hidden state word representations.  

Next, we pass the max-pooled sentence representation to a 
fully connected output layer. Unlike our CNN, we only apply 
a linear transformation without a softmax operation. 
Furthermore, the output layer only has 5 classes, where we 
completely discard the negative class. Specifically, we use the 
pairwise ranking loss proposed by Santos et al (16). 
Intuitively, the negative class will be noisy compared to the 5 
positive classes. Rather than learning to predict the negative 
class explicitly, we force the 5 outputs to be negative. At 
prediction time, if all 5 class scores are negative, then we 
predict the negative class. Otherwise, we predict the class with 
the largest positive score. 

Before training our model, we preprocess the dataset by 
replacing each word in the corpus that occurs less than 5 times 
with an unknown (UNK) token. Also, given each instance is 
comprised of a sentence and two entity mentions, we replace 
each entity with the tokens CHEMICAL or PROTEIN 
dependent on what the specific mention represents. 

 Finally, we train our RNN model using the Adam 
optimizer with a mini-batch size of 32. For the Adam 
optimizer, we set the learning rate to 0.001, beta1 to 0.9 and 
beta2 to 0.999. In addition, we apply recurrent dropout of 0.2 
in the Bi-LSTM model and standard dropout of 0.2 between 
the max-pooling and output layers. We use pre-trained word 
vectors (6B Token GLOVE3) with a dimensionality of 300. 
Likewise, the POS, position, and chunk vectors are randomly 
initialized, and each has a dimensionality of 32. We should 
note that both the POS and chunk tags are extracted using 
NLTK 4. Lastly, we set the hidden state size of the LSTM 
models to 2048. 

D. A Majority Voting System 
In the voting system, we combined the results of the three 
models using a majority voting. That is, we select the relations 
that are predicted by more than 2 models.  

E. A Stacking System 
While voting is a straightforward way to combine our 

SVM, CNN, and RNN models, methods that are more 
sophisticated can improve our performance. Specifically, we 
use stacking to combine the predictions of each model. 
Stacking works by training multiple base models (SVM, CNN, 
and RNN), then trains a meta-model using the base model 
predictions as features. 

For our meta-model, we train a Random Forest (RF) 5 
classifier. First, in order to train the RF, we capture the scores 
for each class from all 3 models on the development set. In 
total, we have the following 17 features: 6 from the SVM, 6 
from CNN, and 5 from the RNN (because we used a ranking 

3 https://nlp.stanford.edu/projects/glove/ 
4 http://www.nltk.org/ 
5 http://scikit-learn.org 

loss). For the CNN scores, we use the unnormalized scores for 
each class before passing them through the softmax function. 
Finally, we train the RF on the development set using 50,000 
trees and the gini splitting criteria. 

III. RESULTS AND DISCUSSION 
In the CHEMPROT track, the test set contains 800 

abstracts.  

Our submissions were prepared with an ensemble of 3 
models. We built every SVM, CNN and RNN model using 
80% total data (training + development) and built the ensemble 
system using the remaining 20% of the total data. To reduce 
variability, 5-fold cross-validation was performed using 
different partitions of the data. As a result, we obtained 5 
SVMs, 5 CNNs, and 5 RNNs in total. We submitted 5 runs as 
our final submissions. Runs 1 and 2 use a majority voting 
system and Runs 3-5 use a stacking system. Each run uses one 
SVM, CNN, and RNN from one cross validation iteration. 

Table 1 shows the overall performance of the ensemble 
system as reported by the organizer, where ‘P’, ‘R’, ‘F’ denotes 
precision, recall, and F1 score, respectively.  

TABLE I.  RESULTS FOR OUR ENSEMBLE SYSTEM ON TEST SET 

Run System P R F 

1 Majority Voting 0.7437 0.5529 0.6343 

2 Majority Voting 0.7283 0.5503 0.6269 

3 Stacking 0.7426 0.5382 0.6241 

4 Stacking 0.7311 0.5685 0.6397 

5 Stacking 0.7266 0.5735 0.6410 

 

IV. CONCLUSION 
In this manuscript, we describe our submission in the 

BioCreative VI CHEMPROT task. The results demonstrate 
that our ensemble system can effectively detect the chemical-
protein relations from biomedical literature. We also show that 
the domain specific features are useful for in this task.  
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Abstract—Automatic relation extraction from biomedical 
literature is required for collecting structured information from 
the growing number of published works. Interactions between 
chemicals and genes or proteins are particularly important, 
namely for expediting work on precision medicine and drug 
discovery. In this paper, we present an approach based on long 
short-term memory networks with syntactic information for 
extracting chemical-gene relations from scientific abstracts. The 
proposed approach achieved an f-score of 0,5181 on the 
BioCreative VI CHEMPROT task corpus. 

Keywords—relation extraction; chemical-gene interactions; 
deep learning; long short-term memory networks 

I. INTRODUCTION 
Relation extraction is a text mining task that aims at 

identifying textual mentions of relations between entities. In 
biomedical text mining, the entities of interest are diseases, 
proteins, chemicals and drugs, anatomical regions, symptoms, 
among others. Automatically extracting these relations from the 
large number of scientific publications available is of utmost 
importance for collecting the most recent research results and 
for expediting database curation. 

Previous research on biomedical relation extraction focused 
mostly on protein-protein interactions (PPI), gene-disease, and 
chemical-disease relations (1, 2). For PPI extraction, kernel 
based methods have been shown to provide good results. These 
methods extract a representation of sentences and then apply a 
kernel function to compare sentence pairs using this 
representation. A comprehensive study on five different PPI 
corpora showed that kernel methods based on dependency 
parsing achieved area-under-the-curve (AUC) results ranging 
from 0.81 to 0.85 for within corpus cross-validation, and from 
0.69 to 0.87 for cross-learning evaluation (3). The recent 
BioCreative V CDR task evaluated the extraction of chemical-
disease relations. In this task, participants were also required to 
identify the disease and chemical entities, in addition to 
extracting the relations. The best method achieved an f-score of 
0.57 using a combination of sentence and document level 
features and domain knowledge (4). Zhou et al. (5) and Gu et al. 
(6) employed deep learning classifiers based on long short-term 
memory (LSTM) and convolution neural network (CNN), with 
dependency features. Both works achieved an f-score of 0.61, 
although using gold-standard entities. 

Deep learning techniques are composed of multiple data 
transformation layers that apply simple non-linear functions to 
obtain different levels of representation of the input data (7). 
Combination of these transformations allow the methods to 

learn complex classification functions, which gives deep 
learning its strengths. Another great advantage of such 
representation learning is that it eliminates the feature 
engineering effort that is required in more traditional machine 
learning (7). These methods have been applied successfully in 
many tasks, most notably in image classification but also in 
several NLP tasks, including word sense disambiguation (8), 
text classification (9), and named entity recognition (10).  

For text based tasks, it is necessary to encode the input data 
in a way that it can be used by the deep network classifier. This 
is achieved by representing words as embedding vectors of a 
relatively small dimension, rather than using the large feature 
space resulting from the traditional one-hot encoding. Word 
embeddings is a technique that consists in deriving vector 
representations of words, such that words with similar semantics 
are represented by vectors that are close to one another in the 
vector space (11). This way, each document is represented by a 
sequence of word vectors which are fed directly to the network. 
Efficient calculation of word embeddings, such as provided by 
Word2Vec (12), allow inferring word representations from large 
unannotated corpora.  

The CHEMPROT task, part of the BioCreative VI 
community challenge, was to evaluate systems for automatically 
extracting relations between chemicals and gene in PubMed 
abstracts. This paper describes our participation in this task, 
based on the application of LSTM recurrent neural networks 
with features extracted from the dependency structure of the 
sentences. 

II. METHODS 

A. Data 
The CHEMPROT corpus is composed of a training set with 

1020 abstracts, a development set with 612 abstracts, and a test 
set with 800 abstracts. These documents were manually labeled 
by experts who identified all chemical and gene mentions, and 
all chemical-gene relations according to a set of biologically 
relevant relation classes. For the task, five different classes 
were considered. Table I shows the statistics of the dataset. 

B. Preprocessing 
We preprocessing each dataset using TEES (13) 

(https://github.com/jbjorne/TEES) to obtain the dependency 
structure of all sentences. This process can take around 3.5 to 4 
seconds per document, when executed on a single processing 
core.  

 
This work was supported by FCT - Foundation for Science and 
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TABLE I.  DATASET STATISTICS 

Entities Training Development 

Chemical 13017 8004 

Gene 12735 7563 

Relations Training Development 

upregulation/activation 768 550 

downregulation/inhibition 2254 1094 

agonist 173 116 

antagonist 235 199 

substrate 727 457 

 

Then, for each entity pair in each sentence, we obtain the 
shortest dependency path connecting the entity mentions and 
extracted the followings six sequences: 

1) words in the path; 

2) POS tags of words in the path; 

3) path dependencies;  

4) up to 30 words before the first entity;  

5) the words between the entities;  

6) up to 30 words after the second entity.  

 

Figure 1 illustrates the dependency structure of a sentence 
from the dataset. In this example, there are three entities 
(meloxicam, diclofenac and COX) and two relations. Our 
preprocessing stage extracts two instances from this sentence, 
one for each relation, and each instance is represented by the six 
sequences mentioned above. For example, for the relation 
between meloxicam and COX, the shortest path leads to the 
following sequences, where the participating entities are 
replaced by the words ‘chemical’ and ‘gene’: 

Words in path: chemical effects compared those 
diclofenac inhibitor gene 

POS in path: NN NNS VBN DT NN NN NN 

Dependencies in path: prep_of nsubjpass prep_with 
prep_of appos nn 

 We extracted a training instance for each possible 
chemical/gene pair in each sentence. Pairs that did not 
correspond to a gold standard relation were used as negative 
training samples. For entities spanning more than one word, we 
obtained the shortest path starting from the head word. The 
process for the test data was similar.  

These sequences are fed to the LSTMs through embedding 
layers. For the words in the shortest path and words 
before/between/after the entities, we used word embeddings pre-
calculated from the full MEDLINE. These embedding vectors 
are kept fixed during training. POS and dependency embeddings 
were randomly initialized and adapted during trained. 

C. Word Embeddings 
We used the word2vec implementation in the Gensim 

framework (14) and generated word embeddings from the 
complete MEDLINE database, corresponding to 15 million 
abstracts in English language. We created six models, with 
vector sizes of 100 and 300 features and windows of 5, 20 and 
50. The models contain around 775 thousand distinct words. 
Based on previous results both in document triage and 
biomedical word sense disambiguation (15), we used the model 
with 300 features and window size of 50. 

D. Deep Learning 
Convolutional neural networks (CNN) have been 

extensively applied in image recognition and classification 
problems, with very good performance. Various works also 
demonstrate their application in text classification tasks. 
Nonetheless, the sequential nature of natural texts can be better 
modelled by recurrent networks, which contain a feedback loop 
that allows the network to use information regarding the 
previous state. LSTM are a special type of recurrent neural 
networks (RNN) in which a set of information gates is 
introduced that allow these networks to learn long-term 
dependencies while avoiding the vanishing gradient problem.  

We used a network composed of 3 to 6 bidirectional LSTM 
networks, followed by a fully connected layer and by an output 
layer with softmax activation (Figure 2). The inputs to each 
LSTM are obtained from the shortest dependency path between 
the chemical and gene entities in a sentence, using the provided 
gold standard entities.  

An important consideration when defining and training deep 
network models is related to overfitting, which means that the 

 
 

Fig. 1. Example sentence illustrating the dependency structure and chemical-gene relations. 
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network learns the “best” data representation but is not able to  
generalize to unseen data. Various strategies have been proposed 
and are commonly employed to address this problem. In our 
experiments, we applied several strategies to avoid overfitting, 
namely early stopping, dropout, and regularization. Early 
stopping looks at the value of the loss in a validation subset and 
stops the training process when this value stops decreasing. We 
used 10% of the training data, selected randomly at each run, as 
validation set. We applied dropout with rate 0.2 to the 
embedding and 0.1 to the LSTM layers so that a random 
selection of the output tensors is not used for updating the model 
weights, with the aim of forcing the model to learn a less biased 
representation of the data. Finally, L2 regularization with 
parameter 0.01 was applied to the final layer to penalize large 
weights that could otherwise be assigned to biased input 
dimensions. 

E. Submitted Runs 
Table II shows the configuration of the submitted runs. All 

configurations use the sequence of words, POS tags and 
dependencies in the shorted path connecting the two entities. 
Configuration 1 and 2 use also the sequence of words between 
the two entities, and configuration 5 uses this and the words 
before the first entity and after the second entity in the sentence. 
Furthermore, given that the classes are highly unbalanced, 
configurations 2, 4 and 5 were trained with class weights that are 
the reciprocal of their frequency relative to the majority class, 
that is, the negative class. All models were trained using the 
binary cross-entropy loss function and the Adam algorithm as 
optimizer. Models were implemented with the Keras framework 
(16) with the TensorFlow backend and executed on a machine 
with 12 CPU cores and 192 GB of memory. 

TABLE II.   CONFIGURATION OF SUBMITTED RUNS 

Run 
Configuration 

Dependency features Sentence features Class 
weights Word POS Dep Left Middle Right 

1 x x x  x   

2 x x x  x  x 

3 x x x     

4 x x x    x 

5 x x x x x x x 

 

TABLE III.  RESULTS ON DEVELOPMENT SET AND OFFICIAL RESULTS ON 
TEST SET 

Run 
Development Test 

Precision Recall F-Score Precision Recall F-Score 

1 0,6547 0,5403 0,5919 0,6419 0,2577 0,3677 

2 0,4856 0,6221 0,5449 0,5156 0,4670 0,4901 

3 0,6334 0,5126 0,5664 0,5919 0,2403 0,3418 

4 0,4310 0,6092 0,5047 0,4024 0,4193 0,4107 

5 0,4999 0,6074 0,5470 0,5738 0,4722 0,5181 

 

III. RESULTS 
Table III shows the results on the development set and 

official evaluation results on the test set. The development set 
results shown are the average of 5 training runs. As expected, 
adding class weights improves recall since less frequent classes 
are weighted up. Also, adding word sequences before, between 
and after the entities improved the results.  

Comparing the results on the development set against those 
on the test set, there is a drop in precision of up to 4 percentage 
points, expect for run 5, while recall drops considerably by 18 to 
28 points. Interestingly, run 5 originated an increase of 7 
percentage points in precision in the test set compared to the 
development set. Error analysis could give some indication on 
how generalization could be improved.  
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Abstract— Relation extraction is an important task in the field of 
natural language processing and text mining. In this paper, we 
described our participation in Biocreative VI Task 5: Text mining 
chemical-protein interactions (CHEMPROT). We used deep 
neural networks, including convolutional neural networks and 
attention based recurrent neural networks, to extract chemical 
protein relationships. We submitted four runs as final submission, 
with the best performing micro average F1 score of 0.506 on the 
development set and 0.494 on the test set. Our experimental 
results indicate that attention based RNN models outperform the 
CNN models. The replacement of raw texts into semantic types 
(chemical, gene) also improved the performance.  

Keywords—relation extraction, natural language processing, 
recurrent neural networks, attention mechanism 

I. INTRODUCTION 
Efficient and accurate access to the information from 

scientific literature is among the most widely studied topics in 
text mining. To facilitate and promote information extraction 
systems on PubMed abstracts, Biocreative VI CHEMPROT 
task aims to automatically detect the relations among chemical 
compounds, genes and proteins. There have been several 
chemical- or drug-related relation extraction share tasks 
organized in recent years. Two DDI-Extraction share tasks 
were organized to extract the drug-drug interaction information 
from knowledge base (DrugBank) and scientific articles 
(Medline) in 2011 and 2013, respectively [1]. In 2015, 
Biocreative V Track 3 targeted the extraction of relationships 
in Chemical-Induced Diseases (CID) [2]. Chemical Protein 
interaction (Chemprot) is an interesting topic for biomedical 
relation extraction [3].  

Deep Neural Network (DNN) models have been used for 
relation extraction tasks recently, including Convolutional 
Neural Networks (CNN) [4] and Recurrent Neural Networks 
(RNN) [5]. Moreover, attention mechanism on top of deep 
neural networks has shown promising results in various 
Natural Language Processing (NLP) tasks, such as machine 
translation [6], question answering [7] and document 
classification [8]. Attention based model has been used in 
multiple relation extraction tasks [9][10]. In this paper, we 
described our participation in Biocreative VI Task 5: Text 
mining chemical-protein interactions (CHEMPROT). We used 
deep neural networks, including CNN and attention based 

RNN to extract chemical protein relationships. We achieved a 
micro average F1 score of 0.506 on the development set and 
0.494 on the test set as our best result. The experimental results 
indicated that attention based Gated Recurrent Units (GRU) 
outperforms other DNN models. 

II. MATERIALS 
We used the ChemProt corpus provided by task organizers. 

The corpus consisted of 4966 PubMed abstracts with 126,457 
annotated chemical and protein entities. The relations were 
annotated with 10 chemical-protein relations. According to the 
share task description, only 5 out of 10 semantic relation types 
would be evaluated. Therefore, we focused only on the relation 
groups included in the official evaluation (CPR 3, 4, 5, 6 and 
9).  

Table I shows the corpus statistics of the training, 
development and testing datasets, including the number of 
documents in the dataset, the average number of entities per 
document (abstract) and the average number of positive 
relations per document. The test set gold standard relation 
annotation was not available by the time we prepared the 
manuscript. More details of the datasets can be found in the 
CHEMPROT task description paper.  

 

III. METHOD 
We used DNN for the task of relation extraction on the 

annotated named entity mentions. We model the relation 
extraction problem as a relation classification problem among 
all the chemical-protein relation pairs within one sentence. The 
rationale of limiting the relations into within-sentence relations 
is that we only found three and six cross-sentence relations 
from training and development sets, respectively. Therefore, on  

TABLE I     CHEMPROT CORPUS STATISTICS 

Dataset # of 
docs 

Average # 
of entities 

# of 
positive 
relations 

# of all 
potential 
relations 

Training 1020 25.247 4157 15842 
Development 612 25.436 2416 9759 
Test 3334 25.536 - - 
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the CHEMPROT corpus, eliminating all cross-sentence 
relations will not impact the performance significantly.  

A. Relation Instance Generation 
We extract the sentences from sentence detectors. For each 

potential chemical protein pair in the sentence, we assign a 
relation label “NA” for the pair without annotated gold 
standard annotation provided by the challenge organizers. Here 
we consider the relations other than the five evaluated types as 
negative relations (CPR 1, 2, 7, 8 and10).  

B. Input Representation 
In our proposed system, the input to the neural network 

models is expected to be low dimension semantic token-level 
vectors. We use word embeddings and position embeddings as 
the input to the neural network models.  

We use two different methods to represent the pre-
annotated entities. In the first method, the tokens are directly 
sent to the word embedding model to retrieve the word 
embeddings, regardless if it is an annotated token as part of an 
entity. The limitation for this method is that a lot of chemical, 
gene and protein entities may not be found from the pre-trained 
model. We then apply a second representation. We replace all 
the entity tokens by the entity types. Specifically, for chemical 
entity mentions, all the tokens of entities are replaced by the 
word token “chemical”. Similarly, all the gene and protein 
entities are replaced by “gene”, regardless of whether it can be 
normalized or associated to a biological database identifier (i.e. 
“GENE-Y” or “GENE-N”). 

Word embeddings. We use 300-dimension pre-trained 
Glove-6B model. Our preliminary experiments show that the 
300 dimensional Glove-6B outperforms the word embedding 
models we trained by CBOW from PubMed. If a word cannot 
be found from the word embedding model, the embedding will 
be generated randomly and appended into the model.  

Position embeddings. We follow the method by Zeng et. al. 
[4] to generate the position embedding of the entities in each 
narrative sentence. The position embedding is generated based 
on the relative distances of tokens to the entities. An example 
of relative distance is shown in Figure 2.  

For each relation instance, there will be two position 
embeddings for each token from two entities (one chemical and 
one gene/protein). The two position embeddings are 

concatenated to the word embeddings of the token as the input 
to the neural network models.  

C. Convolutional neural network  
Our CNN models for relation extraction are similar to [4]. 

The model architecture is shown in Figure 1 (a). The 
convolutional layer can capture contextual information of 
filters of a pre-defined filter length. The convolutional filters 
are expected to generate high-level local features from the 
input vector representations. The output of the convolutional 
layer is then forwarded to the Global Max-pooling layer, where 
the maximum values of each filter outputs are pooled and 
concatenated. Finally, a non-linear function can be used on the 
max-pooling vector to predict the probability-like values of 
each relation label. We then select the label with the highest 
value from the non-linear layer as the relation label.   

D. Attention based RNN 
Attention mechanism is proposed to emphasize the 

contribution of the informative neural units in the model. 
Instead of directly receiving the signals from consecutive RNN 
units, the additional attention layer overlooks all the RNN units 
of the sequence and assigns different attention weights to each 
unit according to their importance. The intuition for applying 
attention-based model is to have higher weights for tokens that 
are indicators of the semantic relations. We use the equations 
from Luong, et. al. [6] to calculate attention weights for each 
token in a sentence. The output of the RNN units is denoted as 
ℎ = [ℎ!, ℎ!,… , ℎ!] , where 𝑇  is the sentence length. Given 
token representation as w, we define the hidden representation 
of ℎ! as 𝑢! and word level importance vector 𝑢!. The relation 
representation vector s is the weighted sum of RNN outputs 
ℎ and the attention weights 𝛼.  

𝑢! = tanh(𝑊!ℎ! + 𝑏!) 

𝛼! =
exp 𝑢!!𝑢!
exp 𝑢!!𝑢!!

 

                            

(a)          (b) 
Figure 2. Model architecture of CNN 

 

 
Figure 1. Example of relative distance of the word "inhibitors" 
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𝑠 = 𝛼!ℎ!
!

 

where 𝑊!  and 𝑏! are the weight matrix and bias of the 
attention layer, respectively. We then apply the non-linear layer 
and relation predication method as described in the CNN 
model (Section III.C) to predict relation labels.  

E. Evaluation 
The model performance is evaluated via standard micro-

average F1-score. True Positive (TP) denotes the number of 
correctly detected positive relation instances. False Positive 
(FP) denotes the number of relations “NA” in the gold standard 
but are predicted as one of the positive relations by the DNN 
model. False Negative (FN) denotes the number of positive 
instances that are not detected by the model. The micro-
average F1-score is defined as:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, 

𝐹1 =
2 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

. 

The system performance is evaluated by the official 
evaluation package provided by the task organizers1.  

IV. RESULT 

A. Experimental settings 
We used Punkt sentence detector in NLTK [11], [12] to 

detect sentence boundaries. The models are implemented using 
Keras 2.0.52 with Tensorflow3 backend. The implementation of 
attention layer is inspired by [13]. We applied the 
hyperparameters shown in Table II for the CNN and 
ATTention-based GRU model (ATT-GRU). The models are 
trained using Adam optimizer on the loss function of sparse 
categorical cross entropy. Dropout was applied to the non-
linear layers to prevent overfitting [14]. The dropout rate was 
set to 0.5.  

  
B. Submitted Runs 

We submitted four runs to the challenge evaluation. The 
details of each run is shown as follows: 

                                                             
1 http://www.biocreative.org/media/store/files/2017/evaluati

on-kit.zip 
2 https://keras.io/ 
3 https://github.com/tensorflow/tensorflow 

Run 1: CNN with raw tokens as input, without replacing 
annotated entity tokens. 

Run 2: ATT-GRU raw tokens as input, without replacing 
annotated entity tokens. 

Run 3: CNN with raw tokens replaced as labels.  

Run 4: ATT-GRU with raw tokens replaced by entity labels.  

We also implemented conventional RNN, GRU, LSTM, and 
attention based LSTM as preliminary experiments. However, 
the performance was not as good as the performance of ATT 
GRU models. Due to the limitation of the number of 
submission runs, we did not include them into the official 
submissions.  

 Table IV shows the system performance of each submitted 
run in the development dataset. Based on our experimental 
results, the attention based GRU on entity labels outperforms 
the rest of runs with a F1 score of 0.506. Attention based GRU 
systems outperform CNN models. Replacing raw entity texts 
by the entity labels enhances the models slightly for both CNN 
and ATT-GRU.  It is mainly due to the fact that most of the 
chemical, gene and protein tokens cannot be found in the pre-
trained word embedding models. Thus, replacing them into 
meaningful entity labels (“chemical”, “gene”) can help find 
reasonable word embeddings instead of random assigned ones. 
The models generally do not suffer much from overfitting. All 
the submission runs observed F1 score decreases of less than 
0.01.  

 The performance breakdown of our best run (ATT-GRU) 
on development set is shown in Table IV. The classification 
report is done via scikit-learn 4 . CPR:4 has the highest 
performance among all the classes, and has the largest 
proportion in all relations as well. CPR:3 is one of the hardest 
relation type to classify, not only for the ATT-GRU model but 
also for our other models. 

 

V. CONCLUSION AND FUTURE WORK 
 In this paper, we described our participation of Task 5: Text 
mining chemical-protein interactions (CHEMPROT). We 
developed deep neural network models including CNN and 
attention-based RNN using the embedding of either raw entity 
mention tokens or annotated entity type labels as input. The 
model using annotated entity type labels and attention-based 
GRU model achieves the best performance on both the 

                                                             
4 http://scikit-learn.org/stable 

TABLE II  PARAMETER SETTINGS FOR CNN AND ATT-GRU 
MODELS 

Parameter Value 
Batch size 64 

Number of filters 100 
Filter length 3 

Hidden dimensions 200 
RNN units 128 

Learning rate 0.001 
 

TABLE III      PERFORMANCE BREAKDOWN OF ATT-GRU ON THE 
DEVELOPMENT SET 

Label  Support Precision  Recall F1-score 
CPR:3 498 0.473 0.388 0.426 
CPR:4 990 0.569 0.663 0.613 
CPR:5 112 0.357 0.634 0.457 
CPR:6 184 0.505 0.609 0.552 
CPR:9 407 0.468 0.442 0.455 
Total * 2191 0.512 0.553 0.528 

* The “Total” line is calculated from weighted F1-score by support counts, 
which is different from the micro-F1 score of the official evaluation.   
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development and the test set, with F1-scores of 0.506 and 
0.494, respectively.  

 There are some directions to investigate to improve this 
work. We would like to see if an external knowledge base can 
be used to improve our machine learning based system, which 
is dependent on the provided corpus. Another interesting 
problem is how to utilize the token-level weights from the 
attention activations. The weights can be further applied for 
tasks such as pattern mining and key word extraction. The 
current system is proposed for within-sentence relations. The 
model could be further extended into abstract level by 
introducing hierarchical neural network models [8].  
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 TABLE IV          SYSTEM PERFORMANCE OF SUBMITTED RUNS ON DEVELOPMENT SET 

Run ID Model 
Development Set Test Set 

Precision Recall F1-score Precision Recall F1-score 

1 CNN token 0.459 0.456 0.457 0.477 0.437 0.456 

3 CNN entity 0.497 0.448 0.471 0.507 0.430 0.465 

 ATT-LSTM token 0.429 0.485 0.456 - - - 

2 ATT GRU token 0.470 0.522 0.494 0.484 0.491 0.488 

4 ATT GRU entity 0.512 0.501 0.506 0.530 0.463 0.494 
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Abstract — Chemical compound and protein interaction 
information is indispensable for understanding the regulation of 
biological processes and development of therapeutic drugs. 
Manually extracting such information from biomedical literature 
is very time and resource consuming. In this study, we proposed 
a computational method to automatically extract chemical-
protein interactions (CPI) from a given text. Our method extracts 
CPI-pairs and CPI-triplets from sentences, where a CPI-pair is 
defined as a chemical compound and a protein name in a 
sentence, and a CPI-triplet is defined as a chemical compound 
name, a protein name, and a word describing their relationship 
(interaction word) in a sentence. We formulate the task as a 
machine learning problem and extract a diverse set of features 
from sentences, which were used to build multiple machine 
learning models. Our models contain both simple features, which 
can be directly computed from sentences and also more 
sophisticated features derived using natural language processing 
(NLP) techniques. For example, one set of features are extracted 
based on the shortest paths between the CPI-pairs or among the 
CPI-triplets in the dependency graphs obtained from sentence 
parsing. To predict the multiple categories of CPI types, we 
designed a three-stage approach to divide-and-conquer the 
challenging multi-class prediction problem. Our method 
obtained good performance on the BioCreative VI track 5 data 
with F1-scores of 0.7641, 0.7912, and 0.7798 for train set, 
development set and the combination of them, respectively, on 
10-fold cross validation.  

Keywords—Protein-protein interactions; chemical-protein 
relations; text mining; CPI triplets; 

I. INTRODUCTION  
Chemical-protein interactions (CPI) play important roles in 

metabolism and regulation of biological processes. Such 
knowledge is also the key to understanding mechanisms of 
diseases and developing therapeutic drugs. With many years of 
biological and biomedical research, a large amount of 
information on CPI has been discovered and published in 
scientific literature as unstructured text. Text information 
stored in the literature is not convenient for automatic analysis 
and computation and a great deal of efforts has been made to 
manually extract such information from literature and deposit it 
in various databases as structured data. However, manual 
extractions of chemical-protein interaction information is very 
time and resource consuming and it can be difficult to keep up 
with the speed of scientific publications. Consequently, 
computational methods that can automatically extract the 
desired information have been sought to address the problem. 

 A considerable number of computational methods have 
been developed to extract protein-protein interaction 
information (PPI) from literature in the past (1-11). These 
approaches tackled the problem from varies aspects, ranging 
from relatively simple co-occurrence, to rule-based pattern 
matching, to machine learning based methods, which can be 
further enhanced by natural language processing (NLP) 
techniques. However, far less methods have been proposed to 
automatically extract the interactions or relations between 
genes/proteins and chemical compounds/drugs. A good 
chemical-protein interaction extraction method will benefit not 
only basic biomedical research but also precision medicine as 
well as drug discovery. Such methods can be used to extract 
unstructured CPI information from literature and deposit it to 
databases to allow efficient query of CPI information. The 
structured CPI information can also be used in integrative 
analysis of other biomedical datasets. A CPI extraction method 
can also be used to extract CPI from a given text to get 
information on very specific types of chemical-protein 
interactions.  

To promote research in this important biological text 
mining area, BioCreative challenge VI has established a 
separate track for this task, BioCreative VI track 5, Text 
mining chemical-protein interactions. As a participant of this 
challenge, we have developed a method for extracting CPI 
information from biomedical literature. This manuscript 
describes our method and findings in this study. In this track, 
the goal is to build a system to automatically detect or extract 
the relations between chemical compounds/drugs and 
genes/proteins in PubMed abstracts. CPI extraction is 
challenging because we have to find whether chemical 
compound and protein mentions have interaction, as well as to 
identify which type of interaction they share. To develop the 
CPI extraction method, we model CPI extraction as a 
classification problem. By employing varies sets of features 
from semantic pattern and structure of the sentence with 
several machine learning classifiers, our method is capable to 
identify the CPI within biomedical literature. The results using 
datasets released by BioCreative VI demonstrate that our 
method is effective in CPI extraction. 

The rest of the paper is organized as following. We first 
describe the proposed method. The data used in this study and 
the experimental results are then presented, which is followed 
by conclusion and discussions. 
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II. METHODS 
Our CPI extraction method extracts potentially true CPI-

pairs and CPI-triplets from a given text. The CPI-pair is 
defined as a chemical compound name and a protein name in 
the same sentence and CPI-triplet is defined as a chemical 
compound name, a protein name and an interaction word in 
the same sentence. Our CPI extraction method builds models 
on CPI-pairs and CPI-triplets, then combines them to form a 
final model. We first construct all possible CPI-pairs and CPI-
triplets from entities mentions in a sentence. For each pair or 
triplet, we next extract feature sets from both the semantic 
pattern and the dependency-graph of the sentence. Semantic 
pattern contains the information of how people describe the 
interaction between chemicals and proteins, and dependency 
graph provides the information on how words are 
interconnected in the sentence. These features are used in 
machine learning methods to build models, which will predict 
the corresponding relation group of a CPI-pair or a CPI-triplet.  

A. Chemical-protein pairs and triplets construction 
The BioCreative VI track 5 has tagged all chemical 

compounds and proteins/genes mentioned in an abstract. We 
used these tagged names to construct CPI-pairs and CPI-
triplets. A CPI-pair will be labeled as one of ten CPI groups 
(CPR:[1-10]) according to the relation annotations provided by 
BioCreative VI. Each group has its own underlying biological 
properties. If a CPI-pair is constructed but not included in the 
relation annotations, it will be labeled as group 10 (CPR:10).  

A CPI-triplet is defined as the combination of a CPI-pair 
with one interaction word, which is used to describe the 
relation of interaction between the chemical compound and the 
protein. We have manually built an interaction words 
dictionary based on a previous study (10), which contains 
1,107 interaction words. These interaction words were further 
manually labeled to the corresponding CPI group. If a CPI-pair 
is in a sentence where there are multiple interaction words, the 
same number of CPI-triplets will be constructed, and these 
CPI-triplets share the same label of such CPI-pair.    

B. Features for model building 
1) Semantic pattern 

We extracted features based on our experience and through 
reading some sentences in the training and development data 
sets. For example, a CPI-pair is likely to be a certain CPI 
group if there are such type of interaction words included in 
the region covered by the pair. Another example is that when a 
CPI-pair is CPR:9, some related words, e.g. pathway, 
production, generate, synthesis, are frequently mentioned in 
three words before and after the chemical compound or 
protein/gene mentions.  

We also employed features proposed by (10). These 
features capture the information of certain grammar or 
language rules that people used to describe the PPI. We found 
they are helpful in CPI extraction as well. For example, a 
binary feature, that whether negative words such as not, 
incapable and unable are in the region covered by the pair or 
triplet, captures the negative meaning. Likewise, a binary 

feature, that whether sentence breaking words such as 
although, therefore, whereas, etc., are in the region, captures 
the compound meanings in the sentence.  

2) Dependency graph 

The Stanford Dependency Parser was used to analyze the 
structure of the sentence. The parser also provides the 
dependency graph of a sentence. One direct way to extract the 
relation of two words is to find the shortest dependency path 
(SDP) in the graph (12). It is reasonable to assume that the 
SDP contains the necessary and dense information, helpful for 
identifying the relation of chemical compound and 
protein/gene mentioned in a sentence. Fig. 1. shows an 
example of a dependency graph for the sentence “Binding 
studies showed that the first TPR motif of SGT interacts with 
the UbE motif of the GHR.” The SDP between the two protein 
names, SGT and GHR, are colored as yellow. The texts 
colored as red, such as nn, nsubj, are typed dependencies.  

To avoid the unnecessary complexity of dependency graph 
for better parsing accuracy, the names of chemical compound 
and protein/gene in a CPI-pair were replaced with CHEM and 
PROT respectively when parsing a sentence. Other entities 
mentioned in the sentence were replaced with special symbols 
“CPT + interactor term identifier”. Table I shows an example 
of sentence after replacing the entities names.   

For CPI-pair, we obtained the SDP between CHEM and 
PROT. For CPI-triplet, two additional SDP, CHEM to 
interaction word and interaction word to PROT, were 
obtained. We next extracted features from the SDP. For 
example, the distance (number of words in between) of SDP 
of CHEM to PROT. This distance tends to have small value 
when there is relation between CHEM and PROT. In addition, 
type dependencies in SDP are also helpful for distinguishing 
the true CPI from false ones. For example, when SDP of 
CHEM to PROT has small value of distance as well as appos 
(appositive) dependency, CHEM and PROT tend to be 
apposition, indicating they have no interaction. Therefore, we 
added binary features for type dependencies included in the 
SPD. 

TABLE I.  ENTITIES NAMES REPLACEMENT 

Senten
ce 

PMID Arg1 Arg2 
14507899 T15 T16 

Before 

P2Y(2) receptor agonist INS37217 enhances functional 
recovery after detachment caused by subretinal injection in 

normal and rds mice. 

After 
PROT agonist CHEM enhances functional recovery after 

detachment caused by subCPT10 injection in normal and rds 
mice. 

 

 
Fig. 1. Grammatical dependencies graph 
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C. Three-stage model building 
We implemented a three-stage model building approach. 

At each stage, several models were built on CPI-pairs and 
CPI-triplets respectively. Outcomes of those models will be 
used as additional feature sets at the next stage. 

1) Stage I 

At stage I, we built models for binary classification to 
predict whether a CPI-pair or CPI-triplet is true CPI, which is 
defined as CPR:[3, 4, 5, 6, 9]. These five groups carry 
different meaning for the CPI, and such information can be 
useful for downstream applications. For example, it is 
important to know whether an interaction is activation or 
inhibition type. Three classifiers were used in this stage: 
Random Forest, Extremely Randomized Trees, and Gradient 
Boosted Trees model. The predictions and rank-normalized 
predicted probabilities were stored and used at stage II.  

2) Stage II 

Combining the original feature set with the outcomes from 
stage I, we built models for multiclass classification to predict 
which CPI group a CPI-pair or CPI-triplet belong to. Three 
additional classifiers, Logistic Regression, Linear 
Discriminant Analysis and Naive Bayes, were used. The 
predicted probabilities for each CPI group, and the CPI group 
with highest predicted probability, from each classifier were 
stored. For those CPI-triplets from a CPI-pair due to multiple 
interaction words, we chose the one which gives the highest 
predicted probability as the outcome for such CPI-pair. Table 
II shows an example of choosing a CPI-triplet constructed 
from the CPI-pair in Table I.  

TABLE II.  EXAMPLE FOR CHOOSING CPI-TRIPLET 

Sentence 
PROT agonist CHEM enhances functional recovery 
after detachment caused by subCPT10 injection in 

normal and rds mice. 

CPI-Triplet Predictio
n 

Predicted 
Probability Choose? 

CHEM-PROT-agonist CPR:5 0.7234 Yes 

CHEM-PROT-enhances CPR:3 0.5118 No 

CHEM-PROT-caused CPR:9 0.3841 No 

 

3) Stage III 

At the final stage, three feature sets were combined: 
original features on CPI-pair, and outcomes from CPI-pairs 
and CPI-triplets at stage II. Gradient Boosted Trees model, as 
well as feature selection and optimization for tuning 
parameters, were implemented to get the final models used for 
predicting the cases in the test data set.  

III. RESULTS 

A. Data 
The data used in this study are from PubMed articles, and 

divided into train set and development set by BioCreative VI 
track 5 organizers. There are totally 1,632 abstracts, in which 

41,319 entities are tagged. We extracted 18,229 CPI-pairs and 
51,460 CPI-triplets from the train set, and 11,397 CPI-pairs 
and 32,150 CPI-triplets from development set. Table III reports 
the number of pairs and triplets in each true CPR group. 

TABLE III.  NUMBER OF CASES IN EACH TRUE CPR GROUP 

Train 
set CPR:3 CPR:4 CPR:5 CPR:6 CPR:9 

# pairs 761 2,251 173 235 727 

# triplets 2,492 6,452 486 732 1,536 
Develop
ment set CPR:3 CPR:4 CPR:5 CPR:6 CPR:9 

# pairs 548 1,093 115 199 457 

# triplets 1,650 2,936 400 673 881 

 

B. Results 
To test our models, we used train set as training data, then 

made predictions on the development set as testing data. We 
also did the other way around. The performance was evaluated 
by F1-score, taking micro-average across true CPR. Table IV 
reports the F1-score of the models at Stage III. F1-scores of 
training data were computed using 10-fold cross validation. 
Our model can reach up to 0.7912 F1-score in the 10-fold cross 
validation for the training data. The F1-score in testing data was 
0.5796 for development set, and 0.5397 for train set (when 
development set was used as training data). It is notable that 
our three-stage model building approach boosts the 
performance. The best performance on testing data at Stage II 
is 0.5702 for development set, and 0.5291 for train set. The 
considerable discrepancy in F1-score between training data and 
testing data indicates that the train set and the development set 
might be quite different in certain ways.   

TABLE IV.  F1-SCORE OF MODELS AT STAGE III  

Training data 10-fold CV 
F1-score Testing data F1-score 

Train set 0.7641 Development set 0.5796 

Development set 0.7912 Train set 0.5397 
Train set  
+ Development set 0.7798 - - 

 

IV. CONCLUSION 
In this study, we proposed a method to detect chemical 

compounds-proteins interactions (CPI) mentioned in 
biomedical literature. We constructed CPI-pairs and CPI-
triplets, extracted varies sets of features from semantic pattern 
and structure of the sentence, and implemented a three-stage 
approach with several machine learning methods. When tested 
on BioCreative VI track 5 data, our method achieved 
satisfactory performance, indicating that it can be used in 
practical CPI extraction tasks.  
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There are several directions we can take to further improve 
our method. First, we can extract features containing more and 
deeper semantic information shared by various dataset. This 
can be facilitated by reading some cases for which we have 
failed to make the right classification. Second, we may 
manually annotate more cases and add them to the training 
data. Third, when reading some of the mistakes we have made 
for development data, we found that a significant number of 
cases were wrongly labeled. Correcting wrongly labeled cases 
may further improve our method. Fourth, we have labeled all 
the CPI-triplets formed by the same CPI-pair and different 
interaction word in a sentence as the same chemical-protein 
interaction type, which certainly has some cases wrongly 
labeled. This can be addressed in the future by selecting one 
and only one of them to assign the right label since this is 
probably right for most of the cases. This may be achieved by 
predicting the one to be labeled and conducting the training 
iteratively. Finally, we can try some deep learning based 
method as deep learning has been shown to be quite effective 
in recent years in many different types of machine learning 
problems including text mining.  
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Prior knowledge about how a chemical interacts with genes or          
proteins might be valuable in predictive computational       
toxicology. Many relationships between chemicals and proteins       
(or genes) have been catalogued in various databases. However,         
these databases are incomplete; some information can be found         
only in the literature. Here, we describe a feature engineering          
and relation classification approach that leverages information in        
databases to improve the quality of relation extraction with the          
goal of identifying relationships missing from those databases. 
Automated relation extraction from text is difficult due to the          
many ambiguities in natural language. The current state of the          
art consists of extracting features such as words, word stems, and           
syntactic information, and using them as inputs to a machine          
learning classifier. Here, we explore whether automatic      
identification of relationships between chemicals and proteins       
found in publications can be enriched by adding prior knowledge          
about the chemicals and proteins found in existing databases to          
the features used in machine learning.  
 

Keywords: Relation extraction, knowledge-bases, natural     
language processing,  biomedical ontologies. 

I. INTRODUCTION  

Our approach was to combine features from the text with          
information from a knowledge-base. We integrate knowledge       
from many different databases using the KaBOB (1)        
knowledge-base, to automatically identify a set of five        
possible relations ("upregulation”, "downregulation",    
"antagonist", "agonist", and "substrate of") between a       
chemical and a protein mentioned in PubMed abstracts. The         
knowledge-base incorporates information about the chemicals      
and proteins (i.e. “participates in kinase activity”, “has N         
aromatic rings”, “it’s lipoxygenase activating”, etc). We       
tested our approach on an extensive manually annotated set of          
relations from the ChemProt (2) database (including       
therapeutics), using this prior knowledge in conjunction with        
text-derived features.  

II.  MATERIALS 

We used the following tools during preprocessing and feature         
extraction: 
 

1. Headword finder: Many of the chemical and 
protein/gene names are multiwords. For such names, 
we used Michael Collins’ Headword Finder 
implementation in the Stanford CoreNLP to find the 
heads. Headword words are important in extracting 
dependency path features. 

2. Dependency parser: we trained SyntaxNet on the 
CRAFT (3) corpus. The model was tested on unseen 
CRAFT set and it achieved state-of-the-art results. 
We used the dependency parser to extract two 
features --- to find dependency label path between 
two pair of entities, and to find words along the 
dependency path 

3. TFIDF Vectorizer: Text features are converted into 
number using scikit-learn’s TFIDF Vectorizer 
implementation.  

III.  METHODS 

One aspect of this task was to determine whether there was a            
relation between a chemical and protein/gene entity in the first          
place. We made the assumption that any mention of an          
annotated chemical and protein in the same sentence        
represented a potential relation. Of course, this is not the case           
for every possible chemical-protein pair, so we had to train a           
machine learning classifier to detect when there was no         
relation. To achieve this, we pooled the sample, training and          
development data as our “training dataset”, and for every         
sentence in every abstract, if we saw a chemical and protein           
annotated within it, we created a training sample. If there was           
indeed a relation defined for these two, we set the training           
label as such; otherwise, we set it as “NONE”. Any relation           
that wasn’t part of the list of interest for this task was also             
labeled as “OTHER”. Random 80/20 splits were performed to         
evaluate performance and help tune the classifier settings.  
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For each of these CHEMICAL/GENE-[Y|N] pairs, we       
gathered the following features from the text itself, following         
in part suggestions from Jurafsky et al. (4) Relation Extraction          
chapter: 

● The tokenized chemical entity name, and its bigrams 
● The tokenized protein entity name, and its bigrams 
● The tokenized combined chemical and protein entity       

names, and bigrams 
● The tokenized words in between mentions, and       

bigrams 
● The number of words between mentions 
● The tokenized words of the sentence this relation        

happens in, and bigrams 
● The tokenized head word for the first occurring        

entity, and bigrams 
● The tokenized head word for the second occurring        

entity, and bigrams 
● Dependency parser labels between the chemical and       

protein, including bigrams and trigrams 
● The words along the dependency path from the first         

occurring entity to the second occurring entity,       
including bigrams and trigrams 

 
In addition, when it was possible to normalize the chemicals          
and/or proteins to a ChEBI ID and Protein Ontology ID          
(respectively), features were extracted from KaBOB for both        
the chemical and protein,. The feature set from KaBOB was          
constructed as follows: 

● A vector representing all possible GO annotations       
associated with a protein, and all possible ChEBI        
classes formed the basis of the feature set. Very         
abstract and very rare features were removed from        
this vector 

● If a protein could be normalized to KaBOB, the         
vector positions for that protein’s GO annotations       
were set to 1. If a chemical could be normalized to           
KaBOB, then the vector positions for its ChEBI entry         
and all its IS-A parents were set to 1. Other positions           
were set to 0. If the protein or chemical did not map            
to an entity in KaBOB, the respective positions were         
set to 0.5. 

● During error analysis we found a subset of the         
KaBOB features of interest, that seemed highly       
relevant during successful relation classification.     
When those features were present, they were set to 2,          
(rather than 1). 

We executed classification of the chemical-protein relations       
using a variety of machine learning algorithms: 

● Naive Bayes 

● Perceptron (100 iterations) 
● Random Forests 

○ A grid search was performed to obtain the        
most favorable settings for 100 estimators. 

○ After performing 500 estimators and     
noticing no significant improvement, it was      
determined that 100 estimators were enough 

○ Perceptron and Neural Networks ultimately     
displaced this algorithm in performance. 

● Neural Networks 
● Feature selection was performed using a chi-squared       

test of f_classif (ANOVA) method. After utilizing a        
selection of the best 10k, 20k and 30k features, it was           
observed that the full dataset without feature       
selection performed better, therefore this approach      
was abandoned. We also intended to use SURF (an         
extension of ReliefF) to extract the best features, but         
it proved not to scale in time due to the vast number            
of features. 

IV.  RESULTS 

Below are our results as evaluated by the organizers: 

TABLE I. RESULTS ON THE TEST  SET FROM THE ORGANIZERS 

Run 
Performance Metrics 

Precision Recall F-Score 

Team 404 Run 1  0.3460 0.3913  0.3673 

Team 404 Run 2 0.3387 0.4078 0.3700 

Team 404 Run 3 0.3305 0.1666 0.2215 

Team 404 Run 4 0.3307 0.3641 0.3466 

Team 404 Run 5 0.3058 0.3603 0.3309 

  
These results in Table I are low compared to what we were            
achieving on a 20% of the training set. Table-II shows our           
best model results evaluated against 20% of the training set.          
This could be due to various reasons. Firstly, the test set is            
sizeable compared to the training set. Since most of our          
features are text-based, a larger test set could introduce lots of           
unseen words in the training set that will result in lower results            
in the test set. Secondly, we might have overfit our models.  

TABLE II. RESULTS FROM OUR BEST MODEL ON 80/20 SPLIT 

Relation 
Performance Metrics 

Precision Recall F-Score 

CPR:3 0.76 0.74 0.75 

CPR:4 0.79 0.80 0.80 

CPR:5 0.60 0.60 0.60 
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CPR:6 0.61 0.74 0.67 

CPR:9 0.75 0.83 0.79 

NONE 0.92 0.91 0.91 

OTHER 0.72 0.75 0.73 

AVG / TOTAL 0.86 0.86 0.86 

 
The best performance was achieved using neural networks        
with one hidden layer. The input and hidden layer have 200           
nodes. We found that more layers and nodes were achieving          
better results but the training time was too long. Since we had            
limited time, we decided for one hidden layer network. The          
outer layer has seven nodes since there were seven classes in           
the training set. Overfitting is a big problem when training          
neural networks. To address this issue, we used dropout with a           
value of 0.5. Our experiments were conducted using Keras         
framework.  
 
We used different metrics to evaluate the performance of our          
development runs: for each type of score (precision, recall and          
F1-score) we calculated the weighted average, the       
micro-average, and macro-average of each category. 
The models we selected to submit after testing a wide array of            
combinations, all exclude the tokens derived from the full         
sentence in which the chemical and protein entities are present          
and instead use dependency parsing. Further, all models use         
the dependency parser labels as features. The main differences         
between the models include the machine learning algorithm,        
bigrams or trigrams from words in the dependency pattern,         
and use of knowledge-base-derived features.  The models are: 
 

1. Neural network on all text features using unigrams,        
bigrams and trigrams for the words along dependency        
path between the two entities. 

2. Neural network on all text features using unigrams        
and bigrams for the words along dependency path        
between the two entities. 

3. Neural network on all text and      
knowledge-base-derived features using unigrams and     
bigrams for the words along dependency path       
between the two entities. 

4. Perceptron neural network using all text features       
using unigrams, bigrams and trigrams for the syntax        
dependency parser output words. 

5. Naive Bayes neural network using all text features        
using unigrams, bigrams and trigrams for the syntax        
dependency parser output words. 

 

A. Incorporating the knowledge-base 
A significant portion of finding related attributes of chemicals         
and proteins in KaBOB was mapping the annotated strings to          
an identifier represented in the knowledge-base. For the        
purposes of this task, we attempted to match chemical strings          
to a ChEBI ID, and proteins/genes to a Protein Ontology ID or            
gene ontology molecular function (GO MF) ID.. We        
employed various heuristics to find these mappings, always        
using the case-insensitive string denoting the entity to match         
against: 
 

● ChEBI chemical names 
● ChEBI synonym for chemicals 
● CAS numbers in ChEBI’s accession data 
● PubChem chemical names 
● KEGG compound names 

 
For all the above we attempted to match the entity string           
verbatim, replacing Greek letters by their romanized name,        
replacing numbers with Roman numerals, adding “compound”       
as a suffix, splitting multiple terms with spaces, and splitting          
multiple terms with a dash. The protein lookups were         
performed against the Protein Ontology attempting to match        
with a protein name or a synonym first and then the gene            
ontology molecular function family as a last resort. Various         
heuristics were employed for protein searches: matching the        
string verbatim, adding “ (human)” as a suffix, adding a “           
protein” suffix, adding a “-like protein” suffix, using spaces         
only as separators, using “-” only as separators, adding a “h”           
prefix, removing all punctuation, and removing the “human”        
identifier portion of the name. As a last resort, if there were no             
matches to the Protein Ontology, “activity” was added to the          
protein name as a suffix and searched for in the molecular           
function gene ontology, which provides a large set of         
gene/gene product functionalities (e.g., kinase activity), and       
many genes/gene products are either named or can be referred          
to as entities that possess these functionalities (e.g., kinase).         
Plus, in using the gene ontology molecular function, we can          
take advantage of the extensive hierarchy for reasoning and         
machine learning. 

V.  ERROR ANALYSIS  

Once we had some significant success in classifying the         
chemical and protein interactions, the false positives and false         
negatives were examined for possible improvements to either        
the text or knowledge-based-derived features. For the text        
features, misclassifications of the opposite relations, including       
a chemical-protein pair classifying as both upregulating and        
downregulating, were troublesome and appeared to be due to         
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both relationships being in the text, but for different         
chemical-protein pairs. For example, “DBDCT up-regulated      
the expression of Bax, down-regulated the expression of        
Bcl-2, and significantly increased the ratio of Bax/Bcl-2.”        
Both “up-regulated” and “down-regulated” are in the same        
sentence but only apply to specific proteins, Bax and Bcl-2          
respectively. This led to using the dependency path instead of          
the full sentence for the text features. For false negatives, the           
main issues were with the “OTHER” category and due to it           
being a collection of all the non-relevant categories, teasing         
out the issue was unclear. Thus we were not able to figure out             
why recall is low in order to improve it, but we did improve             
precision and F1-score by using the dependency path. 

For the knowledge-based-derived features, we     
determined the unique chemical and protein attributes specific        
to each of the five possible relations, if any. All relations had            
at least 1 unique feature except for “agonist” which had no           
unique protein features and only one unique chemical feature.         
This information was aggregated into a list of features of          
interest that were weighted 2 in the feature matrix. Overall,          
both of these updates, the dependency path instead of the full           
sentence and the list of KaBOB features of interest, were used           
in the final algorithms submitted to improve performance. 

VI.  DISCUSSION 

The words in the entire sentence incorporated too much noise          
for the evaluation, as seen in the error analysis of the relation            
classification, whereas the words in the dependency parser        
output demonstrated a greater performance. It is uncertain        
whether the features from KaBOB aided or hurt the         
performance in the relation classification, as the best algorithm         
(neural networks) performed seemingly just as well without        
them. Further testing is needed to determine if, for certain          
feature configuration, the addition of KaBOB-derived features       
results in a statistically significant performance improvement.       
We did not include results utilizing only KaBOB-derived        
features as part of the submission for this task, as they did not             
reach the top five performing methodologies. Their value lies,         
however, in the potential generalizations that can be made         
when using them, particularly after feature selection. These        
features derived from KaBOB could be used to estimate the          
probability of each of these relationships between any        

chemical-protein pair, based on their attributes in the        
knowledge-base. Feature selection algorithms and post-hoc      
analysis of the machine learning results would identify the         
aspects of the prior knowledge that were most helpful, and be           
used to generate hypotheses about generalizations (i.e.       
“chemicals with property X tend to down-regulate proteins        
that participate in molecular function Y”).  

There are various areas of improvement for this        
approach. We can refine our heuristics based on the error          
analysis data to address common misclassifications (i.e.       
“up-regulates” to “down-regulates”, and vice-versa). It would       
also be very valuable to find the top shortest paths between a            
chemical entity and a protein entity in KaBOB, as it could           
directly yield how they are related, particularly if they         
intersect at a Reactome pathway step. Our KaBOB queries         
could also be expanded to include more information about         
chemicals and proteins that could be used as features.         
Performing cross-validation using the different approaches      
devised to determine proper statistical significance of the ones         
that seemed to perform best would be crucial, as well. Our           
classification could be extended by integrating features       
extracted using word embeddings, and training deep learning        
models using Recursive Neural Network (RNN) and Long        
Short-Term Memory (LSTM). 
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Abstract: In this paper we introduce a chemical-protein interaction 
detection system called CTCPI, which uses Convolution Tree Kernel 
to separate various levels of interaction mechanisms exhibited by 
chemicals while interacting with proteins/genes. Our system enlists a 
novel feature engineering method based on Algebraic Invariance to 
identify and consolidate distinct linguistic features for each class 
from the candidate sets and use these feature patterns as a screening 
function for generating the feature tree for SVM-CTK classifier. Our 
system achieved about 30.92% performance for chemical protein 
interaction class identification task. 

Keywords: Named Entity Recognition (NER), Algebraic Invariance, 
Convolution Tree Kernel (CTK) 

I. INTRODUCTION 
Biological interactions are vital in understanding the 

mechanism of action involved behind the physiological 
response to any drug. The nature of interaction can help us 
ascertain what category a drug belongs to, whether it inhibits 
an unwarranted gene regulation or works as a conjugate in 
some other reaction etc. There is plethora of published 
material with references to drug/chemical based interactions 
with various biological entities which can be used in 
subsequent researches to develop more effective drugs or be 
used in clinical practices for bettering patient care (7). 
BioCreative VI – ChemProt task is aimed at identifying 
relation types targeting “chemical compound-based interaction 
with proteins/genes” (CPI). The task is focused on identifying 
true interactions in proteins/genes stimulated or caused 
directly by chemical compounds/drugs and annotating the 
respective nature of interaction between the corresponding 
entities (4). As per the task we are to categorize these 
interactions into given 5 classes viz, Class 3 – Up Regulators, 
Class 4 – Down Regulators, Class 5 – Agonist, Class 6 – 
Antagonist and Class 9 – Substrate or Product Of. 

II. METHOD 
The Chemical Protein Interaction task is a multi-label 

classification task where named entity types for each abstract in 
the corpus data were provided by the task organizers. To deliver 
the task, we developed a 4-tier module system as shown in 
Figure 1. Tier1 is the Candidate Instance Generation System, 

which is responsible for pre-processing of input abstracts. This 
module entails screening for relation-oriented sentences, which 
are referred to as “Instances” in our system. This module is 
preceded by generic tasks of natural text preprocessing viz. 
Sentence Detection (Apache Open NLP) 1 , Entity Class 
Labeling (In-built Module), and part-of-speech (POS) tagging 
(Genia Tagger)2 (8-9). Hence generated POS-tagged sentences 
were drafted into candidate instances based on entity pairs (one 
chemical and one protein/gene pair mention per sentence per 
pairwise iteration) relabeling to indicate the primary Chemical 
and Protein pair. The verb implying the relation (proximal verb) 
was also assigned a prominent identifier as “Relation”. It entails 
a non-basal form verb nearest to the current entity pair set. The 
use of this form can be explained by linguistic predominance in 
describing causal relations using a non-basal form verb in a 
smaller frame between the respective subject-object within the 
sentence.  

The Tier2 of our system is based on a feature engineering 
method novel to the natural text domain. This module is 
dubbed as Algebraic Invariance-based Feature Engineering 
set. The module is responsible for generating a tree-based 
feature file where Invariance method is used for feature 
enrichment. In contrast to using the whole parse tree directly 
generated by Stanford parser (1), a set of stringent context 
feature patterns based on Invariance functional were used to 
set the upper and lower bounds for candidate instances 
accepted for tree generation. In addition, context patterns per 
instance were used for pruning and decorating the respective 
instance tree, thereby enhancing the feature context and 
bringing brevity to the features incorporated. 

Our feature engineering approach is based on conjecture that 
different candidate instances show similarity in inference even 
if they are structurally diverse when relevant contexts are used 
as reference points. The objective is to demonstrate the 
invariance or lack of change in the nature of such descriptive 
sections from the text, and exploit this characteristic in 
generating more robust features while limiting the degree of 

                                                             
1 http://opennlp.sourceforge.net/models-1.5/en-sent.bin 
2 http://www.nactem.ac.uk/tsujii/GENIA/tagger/geniatagger-3.0.2.tar.gz 
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evaluation function. The idea is heavily drawn on Algebraic 
Invariance to show that two separate sentences are similar in 
their inferential meaning if their invariant function does not 
vary (2). Such a function can be represented as follows: 
 

I(qn0...q0n ) ≡ ΔW * I(pn0...p0n )   (1) 
 
where I(q) and I(p) indicate the invariant function post and 
prior to transformation (T) , Δ is the determinant of the 
representational polynomial undergone transformation (T), 
and W is the invariant weight. 

In order to restructure the invariance concept in a natural 
text paradigm, we assumed a homogenous polynomial 
function based on our prior selected three key referential 
labels viz. Entity1 (Chemical), Relation (Proximal Verb), and 
Entity2 (Protein/Gene) to project every instance in the 
Euclidian space. We limited our function to a second order 
polynomial based on each variable set as given below: 
 

P x, y( ) = p20x2 + p11x1y1 + p02y2    (2) 
 

where x and y are binary association variables representing 
“Entity1~Relation” and “Entity2~Relation” respectively. p20, 
p11, and p02 are coefficients of the polynomial evaluated by the 
maximum value from a seven-frame adjacency matrix vector 
for each of the corresponding variable pairs. This seven-frame 
adjacency matrix is calculated for each variable in the 
combination set and is based on an n-gram probabilistic model 
by shifting the window frame iteratively over the instance, 
moving reference label index from 1 through 7. We settled on 

7-gram model as it tested positively with the development 
data. Per instance the cumulative n-gram score from union of 
similarity instances per variable over all candidate instances is 
taken as statistical significance score for the context pair set 
and is labeled as coefficient of the variable pair. 

Our algorithm treats each candidate instance polynomial as 
a transformed version of all other instance polynomials. Using 
(1), if the invariant functional of the current candidate 
polynomial is equal to the invariant functional of other 
instance polynomials, then the current instance is considered 
similar to each of those instances, thereby reducing the 
dimensionality of screening space for pattern generation and 
keeping context-specific similarities.  

Keren, D (4) developed a method for calculating 
invariance functional for homogenous polynomials. Using that 
methodology and based on (1) and (2), we determine our 
invariance functional as given below: 
 

I(qn0...q0n ) ≡ I(pn0...p0n ) = p20
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where I(q) and I(p) are the invariant functions for the 
transformed instance polynomial Q(u,v) and original instance 
polynomial P(x,y), respectively. p20, p11, and p02 are the 
coefficients of the original polynomial function P(x,y). Every 
candidate instance is screened for the 3 key referential labels, 
and then corresponding coefficient values from the 
homogenous representation equation (2) are substituted in 
equation (3) to obtain the invariant function score I(p)k in 

 
Figure 1 . CTCPI System Architecture
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which k is the current candidate instance ID. The instances are 
sorted in descending order of their respective scores. If the 
invariant scores of two consecutive scores are approximately 
similar (Δ=1.00 and W~1, using (1)), then the instances are 
deemed as inferentially similar and thereby clustered together. 
Otherwise, the instances are diversified into separate groups. 
Instances within a group are aligned together to generate 7-
frame size context pattern per key referential label. 
Consequently, we obtain per category specific screening 
patterns, which are used for feature enrichment in tree 
building. The context patterns generated are compared against 
the referential label-based frames from the candidate instances 
to screen the information content and relevance of the 
respective instances to be used for the classifier.  

The hence generated pruned and decorated tree is 
subjected to Tier3 of our system module where further 
removal of noise from the candidate tree instances is 
attempted by using trigger words specific to each category. 
These trigger terms were identified based on statistically 
significant biological relational keywords obtained from the 
training corpus. The trigger terms are separated class wise and 
used to eliminate cross-referenced instances. Only filtered tree 
instances are allowed to be in the final feature file. The last 
segment i.e Tier4 of the tool is SVM classifier based on 
convolution tree kernel which is run on One vs One approach 
to segregate multiple interaction classes from each other. 
SVM-Light-TK-1.53 toolkit was used in both the learning and 
classification modules (5-6). 
 

III. EXPERIMENTS 

Experimental SetUp 
The dataset provided by the task organizers for separate 

phases varied in the abstract size. The training data extended 
to 1020 abstracts and 4157 interaction relations. The 
development data spanned about 612 abstracts with 2416 
relations. Three out of five task submissions used a balanced 
clubbed model of training and development data while for the 
remaining two we employed a balanced training set instances 
for the model learning. We trained all the models on SVM-
CTK. Other than using varied sizes of training data, we used 
variants of tree and vector features; by employing a 
combination model (tree + vector, #2), only tree-based model 
(#1,3,5) and only vector-based model (#4) for separate runs. 
The entity recognition was already provided with the 
respective corpuses, therefore our system only focused on 
chemical-based interaction with proteins/genes. The standard 
evaluation metrics of precision, recall and F1-score were used 
for calibrating the method efficiency. 

Results and Discussion 
Table 1 briefs the performance of our system for each of 

the runs submitted. A total of 5 runs were obtained for 
prediction on the test set. The system registered F1-Score of 
about 30.92% on the best run, with recall and precision 

                                                             
3 http://disi.unitn.it/moschitti/TK1.5-software/download.html 

measuring up to 32.71% and 29.32% respectively. The model 
with best run is based on a consolidated corpus using both 
training and development data, weighing heavily on tree-based 
features for classification in contrast vector features. 
Effectiveness of tree kernel in classification indicates that the 
class specific features introduced by our feature engineered 
tree pruning apparatus are relatively effective in enriching 
qualitative contribution of parse trees as opposed to using only 
vector features. 
 

Run Precision Recall F1-Score 
#1 0.2446 0.3407 0.2847 
#2 0.2563 0.3456 0.2943 
#3 0.2932 0.3271 0.3092 
#4 0.0729 0.0150 0.0249 
#5 0.2587 0.3456 0.2959 

 

IV. CONCLUSION 
This paper introduces a system dedicated to identifying 

multi class chemical-protein interactions from pub-med 
abstracts. Multi-class classification makes this task 
challenging than usual binary classification tasks. In addition, 
there is also overlap in terms of interaction expression or key 
term references when it comes some interaction types, which 
brings in further ambiguity for classification. Our system was 
impactful to certain extent in segregating various interaction 
types, however an additional resource of trigger word features 
from curated literature database would be crucial in noise 
removal and better screening for interaction types. 
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Abstract—Understanding chemical-protein interactions 

(CPI) has been of great importance to drug discovery, precision 
medicine and basic biomedical research. It is a time-consuming 
and laborious task to annotate CPIs from numerous 
unstructured texts. We can employ automated methods to 
improve the efficiency of this task. In this work, we propose a 
CPI extraction method based on the bi-directional long short-
term memory network (a specific type of deep neural network), 
which does not require a complicated feature engineering 
procedure. Our key strategy is to break each sentence into 
fragments according to the position of the targeted entity pair 
and recombine them into chunks, which can help capture the 
structural knowledge hidden in the sentence. More specifically, 
our model consists of four network layers, including a feature 
layer, a Bi-LSTM layer, a pooling layer and a Softmax layer. 
Our results demonstrate that such a structure is beneficial for 
effective relation information. 

Keywords—Chemical-protein interaction; bi-directional long 
short-term memory network; structural knowledge;   

I. INTRODUCTION 
In clinical medicine, chemical drugs can act as therapeutic 

agents by targeting at some specific receptors and altering 
their structures, these receptors are usually some specific 
proteins, such as enzymes, oncogene products, anti-bodies, 
and etc. Therefore, understanding chemical and protein 
interactions (CPI) is of great importance to drug discovery, 
precision medicine and basic biomedical research. Biomedical 
researchers have studied a great amount of associations 
between chemicals and proteins, published their studies in the 
biomedical literature and added curated knowledge to some 
chemical-protein interaction databases, such as the protein 
data bank (https://www.rcsb.org/pdb/home/home.do) and the 
PDSP Ki Database (https://pdsp.unc.edu/databases/kidb.php). 
However, these databases are far from complete as it is time 
and labor-consuming to keep them up-to-date  manually with 
the sharply growing volume of biomedical literature. 
Automated methods can greatly improve the efficiency of CPI 
extraction from unstructured texts. 

Previously, various approaches were developed to address 
similar problems like DDIs (Drug-drug interactions) and PPIs 
(Protein-protein interactions) extraction. These approaches 
can be roughly divided into two categories: rule-based 
methods and machine learning methods. In general, the former 
approaches define a set of rules to capture various forms of 
expressing the relationship between two entities in texts. In (1), 
a set of syntactic rules and domain-specific lexical rules were 

applied in the identification of DDIs. Corney et al. (2) applied 
manually engineered templates that combine lexical and 
semantic information to identify PPIs. Besides manually 
crafted rules, it is also possible to generate rules automatically . 
For instance, Blasco et al. (3) proposed an automated method 
to summarize rules from a large amount of biomedical texts, 
which utilized Maximal Frequent Sequences (MFS) to 
discover patterns and such patterns have been proved to 
perform well on identifying sentences that contain DDIs. 
Generally speaking, rule engineering approaches are hard to 
scale up to large document collections due to various 
limitations. 

Machine learning methods adopt statistical models to 
capture relational information via training on a set of training 
data.  Several such methods have been proposed to extract 
DDIs from biomedical texts. (4) established the Turku event 
extraction system (TEES), and it supported detecting and 
identifying DDIs simultaneously by constructing a multi-class 
support vector machine (SVM). Liu et al. (5) introduced the 
convolutional neural network (CNN) into the DDI extraction 
task.  

As for PPI extraction, feature-based methods and kernel-
based methods are widely used. Feature-based methods focus 
on designing effective features including lexical, syntactic and 
semantic information. (6) used Maximum Entropy models to 
combine diverse lexical, syntactic and semantic features for 
PPI extraction. Kernel-based methods are even more effective 
for capturing syntactic structure information, which compute 
the structure similarity by kernel functions. Bunescu and 
Mooney (7) adopted a generalized substring kernel over a 
mixture of words and word classes to extract PPIs from 
biomedical corpora as well as semantic relations from the 
newswire corpora. Chowdhury et al. (8) investigated the effect 
of mildly extended dependency trees using an un-lexicalized 
partial tree kernel. Recently, deep learning techniques have 
achieved notable results in some PPI extraction tasks (9,10). 
However, to the best of our knowledge, deep learning is barely 
seen in CPI extraction yet.  

In this work, we propose a bi-directional long short-term 
memory network (Bi-LSTM) based model to accomplish the 
task of CPI extraction without complicated feature 
engineering. A key strategy of our work is that we split the 
sentence into fragments and recombine them into chunks, 
expecting to capture the structure knowledge hidden in the 
sentence. Our model consists of four network layers, including 
a feature layer, a Bi-LSTM layer, a pooling layer and a 
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Softmax layer. In the feature layer, the sentence in each 
instance is split into three fragments according to the position 
of the target chemical entity and protein. We re-organize these 
three fragments into two chunks and represent them with word 
features and position features. Here the exact words are 
initialized with syntax word embedding and the position 
features are mapped into ten bit binary vectors. Subsequently, 
in the Bi-LSTM layer, two separate Bi-LSTM are equipped 
for each chunk with the scope of better learning relation 
information. After that, in the pooling layer, we employ piece 
max pooling rather than max pooling on the encoding 
sequence data obtained from the Bi-LSTM layer. Lastly, all 
results are concatenated together, and fed to the Softmax layer 
for CPI classification. 

II. METHODS 
In this work, we propose a bi-directional long short-term 

memory network based model for CPI extraction. Figure 1 
shows the architecture of our model and the components are 
described in detail in the following parts. 

Forward
LSTM

Backward
LSTM

Forward
LSTM

Backward
LSTM
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Figure 1 The framework of our model 

A. Feature layer 
Depending on the position of the two targeted entities, we 

split each instance into three fragments, named 
as  F𝑟𝑎𝑔𝑚𝑒𝑛𝑡1(𝐹1), F𝑟𝑎𝑔𝑚𝑒𝑛𝑡2(𝐹2), F𝑟𝑎𝑔𝑚𝑒𝑛𝑡3(𝐹3) . 
𝐹1 denotes the fragment of a sentence in the front of the 
forward entity word, 𝐹2 is the fragment between two targeted 
entities, and 𝐹3 is the remaining fragment of the sentence 
behind the latter entity word. Subsequently, these three 
fragments are recombined into three chunks to represent the 
sentence. Here we combine 𝐹1  and 𝐹2  as   𝐶h𝑢𝑛𝑘1(𝐶h1) , 
denoted as 𝐶h1 = 𝐹1 + 𝐹2 . Similar to 𝐶h1 , 𝐹2  and 𝐹3  are 
combined into 𝐶h𝑢𝑛𝑘2(𝐶h2) . In this way, we expect to 
capture the structure information of the sentence. 

We follow earlier researches (11,12) to characterize each 
word in a sentence with word features and position features. 

Specifically, each word in a sentence is represented with three 
features: word (𝑤), Position1(𝑃1), and Position2(𝑃2), where 
𝑤 is the exact word, P1 and P2 are the relative distances from 
the current word to two targeted entities (a negative distance 
means backwards).  

B. Bi-LSTM layer 
According to previous studies, Bi-LSTM has been proved 

to be an excellent model in processing long sequential data, 
especially for text data. Thus, we employ three Bi-LSTM 
model to encode each chunk constructed from the previous 
layer, aiming to better capture effective encoding information 
for relation extraction. 

The Bi-LSTM model is equipped with two parallel LSTM 
layers, forward LSTM layer and backward LSTM layer. As 
theoretical analysis and experimental results show that the 
long sequence data exits long-term dependencies problem, the 
LSTM model emerged. Based on the recurrent neural network 
architecture, a new structure of the memory block is 
introduced into the LSTM model to alleviate the vanishing 
gradient problem. More precisely, the memory block consists 
of a memory cell (𝐶t ) and three multiplicative gates, including 
the input gate ( 𝑖𝑡 ), output gate (𝑜𝑡 ) and forget gate (𝑓𝑡 ). 
Respectively, the activation of the input gate multiplies the 
input to the cells, the output gate multiples the output to the 
net, and the forget gate multiplies the previous cell values. 
Figure 2 shows the detail structure of the memory block. 
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Figure 2 LSTM memory block 

Consider 𝑥𝑖  is the feature vector of the word, then the 
sequence data is denoted as 𝑥1, 𝑥2, … , 𝑥𝑖 , 𝑥𝑚, where m is the 
length of the sentence. Let ℎ𝑡−1  and 𝑐𝑡−1  be the previous 
hidden and cell state of LSTM respectively. Thus, the 
computation of ℎ𝑡 and 𝑐𝑡 would be: 

𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑊𝑐𝑖𝑐𝑡−1 + 𝑏𝑖) 

𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑊𝑐𝑓𝑐𝑡−1 + 𝑏𝑓) 

𝑧𝑡 = tanh(𝑊𝑥𝑐𝑥𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐) 

𝑐𝑡 = 𝑓𝑡 ∙ 𝑐𝑡−1 + 𝑖𝑡 ∙ 𝑧𝑡 

𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑊𝑐𝑜𝑐𝑡 + 𝑏𝑜) 

172



ℎ𝑡 = 𝑜𝑡 ∙ tanh(𝑐𝑡) 

Here 𝑊(.) is the learning parameters for LSTM, 𝑜 is the 
element-wise product, 𝜎 is the sigmoid activation function 
and 𝑏 is the bias term.  

 As we employ the Bi-LSTM models, there would be two 
encoding results for the representation of the sequence data, 
ℎ𝑡

𝑓and ℎ𝑡
𝑏, which are produced by the forward LSTM layer 

and backward LSTM layer respectively. In this work, we add 
these two encoding results with the following operation: 

𝑧𝑡 = ℎ𝑡
𝑓

+ ℎ𝑡
𝑏  

C. Pooling layer 
In this layer, we apply the piece max pooling, instead of 

max pooling, to get the optimal features from the entire 
sequence data, since the former method performs better than 
the latter method on obtaining more available information. 
Specifically, the encoding data learnt from Bi-LSTM layer is 
divided into several pieces with equal length. Let 
zk

1, zk
2, … , zk

t , zk
l  be the independent piece and  <

vt
1, vt

2, … , vt
d >k be the vector of zt

k, where k is the identifier 
of the piece, l is the length of the piece and d is the dimension. 
Then the result of piece max pooling would be: 

zk =  < max(vt
1) , max(vt

2) , … , max(vt
d) >k 

z =  z1 + z2 + zk + ⋯ + zn 
Where max(. )  is to get the maximum value of each 

dimension wise. Subsequently, basing on the segmentation in 
the feature layer, we concatenate all the results as follow: 

Z =  zCh1   zCh2   zCh3 

D. Softmax layer 
A softmax operation with dropout is set in this layer to give 

normalized probability score for each class. We use tanh as 
the activation function. The equations are given as follows: 

hs = tanh( z) 
p(y|x) = Softmax(WShs + bs) 

Where W is the softmax matrix and b is the bias term. 

E. Model training 
    We utilized the word2vec tool to map each word into a 
numeric vector for word embedding, and the position features 
are mapped into a vector with 10 binary components. In 
addition, the weights and biases in our model are update by 
backpropagation through time. Specifically, we choose the 
cross entropy loss function and Adam’s technique (13) with 
gradient clipping, parameter averaging and L2-regularization 
to train our model. 

III. EXPERIMENTAL SETTINGS 
1. In the CHEMPROT track, and to focus mainly on a subset 
of key relevant relation types, all the annotated CHEMPROT 
relations (CPRs) were grouped into 10 semantically related 
classes that do share some under-lying biological properties. 

1 https://www.tensorflow.org 

Those groups are labeled as [CPR:1, CPR:2, … CPR:10] and 
a detailed description is shown in Table 1. 

Table 1 The description of CHEMPROT relations 
Group Eval. CHEMPROT relations belonging to this group 

CPR:1 N PART_OF 
CPR:2 N REGULATOR|DIRECT_REGULATOR|INDIRECT_REGULATOR 
CPR:3 Y UPREGULATOR|ACTICATOR|INDIRECT_UPREGULATOR 
CPR:4 Y DOWNREGULATOR|INHIBITOR|INDIRECT_DOWNREGULATOR 
CPR:5 Y AGONIST|AGONIST-ACTIVATOR|AGONIST-INHIBITOR 
CPR:6 Y ANTAGONIST 
CPR:7 N MODULATOR|MODULATOR-ACTIVATOR|MODULATOR-

INHIBITOR 
CPR:8 N COFACTOR 
CPR:9 Y SUBSTRATE|PRODUCT_OF|SUBSTRATE_PRODUCT_OF 

CPR:10 N NOT 

 

2. To keep the generalizability of our model, two entities in 
a pair are respectively replaced with “ENTITY_1” and 
“ENTITY _2”. For instance, the CPI candidates in the sentence 
“ The activities of UGTs 1A3, 1A8, 1A9, 2B4 and 2B7 were 
low, whereas UGT1A1 and UGT2B17 exhibited no HFC 
glucuronidation activity” are blinded as shown in Table 2. 

Table 2 An example of entity blinding 

CPI candidate Entities blinding 

(HFC, UGT1A1) 
The activities of UGTs 1A3, 1A8, 1A9, 2B4 and 2B7 
were low, whereas ENTITY_2 and UGT2B17 
exhibited no ENTITY_1 glucuronidation activity. 

(HFC, UGT2B17) 
The activities of UGTs 1A3, 1A8, 1A9, 2B4 and 2B7 
were low, whereas UGT1A1 and ENTITY_2 
exhibited no ENTITY_1 glucuronidation activity. 

 

3. Our solution is built based on Tensorflow1 package using 
Python. Table 3 lists the hyper parameters used in the 
experiments. 

Table 3 The hyper parameters of our model 

Parameter Description Value 

dw  Dimension of word embedding 100 
dp  Dimension of position embedding 10 

num  The number of hidden units 200 
  The ratio of dropout 0.7 

2l  The L2 regularization 0.001 
al  The learning rate of Adam optimizer 0.001 

 

4. We evaluated our model on the sample set with 339 
instances. Our model outperforms the baseline in terms of 
recall and F-score, as listed in Table 4. We manually inspected 
a number of wrongly classified instances and analyzed several 
examples  in Table 5. It turns out that long and complex 
sentences, especially those with clauses, are the ones that are 
prone to misclassification. This can be attributed to the 
limitation of bi-directional long short term-memory network 
on learning syntactic information from the extreme long and 
complex text in practice, although it can process the long 
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sequential data in theory. More research needs to be done in 
order to address this kind of phenomenon.  

 

Table 4 Performance comparison 

 Precision Recall F-score 

Our model 73.73 66.95 70.16 
Baseline model 85.21 50.63 63.52 

 

down-regulation

to DNMT1 rescued

which was re-isoprenylation geranylgeranyl-pyrophosphate

by both and farnesylpyrophosphate  
Figure 2 Part of dependency tree of instance S1 

 

Table 5 Some examples of the classification errors 
No. Instance Label Prediction 

S1 Further we found stimulation of FAS-expression as a result of epigenetic DNA demethylation that was due to down-regulation of DNMT1, 
which was rescued by re-isoprenylation by both geranylgeranyl-pyrophosphate and farnesylpyrophosphate. CPR:3 CPR:4 

S2 Our study shows that human TRPA1 is a target for apomorphine, suggesting that an activation of TRPA1 might contribute to adverse side 
effects such as nausea and painful injections, which can occur during treatment with apomorphine. CPR:3 CPR:4 

S3 Treatment of cells with BCNU to inhibit glutathione reductase (GR) enhanced the CpG-induced intracellular oxidation and decreased the 
GSH/GSSG, with increased activation of NF-kappaB and a doubling in the CpG-induced production of IL-6 and TNF-alpha. CPR:4 CPR:3 
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Abstract—We present the results of our participation in the         
BioCreative VI: Text mining chemical-protein interactions      
(CHEMPROT) track. The goal of this task is to promote the           
development and evaluation of systems capable of extracting        
relations between chemical compounds/drug and genes/proteins      
from biomedical literature. We participate with two systems: (1)         
an SVM system which relies on a rich set of features extracted            
from the parse graph and (2) an ensemble of neural networks           
that utilize LSTM networks and generate features along the         
shortest path of dependencies. We also combine the predictions         
from the two systems with the goal of increasing performance.          
On the development set, our system combination approach        
outperforms the two individual systems, achieving an F-score of         
61.09 (according to the official evaluation metric). On the test set,           
our SVM system achieves the highest result for our submissions          
with an F-score of 60.99.  

Keywords — SVM; deep learning; ensemble learning; long        
short-term memory networks; LSTM; biomedical relation      
extraction;  

I. INTRODUCTION  

BioCreative VI Task 5 focuses on detection of statements         
of relations between chemical compounds/drugs and      
genes/proteins. The CHEMPROT corpus which provides such       
annotations is used as the training and test data in this task.            
The aim of the task is to promote the development of systems            
for extracting such relations for use in precision medicine,         
drug discovery and basic biomedical research . 1

BioCreative VI Task 5 follows the well-established       
approach of pairwise relation extraction in the field of         
biomedical text mining. Protein-protein interactions (PPI)      
were one of the extraction targets in the BioCreative II and           
BioCreative III challenges (1,2). The two Drug-Drug       
Interaction (DDI) shared tasks focused on the detection of         
adverse interactions between pairs of drugs (3,4).       
Considerable performance gains achieved using deep learning       
have recently been reported on the DDI Extraction 2013         
corpus (5). 

We approach the BioCreative VI Task 5 as a classification          
task where we classify each valid pair of entities as one of the             
annotated relation types or as a negative. We apply and          

1 http://www.biocreative.org/tasks/biocreative-vi/track-5/ 

compare two systems in this task, one based on artificial          
neural networks (ANN) and one on support vector machines         
(SVM). After optimizing these systems separately, we       
experiment with system combination, achieving increased      
performance on the development set. On the test set we note a            
considerable drop in the ANN performance, which requires        
further investigation. 

II. DATA 

The CHEMPROT corpus is a pairwise relation dataset. All         
entities are given as known data for the participants, thus the           
task is to predict the relations for valid pairs of these entities.            
The relations are directed, always connecting a GENE type         
entity (gene or protein) to a CHEMICAL type entity. A large           
set of distinct types are used for annotating the relations, but           
these types are combined into 10 groups which are used as the            
actual classes for this task. Further, only five of these classes           
are taken into account in the task evaluation. 

III. METHODS 

We develop two different systems capable of extracting        
relations between CHEMICAL and GENE entities. Our first        
system relies on a rich set of features and a linear Support            
Vector Machine (SVM) classifier. Features for this system are         
generated from the shortest dependency path connecting the        
two candidate entities in the sentence syntax dependency        
graph, from the linear order of tokens, a sentence bag of words            
and all dependency paths within 1–3 dependencies from the         
two entities. Our second system requires less feature        
engineering and is a deep learning-based system, utilizing an         
ensemble of three-channel long short-term memory networks.       
Features for this system are generated based on three         
information channels: words, part-of-speech (POS) tags and       
dependency type and word-adjacency edges, along the shortest        
path connecting the two entities. Finally, we combine        
predictions of the two systems to boost the F-score, using a           
simple algorithm that is optimized on the official development         
set. In this section we discuss the details of each approach.  

A. Preprocessing  
We use the TEES system (6) to run a preprocessing          

pipeline of tokenization, part-of-speech tagging, and parsing.       
We convert the CHEMPROT corpus into the Interaction XML         
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format allowing it to be parsed by the TEES preprocessing          
system. We test different parses generated using the TEES         
preprocessor wrappers for the BLLIP, Stanford converter and        
SyntaxNet parser software (7-9). The default parsing pipeline        
in our experiments consists of BLLIP constituency parsing        
with the biomedical domain model of McClosky (10),        
followed by conversion to dependencies using the Stanford        
conversion tool (8). We test different variants of the Stanford          
Dependencies (SD) representation, with the CCprocessed      
variant being the default unless otherwise stated. 

Since our systems work mainly based on the shortest         
dependency path connecting two candidate entities in a single         
sentence, we exclude any possible cross-sentence candidate       
pairs from the data. The training data incorporates ten         
different types of relations, 5 of them being evaluated in the           
task. We also define and add a ‘‘negative’’ type for the cases            
where no relation exists between the two candidate entities.         
Hence, we formulate this relation extraction task as an         
11-class classification problem.  

B. SVM-based system  
The SVM-based system used in this work is the         

Turku Event Extraction System (6). The system is applied         
as-is, with no task-specific modifications. The TEES system        
uses the SVMmulticlass software as the multiclass classifier        
implementation (11). 

The TEES system relies on a rich feature representation.         
While most features are generated from the shortest path of          
dependencies, dependency chains outside this shortest path,       
bags of words and the linear order of tokens are also used in             
generating features, in an attempt to capture more of the          
sentence context outside the direct relation between the two         
entities of interest. 

We test several different parses and ways of predicting the          
CHEMPROT corpus with TEES, but find that none of these          
improve performance over the default approach. In total we         
compare three ways of representing the corpus, 12 parses and          
the use of the DrugBank dataset (12) as additional features.          
For the three CHEMPROT corpus representations the TEES        
system is trained with either the default of all 10 classes, with            
the four non-evaluated classes merged into a single class or          
with the non-evaluated classes entirely removed. For parses,        
we try the BLLIP parser, with or without the McClosky          
biomodel and with all five types of Stanford conversion, as          
well as the SyntaxNet parser with or without its Universal          
Dependencies model. 

C. Deep learning-based system 
Our deep learning-based system (ANN for short) requires        

less feature engineering than the SVM-based system and        
generates the features along the shortest path that connects the          
two candidate entities in the syntactic parse graph. The         
shortest dependency path is known to contain most of the          
relevant words for expressing the relation between the two         

entities while excluding less relevant and uninformative words        
(13), hence many successful systems have been built around         
utilizing it (6,13-17). 

The architecture of our deep learning-based system is        
centered around utilizing an ensemble of artificial neural        
networks, all having identical structure, but trained with        
different initial random weights. This is done to stabilize the          
variance in the measured performance, caused by the random         
initialization of the network weights.  

Each neural network in the ensemble utilizes three separate         
long short-term memory networks (chain of LSTM units): for         
representing the sequence of words, the sequence of POS tags          
and the sequence of dependency types (DT, i.e., edges in the           
parse-graph) along the shortest path. We always traverse the         
path from the CHEMICAL entity to the GENE entity when          
generating features along the shortest path, regardless of the         
order of the entity mentions in the sentence. We notice this           
approach results in significantly better generalization for       
unseen data. Besides the existing dependency type edges in         
the parse graph, we add an artificial edge between any two           
adjacent words of the sentence (word-adjacency edges). As        
discussed by Quirk et. al (18), this approach mitigates the          
parsing errors and increases accuracy and robustness when the         
system is confronted with linguistic variation. We give the         
weight one to dependency type edges and the weight five to           
word-adjacency edges when searching for the shortest path in         
the graph.  

The sequences of words/POS tags/dependency types are       
first mapped into sequences of their corresponding vector        
representations, i.e. embeddings, by three separate embedding       
lookup layers and then used as input for the LSTMs. For           
words, we use pre-trained word-embeddings provided by       
Pyysalo et al. (19), which have been trained on the texts of all             
PubMed titles and abstracts and PubMed Central Open Access         
(PMC OA) full text articles using the word2vec method (20).          
During the training of our system, word embeddings are         
fine-tuned while randomly initialized POS and dependency       
type embeddings are learnt from scratch. The outputs of the          
last LSTM unit of each of the three chains are concatenated           
and the resulting vector is fed to a fully connected hidden           
layer. The hidden layer finally connects to the decision layer,          
having an output dimensionality corresponding to the number        
of labels in the data set (plus one for the ‘‘negative’’ label)            
with softmax activation.  

The network is trained on the official training data using          
the Nadam optimization algorithm. Applying a dropout (21)        
with the rate of 0.2 on the output of the first dense layer is the               
only explicit regularization method used. The training is        
stopped once the performance on the development set is no          
longer improving, measured using the official evaluation       
metric. Table I shows the comprehensive list of the         
hyperparameters used. 

176



TABLE I. HYPERPARAMETERS OF THE NETWORKS 

Hyperparameters 
Values 

Optimal 
value Tested values 

Word-adjacency edge weight 5 [3,4,5,6] 

Word embedding dimensionality 200 pre-trained 

POS embedding dimensionality 25 [25,50,75,100] 

DT embedding dimensionality 25 [25,50,75,100] 

Word LSTM, output dimensionality  300 [100,200,300,400] 

POS tags LSTM, output dimensionality  200 [100,200,300,400] 

DT LSTM, output dimensionality  200 [100,200,300,400] 

Hidden layer, output dimensionality 200 [100,200,300,400, 
500,600,700,800] 

Activation functions tanh [tanh, sigmoid] 

Dropout rate 0.2 [0 0.2 0.3 0.4 0.5] 
a. The optimal and tested values for hyperparameters 

 
To deal with the variance in the performance, we train an           
ensemble of 4 neural networks, all identical apart from the          
initial (random) weights. After training, each network predicts        
a set of confidences for each (development/test set) example.         
The final prediction for an example is generated by summing          
the confidences of all networks and choosing the label with          
the highest overall confidence.  
 

D. System Combination  
Our SVM and deep learning-based systems are trained        

with different sets of features. This is a potential case for           
investigating whether combining predictions of the two       
systems could help in achieving better performance for this         
task. 

The system combination is implemented by merging the        
relation predictions from the two systems as either a union          
(OR) or an intersection (AND), and resolving overlapping        
predictions with conflicting types by using the classifier        
confidence scores. Since all entities are known data in this          
task, the predictions from the two systems can be aligned          
using pairs of gold standard entities.  

If only one system predicts a relation for a given pair           
of entities, it is either included in (OR) or discarded from           
(AND) the combination. If both systems predict a relation, the          
relation with the higher confidence score is included in the          
combination. Both the SVM and ANN systems produce        
confidence scores in their own ranges. These ranges are         
normalized into the 0–1 interval for both systems, after which          
the normalized scores are compared. We experiment with        
combining all predictions, only positive predictions or only        
predictions for the evaluated classes and find that combining         
only positive predictions results in the best performance. 

IV. RESULTS AND DISCUSSION 

We conduct all of our experiments on the official         
development set using the official evaluation script provided        
by the organizers. Even though the data are annotated having          
ten different types of relations, the task only focuses on five of            
them by defining the official performance metric as the         
micro-averaged F-score of the five target classes. This is most          
likely due to the fact that there are much less training           
examples available in the data for the ignored classes. Table II           
shows the performance comparison of our different systems,        
evaluated on the development data.  

TABLE II. PERFORMANCE OF THE SYSTEMS ON THE DEVELOPMENT SET 

Evaluation on development set 
Performance metrics 

Precision Recall F-Score 

SVM 64.55 54.72 59.23 

ANN 61.90 55.01 58.25 

SVM+ANN (OR, positive classes) 58.45 63.99 61.09 

SVM+ANN (AND, positive classes) 75.42 48.14 58.77 

SVM+ANN (OR, all classes) 65.82 55.55 60.25 

SVM+ANN (AND, all classes) 65.82 55.55 60.25 

SVM+ANN (OR, eval classes) 56.47 65.07 60.46 

SVM+ANN (AND, eval classes) 79.28 45.78 58.04 

 

As Table II shows, both the SVM and deep learning-based          
(ANN) systems have very similar performance on the task,         
with the SVM having an F-score 1pp above the ANN. This           
might be due to the fact that the ANN solely relies on the             
words and edges seen on the shortest path and we suspect that            
in many cases, the trigger word (i.e., a token or sequence of            
tokens which expresses the actual relation between the two         
candidate entities) might be absent from this path.        
Consequently, the ANN might not get the chance to see this           
information, whereas the SVM system generates features       
based on all tokens and dependencies near the two entities, as           
well as those on the shortest path connecting them. The best           
SVM performance is achieved with the TEES default settings,         
without using the DrugBank features, using the       
BLLIP+biomodel+CCProcessed parsing approach and    
including all ten CHEMPROT relation types in the training         
data. 

For both systems, recall is considerably lower than        
precision (for instance, recall is 10pp below precision for the          
SVM). Using the OR operation in system combination        
considerably improves the recall (~9pp) while causing a        
comparatively lower drop in precision, leading to an        
approximately 1–1.5pp increase in the resulting F-score. We        
observe that discarding negative predictions and building the        
combination from all 10 positive classes results in the highest          
performance on the development set. 
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For predicting the test set, we combine the training and          
development data when training the SVM system. This is a          
quite common approach when using classifiers such as SVMs.         
However, training the neural networks on the combined data         
for the optimal number of epochs (found during the         
optimization) might lead to under/over-fitting, because      
more/less training epochs might be needed. Finding the        
optimal number of epochs for training the network on the          
combined data is challenging. In this task, participating teams         
were allowed to submit up to 5 different test set predictions.           
Hence, we submitted two sets of ANN predictions: (1)         
predictions of the ensemble of networks that are trained for 3           
epochs (the optimal number found in optimization), (2)        
predictions of the ensemble when the networks are trained for          
4 epochs. We also combined these two sets of predictions with           
the SVM system predictions (using our system combination        
approach), resulting in a total of five sets of test set           
predictions. Table III shows the official results for our         
submissions on the test set, as calculated by the task          
organizers.  

TABLE III. PERFORMANCE OF THE SYSTEMS ON THE TEST SET 

Evaluation on test set 
Performance metrics 

Precision Recall F-Score 

SVM 66.08 56.62 60.99 

ANN (3 epochs) 63.73 44.62 52.49 

ANN (4 epochs) 63.37 43.87 51.85 

SVM+ANN (3-epochs) 61.05 60.06 60.55 

SVM+ANN (4-epochs) 60.88 59.89 60.38 

 

As Table III shows, compared to the development set results,          
our SVM system has approximately the same level of         
performance on the test set, achieving an F-score of 60.99,          
with a similar imbalance between precision (66.88) and recall         
(56.62). However, for the ANN submissions we notice a         
significant drop in recall (~11pp) with a small increase in          
precision (~1pp), leading to an F-score of 52.49 (in the case           
the networks are trained for 3 epochs) or 51.85 (when the           
networks are trained for 4 epochs), which is about 6pp below           
the F-score seen on the development set. As a direct result,           
none of the two system combination approaches have been         
able to produce a result better than the SVM system alone.  

Since at the time of manuscript submission test set labels have           
not yet been published, we cannot perform a comprehensive         
analysis on the results of the ANN system. One potential          
explanation could be related to (over) training the networks         
with the combined data, which together with the small         
mini-batch size may have led to some overfitting. Particularly,         
we notice a considerable drop in the training-loss between the          
second and third epochs, which is approximately double the         
difference of the loss between the third and fourth epochs.          

This might indicate that overfitting would have occurred when         
training the networks for the third epoch.  

Since the organizers are going to publish the test set labels, as            
our first additional experiment we would like to investigate         
what would be the performance of the ANN system on the test            
set using the version of the networks trained solely on the           
training set and optimized on the development set.  

V. CONCLUSIONS  AND FUTURE WORK 

We participated in the CHEMPROT track of the        
BioCreative VI shared task with two different systems. Our         
SVM system relies on a rich set of features, extracted from the            
sentence parse graph, whereas our deep learning-based system        
requires less feature engineering and is an ensemble of         
three-channel LSTM networks. Features for this system are        
generated based on the shortest path which connects the two          
candidate entities.  

Experiments on the development set show that combining        
the predictions of the two systems can lead to overall          
performance higher than that of either of the two systems          
alone. While the SVM system performs equally well on the          
development and test sets, the ANN system performance is         
considerably lower on the test set. We aim to investigate the           
possible reasons behind this result as soon as the test set labels            
are published.  

The SVM system uses many features in addition to those          
extracted from the shortest path of dependencies. As future         
work, we would like to study the effect of each of these            
feature types on the performance for this task, as well as           
investigate efficient ways to incorporate and utilize such        
features with our deep learning -based approach.  
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word embeddings. 
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Abstract—In this paper we explore the application of artificial 
neural network (“deep learning”) methods to the problem of 
detecting chemical-protein interactions in PubMed abstracts. We 
present here a system using multiple Long Short Term Memory 
layers to analyse candidate interactions, to determine whether 
there is a relation, and which type. A particular feature of our 
system is the use of unlabeled data, both to pre-train word 
embeddings, and also pre-train LSTM layers in the neural 
network. On the BioCreative VI CHEMPROT test corpus, our 
system achieves an F score of 61.51% (56.10% precision, 67.84% 
recall). 

Keywords—chemicals, proteins, text mining, relationship 
extraction, deep learning, LSTM. 

I. INTRODUCTION 
The BioCreative VI CHEMPROT task concerns the 

detection of mentions of interactions between chemical 
compounds/drugs and genes/proteins. Whereas there has been 
much work in the detection of chemical and gene/protein 
named entities, and in the recognition of some interactions 
involving these entities (1), there has been little work (2,3) so 
far on chemical-protein interactions. 

The CHEMPROT corpus consists of PubMed abstracts 
manually annotated with chemical compound mentions, 
gene/protein mentions, and chemical compound-protein 
relations. Each relation annotation has one chemical compound 
mention, one gene/protein mention, and a relationship type. 
There are 22 relationship types, collected into ten groups, of 
which five groups are used in the CHEMPROT task (relations 
from the other five groups are discarded). The five relation 
groups are upregulator/activator (CPR:3), 
downregulator/inhibitor (CPR:4), agonist (CPR:5), antagonist 
(CPR:6), and substrate/product (CPR:9). The annotated 
abstracts are provided in three groups – 1020 training abstracts, 
612 development abstracts and 3399 test abstracts. 

We decided to examine the use of the neural network 
techniques known as “deep learning” (4) – in particular, using 
the recurrent neural network components known as Long Short 
Term Memory (LSTM) layers. One advantage of these deep 
learning methods is that they provide methods for exploiting 
unlabelled data. One method that we explored was the use of 
word embeddings – n-dimension vector representations of 
words – pretrained on large, relevant corpora. A second 
method was to exploit transfer learning – to build a neural 

network that can be trained on some task with just the use of an 
unlabelled corpus, train it, and then re-use some of the trained 
components from that network in the task of interest. One 
possible training task is to predict the next (or previous) word 
in a sentence or paragraph given all of the preceding (or 
following) words. 

II. METHODS 

A. RESOURCES 
We used various external components in our system. The 

software components include the deep learning toolkit keras 
(5) - using tensorflow as the back end, python 3.6.1, and the 
tokeniser chemtok, as implemented in the chemical named 
entity recognition system ChemListem (6). 

To prepare pre-trained word embeddings, we used the 
Stanford GloVe software (as checked out from version control 
July 3 2017). GloVe offers both some public pre-trained 
embeddings (based on Wikipedia and Common Crawl), and 
also the software to compile your own – in previous work (6) 
we had success with the public embeddings, but here, we 
compiled our own. To create these embeddings we prepared 
three corpora  – the full texts of patents, consisting of patents 
with CPC codes A61K31 or A61P, from 2006 to November 
2016, the full text of chemistry journal papers, consisting of 
papers published by the Royal Society of Chemistry from 2000 
to end of 2016, and the titles and abstracts from PubMed 
records from 1809 to the end of 2015. 

To make the initial embeddings, we extracted the text from 
the documents in the three corpora, tokenised it, outputting 
whitespace-separated tokens as one large text file. The contents 
of one document was separated from the next using lines 
consisting of “$GLOVEDUMMY “ repeated 16 times. We 
used the GloVe software to extract 300-dimensional vectors 
from the file, using the window size = 15, xmax = 100.  

We also prepared a file for transfer learning, taking the 
titles and abstracts from PubMed as mentioned above. The file 
consisted of on paragraph (usually a title or abstract) per line, 
in a random order. The file had approximately 24 million lines. 

B. NEURAL NETWORK 
The neural network system consisted of two neural 

networks – the “pretraining” network and the “recognition” 
network - with some components shared by both networks, and 
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other components being used by only one network or the other. 
The training procedure consisted of a series of epochs, the first 
five of which were divided into two phases – one (phase 1) to 
train the “pretraining” network, one (phase 2) to train the 
“recognition” network. All subsequent epochs after the fifth 
omitted phase 1 and ran phase 2 only. At the end of each 
epoch, the system was evaluated using the development 
abstracts, and an answer file was produced using the test 
abstracts. The epoch that gave the best F score in the 
evaluation phase – in the run submitted, the 33rd epoch – was 
selected, and the answer file from that was submitted for 
official evaluation. 

Each run of phase 1 was divided into 25 sub epochs. In 
each sub-epoch, 12000 lines of the PubMed file were read in, 
tokenised, and sorted into batches of 32 lines each, grouping 
the smallest 32 lines (by number of tokens) into one batch, the 
next smallest 32 into another batch, etc. Within each batch, 
lines that are shorter (in terms of number of tokens) than the 
maximum length were padded with special padding tokens. 
The system was trained on the batches in a random order. 

For each line, a token sequence was generated, consisting 
of an integer representing the index of each token in a token 
dictionary, with a special value for unknown tokens. From this 
a “substituted” sequence – where each token has a 0.5 chance 
of being replaced by a token randomly sampled from the lines 
read in that sub-epoch – was generated. 

The inputs to the “pretraining” network consisted of the 
token sequence (input i1), the “substituted” sequence shifted 
one token to the right (input i2) (starting with padding), and the 
substituted sequence shifted one token to the left (ending with 
padding) (input i3). There were two outputs (d2 and d4), one 
for each of the substituted shifted sequences, consisting of a 
sequence of numbers – 1 if the token in the substituted 
sequence is from the original sequence, 0 if it was randomly 
selected. 

The network consisted of various layers, as shown in Table 
I. In all cases the number of output neurons is per token. The 
three embedding layers all shared the same embedding tensor. 
All LSTM layers were trained with a dropout and 
recurrent_dropout parameter of 0.5, and with return_sequences 
set to True. 

TABLE I.      LAYERS IN PRETRAINING NETWORK 

Layer Type Input(s) Number 
of output 
neurons 

Notes 

e1 Embedding i1 300  

e2 Embedding i2 300  

e3 Embedding i3 300  

l1 LSTM e1 300  

l2 LSTM e1 300 Reversed 

c1 concatenate l1, e2  600  

c2 concatenate l2, e3 600  

d1 TimeDistributed 
Dense 

c1 300 activation is 
relu 

d2 TimeDistributed 
Dense 

d1 1 activation is 
sigmoid. 

d3 TimeDistributed 
Dense 

c2 300 activation is 
relu 

d4 TimeDistributed 
Dense 

d3 1 activation is 
sigmoid. 

 

The “pretraining” network was trained using RMSProp 
optimizer, with the binary cross-entropy loss function. 

In the second phase, chemical-protein relations were 
detected and classified. Each epoch consisted of a single pass 
through the training corpus to train the network, a single pass 
through the development corpus to evaluate the current state of 
the system, and a single pass through the test corpus to 
generate an answer file for submission. 

In each pass, for each abstract, all possible chemical-
protein pairs were found. Those pairs where the first token of 
the first entity was 60 or fewer tokens from the last token of the 
last entity were selected. A subsequence of tokens from the 
abstract was then taken, starting from 5 tokens before the first 
entity to 5 tokens after the last entity. The tokens for the 
chemical entity were replaced with “$CHEMICAL” and those 
for the protein entity were replaced with “$PROTEIN” – those 
appearing in both entities were replaces with “$BOTH”. The 
token sequence was then converted to an integer sequence, in 
the same manner as the pretraining sequences were processed. 
Additional input sequences for each pair were also generated, 
consisting of an array of binary features for each token in the 
subsequence. One input sequence (input i4) consists of 
information about the entities in the abstract, regardless of 
whether they participated in the relation in question – these 
were features to say whether the token is in, at the start of, at 
the end of, overlapping the start of or overlapping the end of 
any chemical or protein entity. Another input sequence (input 
i5) consists of binary features to say whether the token is a part 
of the protein entity in question, and whether the token is a part 
of the chemical entity in question. 

The output for the network (d5) was an array of 6 binary 
features, encoding whether and which relation exists between 
the two entities. 

The network consisted of various layers, as shown in Table 
II. The number of output layers is per token, except for layers 
p1 and d5, where it is the total number overall. The layers e1, 
l1 and l2 are shared with the pretraining network. Again, all 
LSTM layers were trained with a dropout and 
recurrent_dropout parameter of 0.5, and with return_sequences 
set to True. 

TABLE II.     LAYERS IN RECOGNITION NETWORK 

Layer Type Input(s) Number 
of output 
neurons 

Notes 

e1 Embedding i1 300  

l1 LSTM e1 300  

l2 LSTM e1 300 Reversed 
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v1 Conv1D i3 48 width=3, 
activation 
is relu 

v2 Conv1D i4 6 width=3, 
activation 
is relu 

c3 concatenate l1, l2, v1, 
v2 

652  

l3 Bidirectional LSTM c3 128 per 
direction, 
total 256 

 

p1 GlobalMaxPooling1D l3 256  

d5 Dense p1 6 activation 
is softmax 

 

The network was trained using RMSProp, with the mean 
squared error loss function. During training, the candidate 
relationships were grouped into batches by length, if necessary 
padding the sequences to make the length of all the sequences 
in a batch uniform. The batches were then used for training in a 
random order. 

C. ADDITIONAL EXPERIMENTS 
To assess the importance of the techniques that used the 

unlabelled data, two additional runs were performed. One run 
(“No Phase 1”) omitted the phase 1 from training. The second 
(“Random”)  also omitted phase 1, and also used randomly-
initialised embeddings rather than the GloVe-trained ones. On 
the No Phase 1 run, the best epoch was the 15th epoch, and on 
the Random run, the best epoch was the 17th epoch. 

III. RESULTS AND DISCUSSION 
Table III shows the results from the task: 

TABLE III.      RESULTS 

Corpus Precision Recall F 

Development 56.52% 70.42% 62.71% 

Test 56.10% 67.84% 61.41% 

 

The F of less than 63% indicates that there is considerable 
room for improvement on this task. This is the first time that 
BioCreative has tackled a chemical-protein interaction task – 
however, in the past it has considered chemical-disease 
relations (getting a maximum F score of 57.03%) and protein-
protein interactions (getting a maximum F of 55%). These 
relationship-mining tasks appear to be harder than named 
entity extraction tasks, where F scores in excess of 80% are 
routine and F scores above 90% are not unknown (10). There 
appears to have been a slight loss of performance between the 
development and test – it is possible that this is because the 
gains from selecting the best epoch did not generalize well. 

Table IV shows a confusion matrix for the development 
data.  

 

TABLE IV.      CONFUSION MATRIX FOR DEVELOPMENT DATA 

Actual 
Predicted 

NONE CPR:3 CPR:4 CPR:5 CPR:6 CPR:9 

NONE 26196 214 413 75 76 351 

CPR:3 163 287 82 4 4 9 

CPR:4 159 24 896 0 5 6 

CPR:5 23 0 0 89 4 0 

CPR:6 28 1 7 3 160 0 

CPR:9 166 4 16 0 2 258 

 

The major source of error seems to be non-relations being 
mistaken for relations and vice versa. There is something of a 
problem with upregulation (CPR:4) being mistaken for 
downregulation (CPR:3) but this is not the biggest problem for 
either relationship class. 

TABLE V.      DEVELOPMENT DATA RESULTS BY RELATIONSHIP 
CLASS 

Class Precision Recall F 

CPR:3 54.16% 52.28% 53.20% 

CPR:4 63.37% 82.20% 71.57% 

CPR:5 52.04% 76.72% 62.02% 

CPR:6 63.75% 80.40% 71.11% 

CPR:9 41.35% 57.85% 48.22% 

 

There is considerable variation in how well these entities 
are recognised – CPR:4 (downregulator/inhibitor) and CPR:6 
(antagonist) are well-recognised, CPR:3 (upregulator) and 
CPR:9 (substrate/product) are poorly recognised. The F scores 
do not appear to be correlated with the number of mentions in 
the corpus. 

TABLE VI.      RESULTS ON DEVELOPMENT 

Run Precision Recall F 

Full 56.52% 70.42% 62.71% 

No Phase 1 62.97% 57.25% 59.97% 

Random 45.05% 50.66% 47.70% 

 

Table VI shows the results of re-running the system, 
progressively disabling parts of the system that make use of 
unlabelled data. The Phase 1 training of the lower LSTMs is 
shown to improve performance by 2.7 percentage points; the 
GloVe-trained embeddings are worth 12.2 percentage points. 

IV. CONCLUSION 
Methods based on “deep learning” recurrent neural 

networks can be used to detect relationships between chemicals 
and protein, with results comparable with those observed in 
other biomedical relationship extraction tasks. The deep 
learning structure allows the use of large amounts of unlabelled 
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text to boost performance, especially via the use of pre-trained 
word embeddings. 

  The source code for our system is available on-line, as a 
part of the distribution for ChemListem, at 
https://bitbucket.org/rscapplications/chemlistem. 
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Abstract— In this study, we present a Convolutional Neural 
Network (CNN) based model for the extraction and classification 
of different groups of interactions between chemical and protein 
pairs for the Text Mining Chemical-Protein Interactions 
(CHEMPROT) task of BioCreative VI . We used word-
embeddings and distance embeddings to represent a potential 
relation. Our system obtained 0.68 F-measure on the 
CHEMPROT development set. 

Keywords—CNN; relation classification; chemical-protein 
interactions; word-embeddings; deep learning 

I. INTRODUCTION  
Identification of the biomedical interactions (relations) 

constitutes an important task as the number of articles indexed 
in Pubmed, which is the main source for the biomedical 
literature, continues to grow rapidly. The information load in 
the literature leads to the construction of many independent 
databases that store different interaction types such as the ones 
among proteins, protein-ligand, gene-disease or drugs. Keeping 
these databases up-to-date requires a major manual effort 
considering the large amount of information, therefore the need 
for an automated system to extract the important information 
from the text is urgent. 

Previous studies on biomedical text mining mostly 
addressed the problems of extracting the interactions among 
proteins and/or genes, and drugs from the biomedical 
literature [1, 2, 3, 4] whereas interactions between proteins 
and ligands has not been well studied yet. As a result, there 
has been a lack of an annotated corpus that could be used to 
evaluate the developed extraction models. BioCreative VI 
provided a manually annotated chemical-protein interaction 
corpus, CHEMPROT, which has labels for (i) chemical and 
protein/gene names and (ii) type of the binary relationships 
among these entities.  

Among the few existing studies, Chang et al. developed a 
rule-based approach to extract protein-ligand binding affinity 
data from the literature [5]. Their approach is based on 
manually designed patterns that make use of the surface forms 
of the sentences (i.e., sequences of words). However, the 
design of the patterns is a non-trivial task considering there are 
many different and complex ways to express the same 
information. In a recent study, Random Forest algorithm along 

with dependency-based analyses was utilized to extract 
GPCR-ligand interactions from the literature [6]. 

Following the striking performance in computer vision 
field, Convolutional Neural Networks (CNNs) have been 
adopted by many research areas including text mining. CNNs 
have been successfully applied to named entity recognition, 
relation extraction and classification tasks [3, 7, 8, 9, 10]. 
CNNs are especially better at recognizing patterns in sequences 
with the help of filter mechanisms that learn different local 
features and the pooling layer that combines local features into 
a global one. 

CHEMPROT corpus provided by BioCreative VI 
organizers contains manually annotated chemical and 
protein/gene entities for each abstract.  In this study, we adopt 
CNN model to extract chemical-protein relations from 
biomedical abstracts and to classify the relation into the correct 
interaction group. 

II. METHODS 

A. Data set 
We used the CHEMPROT corpus, which contains abstracts 

with annotated entities for training (1020), development (612) 
and test (3399) sets. Interactions in the CHEMPROT corpus 
are grouped into total ten classes of biologically chemical-
protein relations (CPR) only five of which are included in the 
evaluation. Table I summarizes the type of CPRs in detail 
(http://www.biocreative.org/tasks/biocreative-vi/track-5/). 

TABLE I.  CPRS IN CHEMPROT CORPUS 

CHEMPROT relations Group Evalu
ation 

PART_OF CPR:1 Na 
REGULATOR|DIRECT_REGULAT
OR|INDIRECT_REGULATOR CPR:2 N 

UPREGULATOR|ACTIVATOR|IND
IRECT_UPREGULATOR CPR:3 Yb 

DOWNREGULATOR|INHIBITOR|I
NDIRECT_DOWNREGULATOR CPR:4 Y 

AGONIST|AGONIST-
ACTIVATOR|AGONIST-
INHIBITOR 

CPR:5 Y 

ANTAGONIST CPR:6 Y 

MODULATOR|MODULATOR- CPR:7 N 
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CHEMPROT relations Group Evalu
ation 

ACTIVATOR|MODULATOR-
INHIBITOR 
COFACTOR CPR:8 N 
SUBSTRATE|PRODUCT_OF|SUBS
TRATE_PRODUCT_OF CPR:9 Y 

NOT CPR:10 N 
a,b: Y (Yes), N (No) included in the evaluation 

 

B. Input Representation 
We define the relation in a sentence as the context between 

two entities (E1, E2) which can be represented as S = E1 W1 
W2…Wn E2, where Wi represents the ith word between the 
entities. For instance, let us consider the following sentence 
taken from CHEMPROT training set: 

 S: In this report, we show that the hypolipidemic 
agent atorvastatin is a competitive inhibitor of porcine 
DPP-IV in vitro, with K(i)=57.8+/-2.3 microM. 

 CR: [E1 (CHEMICAL)]   is a competitive inhibitor of  
[E2 (GENE-Y)] 

Each sentence (S) in the data set is converted into the form 
of a candidate relation (CR). We then use two different 
approaches to represent the candidate relations, word 
embeddings and distance embeddings.  

a) Word Embeddings: Distributed word representation 
(word embeddings) models have gained immense attention as 
the information load provided a powerful source for 
unsupervised learning. Word embeddings bring out the 
semantic aspect of the words by considering the context they 
usually appear. In this study, we used Gensim [11] 
implementation of the Word2Vec [12] algorithm that learns 
fixed-sized continious vectors for each word in the given 
corpus. We trained the model by using a subset of the Open 
Access Subset of PubMed Central 
(http://www.ncbi.nlm.nih.gov/pmc/) dataset of  ∼37K articles. 
The size of the output word vectors was set to 200 and the 
Skip-Gram approach was employed.  
 Each candidate relation in a sentence was represented 
as V x dw matrix where V is equal to the number of words in 
the candidate relation (vocabulary) and dw is the 
dimensionality of the word embedding (i.e. dw=200). V was 
set to the size of the longest sentence and zero padding was 
used. 

b) Distance Embeddings: Word Position embeddings 
(WPE) or distance embeddings encode the relative distance 
between Wi (ith word) and the two entities (E1 and E2). For 
instance the relative distances of the word “inhibitor” in the 
example sentence (CR) to entities E1 “atorvastatin” and E2 
“porcine DPP-IV” are -4 and 2, respectively.  
 For each unique distance, a real-valued dd sized 
embedding was  randomly initialized (dd = 50).  
 
 

 
 

C. Convolutional Neural Networks (CNNs) 
 

After creating the representation of the relation, we 
employed 1D convolutions followed by max-pooling 
operation in order to learn more enriched features from the 
input.  Finally, the model was completed with Fully-
Connected (FC) layer. Figure 1 illustrates the CNN-model that 
we built to predict groups of CPRs. 

The convolution layer contains filters (feature maps) that 
are important in detecting hidden motifs in a sequence. Then 
pooling layer aggregates the features extracted from the 
convolutions and reduces the size of the representation and the 
parameters. 



Fig. 1. CNN-based relation classification model 

 We utilized Keras [13] environment with Tensorflow 
[14] background to develop the proposed model. 

III. RESULTS 
The evaluation of the system is reported in precision, recall 

and F-measure metrics. The performance of our CNN-based 
system in ChemProt Task is shown in Table II.   

 

 

This work is funded by Bogazici University Research Fund (BAP) Grant 
Number 12304. 
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TABLE II.  THE PERFORMANCE OF THE SYSTEM 

 Precision Recall F-measure 

CNN (test) 0.60 0.11 0.18 

CNN (dev) 0.99 0.52 0.68 

 

We used CNN architecture depicted in Figure 1 with an 
extra layer of dropout (0.5) in order to prevent over-fitting. We 
employed total 100 filters with the length of 3. Softmax was 
used as activation function and Adam was employed as an 
optimizer. In the Fully-connected (FC) layer we used 100 
hidden nodes.  The learning was completed with an epoch of 
100. 

The proposed system performed significantly better on the 
development set than the test set in terms of F-measure.  

 

IV. CONCLUSION 
In this study, we presented a CNN-based model to extract 

and classify chemical-protein interactions from the biomedical 
text using the manually annotated CHEMPROT corpus. We 
used word-embeddings and distance-embeddings as the 
features of a candidate relation. 

The proposed system achieved F-measure performance of 
0.68 on the development set, but performed poorly on the test 
set with F-measure of 0.18. The system can be further 
improved to include dependency-based features, attention 
layers with CNN which are reported to be good at giving 
higher weights to the important features. 
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Abstract— Predicting relationships between biological entities 
is important for drug discovery and precision medicine. The 
Biocreative VI Task 5 focuses on mining chemical-protein 
interactions from text. Our submission uses a biaffine relation 
attention network to encode the full paper abstract and predict 
relationships between all mention pairs simultaneously. We use 
no patterns, rules, hard written features, or external resources. 
Despite this, our best run achieves an test set Micro F1 score of 
45.82. 

Keywords—relation extraction, neural networks, chemical 
protein interactions 

I. INTRODUCTION  
Knowledge bases containing relationships between entieis 

are powerful tools for downstream tasks such as question 
answering, query understanding, and exploratory research such 
as drug discovery and precision medicine. Because these 
knowledge bases are highly incomplete, methods for 
knowledge base completion have been developed. These can 
broadly be broken down into link predition – inferring missing 
links using existing graph properties, and relation extraction – 
mining new entities and relationships from text. 

 Extracting relations between entities is one of the core 
problems in information extraction. Initial methods relied on 
hand written patterns and bootstrapping methods. Later rich 
hand crafted features were fed into machine learning classifiers 
such as support vector machines. More recently, neural 
networks have become the state of the art, primarily gated 
recurrant neural networks and convolutional neural networks. 

Previous neural models for relation extraction have formed 
predictions on a single mention pair at a time constrained to a 
single sentence. Our model instead produces all predictions for 
all mention pairs simultaneously by encoding the entire 
abstract. The biaffine relation attention network (BRAN) 
encodes the full paper abstract using the Transformer attention-
based architecture [2] and then applies a bi-affine operation 
between all mention pairs with respect to the set of query 
relations [1]. 

Our experiments on the Biocreative VI Task 5: Text mining 
chemical-protein interactions (CHEMPROT) dataset show our 
models strong performance. Our model encoding the entire 
abstract outperforms an equivalent sentence level classifier by 
incorporating a broader context to make its predictions. We 

improve our performance further by ensembling many versions 
of our model trained with different random seeds. 

  

II. MODEL 
The BRAN model was first proposed in [1] and was shown 

to have state of the art performance on the Biocreative V 
Chemical Disease Relation dataset. The model does not use 
any handcrafted features or rules. Even tokenization is 
performed using corpus statistics. 

A. Inputs 
We tokenize our data into byte-pair encodings using a 

budget of 7500 [3]. The full abstract is converted to a sequence 
of token embeddings of dimensions 64. Words are randomly 
replaced with a special UNK token with probability .15 and we 
apply dropout to the embeddings with probability .15. 

 

B. Transformer 
These token embeddings are then contextually encoded 

using the Transformer architecture with 2 block repeats and 
internal dimensions of size 64. The feed-forward component 
consists of 3 convolutional layers with kernel width 1, 5, and 1 
and dimension 256. Dropout is applied to the internal layers 
with probability .15. 

 

C. Biaffine pairwise scores 
For each pair of tokens in our abstract we compute a 

biaffine operation using a 64 by 64 dimensional matrix per 
relation type. 

 

D. Training 
We train our model using cross entropy over the training 

set using the Adam optimizer with learning rate .0005, epsilon 
1e-4, beta1 .9 and beta2 .9 and a batch size of 8. We 
additionally apply add gradient noise with standard deviation .1 
[4]. Additionally, we use the final output representations of the 
Transformer to predict named entity labels using BIO 
encoding. We perform early stopping on the development set 
optimized for Micro F1. 
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III. RESULTS 
 
 
 
 

 
Fig. 1. F1 scores on the development set. Our model trained on full asbtracts 
outperforms our model trained on just single sentences. Example of a figure 
caption.  

 

 

 

 

Fig. 2. F1 scores on the development set. Ensemble models outperform the 
single model scores. Combining models trained on the full abstract and those 
trained on the single sentences improves performance further. 

Fig. 3. Test set scores.  

Figure 1 shows various versions of our models scores on the 
development set. We tune each of the per-relation decision 
thresholds separately. We apply a post-processing step to our 
full abstract models to remove predictions that cross the 
sentence boundary because the CHEMPROT dataset only 
considers within sentence relationships. Models denoted with 
ensemble average the prediction probabilities of 20 models 
trained with the same hyper parameters but different random 
seeds.  
    In Figure 1 we see that our model that is trained on the full 
abstract outperforms the model trained on single sentences. 
Figure 2 shows that ensembling models outperforms single 
models, and ensembling the sentence level and abstract level 
models improve performance further. Figure 3 shows the 
results of our best run (run 4) which ensembles the full 
abstract and sentence models. 

IV. CONCLUSION 
We presented our submission to the Biocreative VI Task 5 

Chemical-Protein relation text mining shared task. Our biaffine 
relation attention model effectively and efficiently extracted 
chemical protein relationships despite using no hand crafted 
features or external resources. 
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Fig. 4. The relation extraction architecture. Inputs are initially contextually 
encoded using the transformer. Each transformed token is then passed through 
an $Entity_1$ and $Entity_2$ MLP to produce two separate versions of each 
token able to act as either the head or tail of the relationship. A bi-affine 
operation is then performed between each $Entity_1$ and $Entity_2$ token 
with respect to each relations embedding matrix producing a token $\times$ 
token $\times$ relation pairwise affinity tensor. Finally, the scores for cells 
corresponding to the same entity pair are pooled with a separate LogSumExp 
operation for each relation to get a final score. The colored tokens are meant 
only to illustrate calculating the score for a given pair of entities. The model is 
only given entity information when gathering scores to pool from the affinity 
matrix. 

       
 

 

 

 

Model F1 

Sentence Ensemble 44.6 

Abstract Ensemble 46.9 

Model F1 

Abstract  41.2 

Abstract Ensemble 46.9 

Abstract+Sentence Ensemble 49.8 

Model Precision Recall F1 

Abstract+Sentence Ensemble 47.18 44.53 45.82 
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Abstract— In this paper, we describe our system for the 
CHEMPROT task of BioCreative VI challenge. Extracting 
relations between chemical compounds and genes from 
biomedical literature is an important element to the biomedical 
application such as Precision Medicine (PM). The CHEMPROT 
task of BioCreative VI aims to promote the development of the 
text mining systems that can be used to find relationships 
between chemical compounds and genes automatically. We use a 
Recursive Neural Network to improve the performance of 
relation extraction. Our model uses a position feature, a subtree 
containment feature, and an ensemble method to improve the 
performance of CHEMPROT relation extraction. Our system 
scored 58.53% (F-score) at the CHEMPROT task of BioCreative 
VI challenge test set. 

Keywords—relation extraction; recursive neural network; text 
mining 

I. INTRODUCTION  
There is an increasing interest to find relationships between 

biological and chemical entities within natural language texts 
and store the relationship information in the form of structured 
databases. In the biomedical field, many new papers are 
published on the relationship between chemicals and genes. 
Since this relationship information is dispersed in each paper, it 
is necessary to extract and gather the relationship first that 
might benefit the biomedical application such as Precision 
Medicine (PM). PM refers to determining prevention and 
treatment strategies according to the individual variability to 
provide a more specific and effective treatment (1). Gonzalez 
et al. (2) mentioned that manual curation of  relation extraction 
is still the current standard because the value of the text mining 
applications still have room for improvement.  However, it is 
an laborious task to extract the relationships information by 
hand. To solve this problem, the CHEMPROT track in 
BioCreative VI is intended to facilitate the development of  
systems that automatically extract relationships from text in 
natural language and classifies them into several types that are 
important to biology.  

The CHEMPROT track in BioCreative VI organizers 
manually annotated chemical-gene entity relations in abstracts 
and divide the relation types into 10 classes. Although all the 
classes are important in the biochemical and pharmacological 
perspective, only five groups are used for the evaluation. Table 

1. shows the five groups and one example sentence for each 
group. The data given in the challenge consists of abstracts, 
entities, and relations between two entities. Each entity has 
position information in the abstract and an entity with the same 
name appears multiple times. For the example in the Table 1., 
we found that almost all the relations take place between the 
two entities in a same sentence. In the pre-processing step, we 
split the abstract into sentences and consider a sentence with 
two entities to have a candidate relationship. Details are 
covered in the section Ⅱ. 

The CPR:3 is related with the upregulation and usually 
associated with words like “activate”, “promote”, and “increase 
activity of”. The CPR:4 is related with the downregulation and 
usually associated with words like “inhibitor”, “block”, and 
“decrease activity of”. The CPR:5 and CPR:6 is related with 
agonist and antagonist, respectively. These four groups all have 
distinctive features. However, when multiple entities co-occur 
in a sentence, it is difficult to determine if a relationship holds 
between the two target entities of interest. The CPR:9 is related 
with substrate. Unlike the above four groups, the CPR:9 do not 
have noticeable features, and thus the relation is difficult to 
extract. 

We build a  relation extraction system for the CHEMPROT 
track in BioCreative VI using the Recursive Neural Network 
(Recursive NN) based approach. Our Recursive NN model 
uses syntactical features of each node in a parse tree. Socher et 
al. (3) claimed that grammatical structure of natural language 
sentences is recursive. We believe that Recursive NN approach 
is effective for relation extraction task. 

II. METHODS 
Our system architecture is presented in the Fig 1. 

A.  Preprocessing 
Preprocessing involves sentence splitting, and anonymizing 

target entities and chemical compounds. The abstract data 
consists of several sentences. We found that almost all the 
relations take place between the two target entities in a same 
sentence; therefore, we split the abstract into sentences and 
consider a sentence with two entities to have a candidate  
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Figure 1. Overall System Architecture 

 

relationship. For the training data, we assign group labels to 
the candidate relationship. 

The biochemical entities usually have long and complex 
names. To reduce the complexity, we replace the target 
entities of interest with "BC6ENT1" and "BC6ENT2" in the 
order in which they appear. For the other entity mentions in a 
sentence, we apply the ChemDataExtractor 1  to find the 
chemical entities and replace them with “CHEM” (4).  

B. Parsing Sentences 
Our Recursive NN model in Natural Language Processing 

(NLP) uses syntactical features of each node in a parse tree. 
We use the Stanford NLP library to transform a sentence into 
a parse tree. After the parsing process, we use the “binarizer” 
provided by the Stanford Parser to convert the parse tree into a 
binary tree. 

C. Subtree Containment Feature Generation 
We calculate the subtree containment feature during the 

parsing stage. The subtree containment feature indicates that 
certain subtree contains an important entity. When one of the 
target entities exist in the leaves of the current node, the 

1 http://chemdataextractor.org/download 

subtree containment feature is given a value of one; otherwise, 
it is given a value of zero. This feature is later converted into a 
vector with a size 10. If the value is one, every element of a 
vector is one; otherwise, every element in a vector is zero. 

D. Position Feature Generation 
Position feature embedding represents the relative distance of 

two target entities from each word position in a sentence (5). 
Every word in a sentence has two relative distances, [ 1d , 2d ], 

where id  is the relative distance to thi target entity from the 
current word. In the training phase, each relative distance is 
converted into a vector with a size of 10. Since there are two 
distances, the total vector size of the position feature 
embedding is 20. Figure 2. shows the vector representation 
based on the relative distances. Note that when the distance 
difference is 5 or less, the vector is assigned to each difference 
value. If the distance is greater than 5, the same vector is given 
in units of 5. We skip the columns ranged from -2 to -∞ of the 
relative distance due to space limitation. 

E. Word Embedding 
Word embedding is a set of low-dimensional vectors that are 

trained by an unsupervised language model. Word embedding 
combined with a neural network is a widely method to 
improve NLP performance (8,9). We used the PubMed-and-
PMC-w2v word embedding, which is obtained from published 
materials 2  (10). The word embedding is initialized with 
Word2Vec using genism (11). The dimension size of the word 
embedding is 200. 

F. Recursive Neural Network with TreeLSTM 
The Long Short-Term Memory (LSTM) architecture is a 

popular variation of the recurrent neural network (6). The 
general LSTM is used for sequential data, such as sentences. 
We implemented tree-LSTM to apply the LSTM architecture 
for our tree-structured data (7). A node in a tree-LSTM 
receive input from multiple child nodes and update the hidden 
state of current node using the input. 

2 http://evexdb.org/pmresources/vec-space-models/ 

Group CHEMPROT relations Sentence Example 

CPR:3 UPREGULATOR|ACTIVATOR| 
INDIRECT_UPREGULATOR 

<BC6ENT1>Amitriptyline</BC6ENT1>, but not any other tricyclic or selective serotonin reuptake 
inhibitor antidepressants, promotes <BC6ENT2>TrkA</BC6ENT2> autophosphorylation in primary 
neurons and induces neurite outgrowth in PC12 cells. 

CPR:4 DOWNREGULATOR|INHIBITOR| 
INDIRECT_DOWNREGULATOR 

Ginseng total saponins, <BC6ENT1>ginsenosides Rb2, Rg1 and Rd</BC6ENT1> administered 
intraperitoneally attenuated the immobilization stress-induced increase in plasma <BC6ENT2>IL-
6</BC6ENT2> level. 

CPR:5 AGONIST|AGONIST-ACTIVATOR| 
AGONIST-INHIBITOR 

At 10(-6)M in transcription assays, none of these compounds showed progestin agonist activity, whereas 
<BC6ENT1>mifepristone</BC6ENT1> and its monodemethylated metabolite manifested slight 
<BC6ENT2>glucocorticoid</BC6ENT2> agonist activity. 

CPR:6 ANTAGONIST In another experiment, <BC6ENT1>cyanopindolol</BC6ENT1>, an antagonist of the 
<BC6ENT2>serotonin terminal autoreceptor</BC6ENT2>, also prolonged the clearance of 5-HT from 
the CA3 region. 

CPR:9 SUBSTRATE|PRODUCT_OF| 
SUBSTRATE_PRODUCT_OF 

Leukotriene A(4) hydrolase (<BC6ENT1>LTA(4)H</BC6ENT1>) is a cystolic enzyme that 
stereospecifically catalyzes the transformation of <BC6ENT2>LTA(4)</BC6ENT2> to LTB(4). 

Table 1.  Five groups of CHEMPROT relations to be used for evaluation 
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Figure 2. Vector representation according to the distance 

 between one of the target entities and a current word. 
 

Table 2. Search process to find the best hyperparameter 
Parameter Test Range Test Unit Selected 

Hidden Unit Size 64 - 256 64 256 

Subtree Containment Size 1 - 10 2 10 

Batch Size 64 - 256 64 256 

Learning Rate 0.0005 – 0.01 0.0005 0.001 

Keep Probability 0.5 – 0.9 0.1 0.5 

 

After receiving a parse tree to train our model, we look up 
the pre-trained word embedding to assign real-valued vectors 
to each word. If a node is not a leaf, the word vector is 
randomly initialized. Our model is based on the recursive NN 
architecture of the child sum tree-LSTM model (7). 

Let xj denote the concatenation result of the vector 
representation of a word with feature vectors. For any node j, 
we have two forget gates for each child and write the sub-node 
expression of the forget gates for k-th child as fjk. The B(j) is 
the set of values (including hk and ck) from children of node j, 
since we use a binary tree, the size of B(j) is 2. i, f, o, c, h are 
the input gate, forget gate, output gate, memory cell, and the 
hidden state respectively. u is a temporary value that could be 
added to the memory cell state. drop(x) is a recurrent dropout 
function (12). The mask is a sampled vector from the 
Bernoulli distribution with success probability keep_p. Our 
tree-LSTM equations are described below. 

 
Equation (9,10) is a fully-connected layer we use as the 

output layer. The fully-connected layer output size is the same 
as the number of classes (six, one for false class, five for the 
group classification). At each node j, we choose the predicted 
label yˆj for a given output. However, since the predicted value 

of the internal nodes in the tree is not important, we take only 
the predicted values extracted from the root node of the entire 
sentence when the final score is calculated. We use the 
softmax cross-entropy classifier to calculate the cost function. 
m is the total number of items in the training set. 

 
We use the Adam optimizer for gradient descent 

optimization. An input vector of a node in a tree uses the 
subtree containment feature vector, the position feature vector, 
and the vector representation of a word in a sentence. The size 
of the whole input vector xj is 10 + 20 + 200. 

G. Regularization 
The original tree-LSTM model (7) used l2 regularization. 

The tree-LSTM model was implemented with the Tensorflow 
fold library (13) using recurrent dropout (12) instead of the l2 
regularization. We found that recurrent dropout is effective. 

H. Ensemble method 
The random weight initialization changes the result of neural 

networks considerably (14). Since the CHEMPROT task is 
challenging, it is difficult to reproduce the exact same result 
for the single model, and we resolve this problem to some 
extent using the ensemble model. We sum the output 
probabilities (logits) of ensemble members, which are from 
the same repeated experiment for the evaluation. Our model 
using ensemble method utilizes four (for the first run) and six 
(for the second run) ensemble members. 

 

III. RESULTS 

A. Experimental Setting 
We use Tensorflow to implement our model (15). Most 

deep learning libraries such as Tensorflow assume machine 
learning models are static, which makes it difficult to use them 
with dynamic structured models (e.g., Recursive NN). We 
implement our Recursive NN model with Tensorflow Fold (13). 
The Tensorflow Fold is specifically designed to deal with 
dynamic structured problem. 

B. Hyperparameter 
We found the optimal parameters by moving one parameter 

within the specified test range by a specified test unit while 
other parameters were fixed. Table 2. illustrates the 
hyperparameter search process. Because the CHEMPROT task 
support the development set, we searched the hyperparameter 
on the development set, while the model was trained with the 
training set. 
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Table 3. The statistics of the BioCreative VI CHEMPROT corpus after 
preprocessing 

 Abstracts Positive Negative Total Ratio 

Train Set 1,020 4,157 12,807 16,964 1:3.08 

Development  Set 612 2,416 8,198 10,614 1:3.39 

Test Set 3,399 - - 58,523 - 

 
Table 4. CHEMPROT results of our Recursive NN system on the test set. 

Run Precision Recall F-Score 

First 0.6760 0.5159 0.5852 

Second 0.6704 0.5194 0.5853 

 

C. Data corpus 
After we preprocess the given data, the number of negative 

instances is more than three times larger than the number of 
positives. Table 3. shows the statistics of the preprocessed 
corpus. We combined the training and development set as a 
training set for the final model.  

D. Performance 
The results of our system on the test dataset are shown on 

Table 4. We submitted two runs for different number of 
ensemble members. Our model using ensemble method utilizes 
four (for the first run) and six (for the second run) ensemble 
members. The best F1-score of our system is the 58.53% in the 
second run. 

IV. CONCLUSION 
We implemented the tree-LSTM architecture to understand 

the natural language sentences. Since we do not know the 
labels of the test data, we could not proceed the ablation study 
of additional features on the test set. Still, when we checked 
our model in validation data, using additional features showed 
better performance. 

The source of our Recursive NN project is available at : 
    https://github.com/arwhirang/recursive_chemprot 
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Efficient and Accurate Entity Recognition for Biomedical Text
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Abstract- This short paper briefly presents an efficient 
implementation of a named entity recognition system for 
biomedical entities, which is also available as a web service. The 
approach is based on a dictionary-based entity recognizer 
combined with a machine-learning classifier which acts as a filter. 
We evaluated the efficiency of the ap-proach through participation 
in the TIPS challenge (BioCreative V.5), where it obtained the best 
re-sults among participating systems. We separately evaluated the 
quality of entity recognition and link-ing, using a manually 
annotated corpus as a reference (CRAFT), where we obtained 
state-of-the-art results.

Keywords- named entity recognition; text mining; machine 
learning; natural language processing.

I. INTRODUCTION

Named entity recognition is most often tackled with knowledge-
based approaches (using dictionaries) or example-based 
approaches (machine learning). Currently the best results are 
obtained using supervised machine-learning based systems. For 
extracting chemical names, [9] describes how two CRF 
classifiers are trained on a corpus of journal abstracts, using 
different features and model parameters. The approach in [10] 
also tackles chemical name extraction with CRF, partly using 
the same software basis as the previous one. For tagging gene 
names, [14] describes another supervised sequence-labeling 
approach, using a CRF classifier.

There is growing interest in hybrid systems combining 
machine learning and dictionary approaches such as the one 
described in [1], which obtains interesting performance on 
chemical entity recognition in patent texts.

In the field of entity linking, dictionary-based methods are 
predominant, since the prediction of arbitrary identi-fiers cannot 
be modeled in a generalized way. In [6], the authors explore 
ways to improve established information retrieval techniques for 
matching protein names and other biochemical entities against 
ontological resources. The TaggerOne system [8] uses a joint 
model for tackling NER and linking at the same time – yet 
another example of a hybrid system that combines machine 
learning and dictionaries.

II. DATA

The Colorado Richly Annotated Full Text (CRAFT) cor-pus [2, 
16] has been built specifically for evaluating these kinds of 
systems. It consists of 67 full-text articles that have been 
manually annotated with respect to chemicals, genes, proteins, 
cell types, cellular components, biological processes, molecular 
functions, organisms, and biological sequences. In total, the 
available articles are annotated with over 100,000 concepts.

For our experiments, we used all terminology resources 
that were distributed with the corpus (which means all an-
notated entities, except those grounded using Entrez Gene). We 
regarded species and higher taxonomic ranks (genus, or-der, 
phylum etc.) from both cellular organisms and viruses as a 
common entity type “organism”. Also, we combined the two 
non-physical entity types (biological processes and molecular 
functions) into a single class.

III. METHODS

The OntoGene group has developed an approach for biomedical 
entity recognition based on dictionary lookup and flexible 
matching. Their approach has been used in several competitive 
evaluations of biomedical text mining technologies, often 
obtaining top-ranked results [12, 13, 11]. Recently, the core 
parts of the pipeline have been imple-mented in a more efficient 
framework using Python [4] and are now developed under the 
name OGER (OntoGene’s En-tity Recognizer). These 
improvements showed to be effec-tive in the BioCreative V.5 
shared task [7]: in the techni-cal interoperability and 
performance of annotation servers (TIPS) task, our system 
achieved best results in four out of six evaluation metrics [5].

OGER offers a flexible web API for performing dictionary-
based NER. It accepts a range of input formats and provides the 
annotated terms along with identifiers in various output formats. 
We run an instance of OGER as a permanent web service 
which is accessible through an API and a web user interface.1
   For the experiments with the CRAFT corpus, we used the 
ontologies on which the original annotation was based. We use 
those resources to compile a non-hierarchical dictionary with 
1.26 million terms pointing to 864,000 concept identifiers. 
The input documents were tokenized with a simple method 
based on character class, which collapsed spelling variants such 
as “SRC 1”, “SRC-1”, and “SRC1” to a common form. 

1https://pub.cl.uzh.ch/projects/ontogene/oger/
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TABLE 1: Performance of our system in entity recognition 
(top) and entity linking (a.k.a. concept recognition, bot-
tom), compared to the best results reported in [15].

System Precision Recall F1
OGER 0.59 0.66 0.62
OGER+NN 0.86 0.60 0.70
OGER 0.32 0.52 0.40
OGER+NN 0.51 0.49 0.50
cTakes Dict. Lookup 0.51 0.43 0.47

All tokens were then converted to low-ercase and stemmed, 
except for acronyms that collide with a word from general 
language (e.g. “WAS”). As a further normalization step, Greek 
letters were expanded to their letter name in Latin spelling, e.g. 
“α” → “alpha”.

In order to improve the system’s accuracy, we added a 
machine-learning filter to remove spurious matches. We used an 
approach based on neural networks (NN), as they were the best 
performing algorithm in our previous exper-iments described in 
[3]. Training is performed using 10-fold cross validation on 47 
articles; the evaluation is thus performed on 20 documents only. 
The features used are mostly shape-based (character count, 
capitalization), but some include linguistic information (POS, 
stem) or domain knowledge (frequent pre-/suffixes).

IV. RESULTS

We examined our system in two separate evaluations. We first 
considered the performance of NER proper, i.e. we re-garded 
only offset spans and the (coarse) entity type of each annotation 
produced by each system, ignoring con-cept identifiers. We then 
evaluated the correctness of the selected concept identifiers. To 
this end, we augmented the ML-based output with concept 
identifiers taken from the dictionary-based pre-annotations, 
which enabled us to draw a fair comparison to previous work in 
entity linking on the CRAFT corpus.

A. Named Entity Recognition We have compiled very de-tailed 
results for different configurations and for each en-tity category, 
however the brevity of this paper allows us to present only 
aggregated results. The OGER pipeline alone (without filtering) 
delivers an overall 66% recall score with a precision of 59% 
over all the entity types consid-ered. Adding the NN-based 
filtering module, recall drops to 60%, with an increase in 
precision to 86%, leading to a very competitive F-score of 70%.

B. Concept Recognition We chose a simple strategy to 
reintroduce the concept identifiers provided by OGER into the 
output of the ML systems, based on the intersection of the 
original annotations from OGER’s output (which in-clude 
identifiers) and the annotations left after applying by the NN-
based filter. We did not resolve ambiguous an-notations; instead, 
multiple identifiers could be returned for the same span. While 
having no disambiguation at all is arguably a deficiency for an 
entity linking system, it is not imperative that each and every 
ambiguity is reduced to a single choice. This is particularly true 
when evaluating against CRAFT, which contains a number of 
reference an-notations with multiple concept identifiers. For 
example, in PMID: 16504143, PMCID: 1420314, the term 
“fish” (oc-curring in the last paragraph of the Discussion 
section) is assigned six different taxonomic ranks.

This simple strategy allows the system to reach a pre-
cision of 51% with a recall of 49% in concept recognition. 
Compared with the results of several previous systems re-
ported in [15], who carried out a series of experiments using 
the same dataset, our results are already state-of-the-art.

Please note that the results reported by [15] are not per-fectly 
comparable to the ones we obtained, since the former were 
tested on the whole CRAFT corpus, while our approach was 
evaluated on 20 documents only (since we used the remaining 
documents to train our system) Still, the comparison shows that 
even a relatively simple approach is sufficient to transform our 
NER pipeline into an entity linking system with reasonable 
quality. This is particularly true for the OGER-NN 
configuration, where both precision and recall are as good as or 
better than the figures for all the reported systems.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented an efficient, high-quality system for 
biomedical entity recognition and linking (OGER). We 
evaluated both processing speed and annotation quality in a 
series of in-domain experiments using the CRAFT corpus. 
OGER’s scalability and efficiency was also demonstrated in the 
recently held TIPS task of the BioCreative V.5 chal-lenge. For 
the NER performance, we used a NN classifier, which acted as a 
postfilter of the dictionary annotations. The combined system 
achieved competitive results in en-tity recognition and state-of-
the-art results in entity linking over the selected evaluation 
corpus (CRAFT).

Currently we expose via web API only the OGER service 
(entity recognition and linking) but without disambigua-tion. 
As a next step in this research activity, we intend to make 
available a second web service including disam-biguation. 
At the same time we are performing additional experiments 
aimed at improving the quality of the disam-biguation step.
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Abstract—We describe the iTextMine system with an 
automated workflow to run multiple text-mining tools on large-
scale text for knowledge extraction. We employ parallel 
processing for dockerized text mining tools with a common JSON 
output format, and implement a text alignment algorithm to 
align entity offsets in the text for result integration. iTextMine 
presently consists of four relation extraction tools and has 
processed all Medline abstracts. The website 
(http://research.bioinformatics.udel.edu/itextmine) allows users 
to browse the text evidence and view integrated results for 
knowledge discovery through a network visualization.  

Keywords—text-mining, relation extraction, text annotation, 
knowledge integration  

I. INTRODUCTION 
With the rapid growth of biomedical literature, text-mining 

tools help biologists extract useful information quickly. Most 
text-mining tools are specialized on specific tasks and may be 
used to recognize certain types of entities or relations. Thus, 
there is a need to combine results from different text-mining 
tools to cover a broad range of bioentities and relations for 
more comprehensive biological knowledge. Combining articles 
describing multiple relation types, one may identify cross-talk 
among different entities and relations extracted by different 
tools.  

However, there are challenges in integrating different tools 
for large-scale processing and knowledge integration: (i) text-
mining tools have different run-time dependencies and it is 
cumbersome to maintain them in the parallel execution engine. 
Meanwhile we need to make sure each tool can be run in 
parallel, e.g., two parallel processes will not write to the same 
file to avoid conflict; (ii) each tool has its own output format to 
describe the extracted information, and it is hard to store the 
result with the same database schema; (iii) some text-mining 
tools modify original text, and the text offset of entity and 
relation cannot be matched to the original text, making it 
impossible to directly compare the results from different tools.  

Here we describe iTextMine to address the tool integration 
challenges. The system has been used for processing the entire 
set of Medline abstracts, combining and disseminating text-
mining results from multiple tools developed in our group. 
Biologists can use this system to perform knowledge discovery 
via an interactive interface. The system will be run periodically 
to update the database when new literature is released.  

II. METHOD 

A. System Overview 

 
Fig. 1. iTextMine system with an automated workflow to integrate text 
mining tools and relation extraction results from large-scale text processing 

 
The iTextMine workflow has four major steps (Fig. 1). We 

first prepare input literature by downloading Medline abstracts 
from PubMed website. The text is indexed by Lucene1 on our 
local machine. Each tool uses a tool-specific entity/trigger 
word-based query to identify positive abstracts with potential 
entities or relations of interest. Then a parallel execution 
engine is set up to run dockerized text-mining tools in parallel. 
Before importing the text-mining results into the database, text 
alignment is performed to adjust entity offset. Additional post-
processing tasks can be performed afterward, such as entity 
normalization and ID mapping. The post-processed data is 
then stored directly into MongoDB2.  Finally, web services are 
built to disseminate the results. We created REST APIs to 
serve the data for web development. The results can be 
converted to other community standard dissemination formats, 
such as BioC (1) and brat standoff format3.  

B. Approaches to the Tool Integration Challenges 
Dockerization: As text-mining tools may have different 

dependencies, we build a docker4 image for each tool. This 
guarantees that the software is independent of the host machine 
and operating system, and can be run using a consistent 
command. Docker also creates an isolated environment for 
each running instance, allowing the tools to run in parallel 
without conflicting with each other.  

Standardized JSON format: As different text-mining tools 
may use different output formats, we used one uniform JSON 
                                                             
1 https://lucene.apache.org

 
2 https://www.mongodb.com 
3 http://brat.nlplab.org/standoff.html 
4 https://www.docker.com 
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format for both input and output of the text-mining 
components. The basic schema is document-centric: each 
document contains a doc id field, text field, a list of properties, 
a hash-table of entities and a hash-table of relations. Each 
entity contains information such as entity type and offsets, 
while each relation contains relation type and its arguments.  

Text alignment: As some text-mining tools may modify the 
original text during processing, we use Hirschberg's sequence 
alignment algorithm (2) to align the modified text and convert 
back to the original text. During the alignment process, only 
the character offset of an entity will be changed. After the 
alignment, the entity offsets in different text-mining results are 
based on the same text and ready to be merged. 

III. RESULT 
iTextMine currently consists of four in-house developed 

text-mining tools: (i) RLIMS-P (3) for mining protein 
phosphorylation (kinase-substrate-site), (ii) eFIP (4) for 
phosphorylation-dependent protein-protein interaction (PPI), 
(iii) miRTex (5) for miRNA-gene relation, and (iv) eGARD (6) 
for targeted therapy information from the scientific literature. 
For gene and other entity normalization, we incorporated 
results from PubTator (7). 

For full-scale processing, we downloaded all Medline 
abstracts (June 2017) and ran the system pipeline to generate 
text-mining results. Table 1 summarizes the statistics of each 
tool—the number of positive abstracts, along with the counts 
of the specific relations types extracted. Overall, iTextMine 
identified 300,877 abstracts with at least one relation extracted 
by its underlying text mining tools.  

TABLE I.  ITEXTMINE MEDLINE ABSTRACT MINING SUMMARY  

Text Mining  
Tool 

# Positive Abstracts 
Relation types / counts Entities / 

Triggers 
Entities + 
Relations 

RLIMS-P 289,258 264,163 phosphorylation (kinase-substrate-site): 
454,389 

eFIP 264,163 23,918 phosphorylation-dependent PPI: 
38,814 

miRTex 40,032 22,093 
miRNA-target: 33,559 
miRNA-gene regulation: 44,565 
gene-miRNA regulation: 8,426 

eGARD* 26,516 17,935 gene-disease-drug-response: 11,233 
*The results are based on full-scale processing of 16.8 million abstracts for each 
tool, except eGARD which is still being processed with partial results only.  

 The website supports interactive query and display of text-
mining results. User query to iTextMine will be sent as a query 
to PubMed to retrieve a list of PMIDs. Our system will then 
retrieve text-mining results from the database and generate a 
network using relations among entities. Redundant entities are 
merged if they are normalized to the same ID, or by the same 
text mention if not normalized.  

 We use the query “Triple negative breast cancer” as an 
example to demonstrate the integrated network with relations 
from RLIMS-P, eFIP, miRTex and eGARD (Fig 2). The 
interface also provides a document-centric view to display 
detailed text evidence (Fig 3). 

 
Fig.  2. Triple negative breast cancer network. A) The overall network 
contains 651 entities and 688 relations extracted by the four text-mining tools. 
B) Zoom in view. Different types of entity and relations are denoted by 
distinct node/edge colors and shapes. In this network, miR-340 (red triangle) 
regulates 5 genes (black circle) and a kinase (blue star). CDK2 phosphorylates 
EZH2 at Thr-416 and produces a proteoform (gray circle). By clicking the 
phosphorylation edge, the sentence describing the relation is shown. 

 
Fig. 3. Document-centric (PMID: 27665963) view. A) A network view 
summaries all entities and relations extracted from the abstract. RLIMS-P 
extracts a phosphorylation relation where kinase LIMK1 phosphorylates 
COF1; eFIP extracts PPI between the COF1 proteoform and actin; and 
miRTex extracts miRNA-gene regulation between MicroRNA-138 and 
LIMK1. B) Relation table lists relation arguments and attributes. C) Text 
evidence section displays the sentences with color-coded entities.  
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Abstract—PubMed, a repository and search engine
for biomedical literature, now indexes more than 1 mil-
lion articles each year. This exceeds the processing ca-
pacity of human domain experts, limiting our ability to
truly understand many diseases. We present Reach, a
system for automated, large-scale reading of biomed-
ical papers that can extract mechanistic descriptions
of biological processes with relatively high precision.
We demonstrate that combining the extracted pathway
fragments with existing biological data analysis algo-
rithms that rely on curated models helps identify and
explain a large number of previously unidentified mu-
tually exclusive altered signaling pathways in seven dif-
ferent cancer types. This work shows that combining
curated “big mechanisms” with extracted “big data”
can lead to a causal, predictive understanding of cellu-
lar processes and unlock downstream applications.

Keywords: machine reading, biological data analy-
sis, hybrid human-machine models

In the period of 2004–2013, over 7.3 million journal
articles were added to PubMed (1), and the rate is now
over 1 million articles per year. Unfortunately, most of
the mechanistic knowledge in the literature is not in a
computable form and therefore remains hidden. Existing
biocuration efforts are extremely valuable for solving this
problem, but they are outpaced by the explosive growth of
the literature. For example, we estimate that public path-
way databases such as Pathway Commonscapture only 1–
3% of the literature, and the gap widens every day.1

This gap severely limits the value of big data in bi-

ology. For example, some “driver” mutations in cancer
exhibit a mutually exclusive pattern in a given cohort of
patients. That is, the number of patients with both drivers
will be smaller than what is expected by chance. This
often happens because these alterations unlock the same
cancer-driving pathways, and the positive selection of one
diminishes substantially when the other is present. The
Mutex algorithm (2) searches for groups of genes such that
the alterations are mutually exclusive, and each gene in
the group significantly contributes to this pattern. Path-
way knowledge improves Mutex’s accuracy by limiting
the search space and reducing the loss of statistical power
due to multiple hypothesis testing correction. It also pro-
vides mechanistic explanations of the observed correla-
tions. Recall, however, can be low, due to the afore-
mentioned database coverage issues. Researchers are thus
faced with a choice between no-prior, high coverage meth-
ods without mechanistic explanations or low-coverage,
prior-based methods that may overlook some key events.

We propose a natural language processing (NLP) ap-
proach that captures a system-scale, mechanistic under-
standing of cellular processes through automated, large-
scale reading of scientific literature, and demonstrate that
this approach leads to the discovery of novel biological hy-
potheses for multiple cancers. We call our approach Reach
(REading and Assembling Contextual and Holistic mech-
anisms from text).

Reach is a hybrid statistical and rule-based approach,
with its core consisting of compact grammars for the
recognition of cellular processes. These grammars recog-

1Internal analysis of the Pathway Commons team.
2Inspired by NLP literature, we use “event” to indicate an interaction between multiple participants.
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nize biological entities (e.g., genes, proteins, protein fam-
ilies, simple chemicals), events2 that operate over these
biochemical entities (e.g., biochemical reactions), and
nested events that operate over other events (e.g., catal-
ysis). These grammars were developed using the Odin
information extraction framework (3–5). In all, we rec-
ognize 16 event types that follow the BioPAX representa-
tion (6), with a relatively small grammar of approximately
150 rules. This focus on grammar compactness is impor-
tant for two reasons. First, it guarantees that the overall
model is interpretable, i.e., it can be easily understood,
modified, and extended by domain experts, i.e. biologists.
And second, this compact grammar can be applied effi-
ciently, permitting high-throughput processing.

The Reach architecture is implemented as a cascade of
automata that recognize increasingly complex biomedical
phenomena, as illustrated in Fig. 1.

PRP VBP IN VBN NN NN VBZ PRP$ NN .

We hypothesize that decreased PTPN13 expression enhances its phosphorylation .
O O O O B-Protein O O O O O

nsubj nsubj

mark

nn
amod nn

poss

ccomp

We hypothesize that decreased PTPN13 expression enhances its phosphorylation .

protein anaphor

We hypothesize that decreased PTPN13 expression enhances its phosphorylation .

protein anaphorexpression phosphorylation

theme theme

We hypothesize that decreased PTPN13 expression enhances its phosphorylation .

expression phosphorylation+reg

controlledcontroller

We hypothesize that decreased PTPN13 expression enhances its phosphorylation .

−regulationnegative

switch

. . . EphrinB1 . . . decreased PTPN13 expression enhances its phosphorylation .

protein anaphor

coreference

Preprocessing

Entity Extraction

Simple Event Extraction

Nested Event Extraction

Polarity

Coreference

Fig. 1. A walkthrough example of the cascaded Reach architecture.

The Reach pipeline starts with preprocessing, splitting the
text into sentences and further into words. Then, the text
is annotated with parts of speech (e.g., NN indicates com-
mon noun), syntactic dependencies (e.g., nsubj captures
the relation between a verb and its nominal subject), and
named entity labels (e.g., B-PROTEIN indicates that the
corresponding token is the beginning of a protein’s name).

Next, Reach searches the preprocessed text. First,
it extracts entity mentions (e.g., PTPN13 as a Protein

mention), including anaphoric mentions (e.g., its) to be
resolved later. Second, Reach searches for events that
operate directly on these entities, which we call simple
events. These rules apply either over word (and part-of-
speech) sequences or the dependency graph. For exam-

ple, the phosphorylation event is extracted in this step.
Third, Reach recognizes nested events, i.e., those with
other events as arguments, such as the positive regulation
in the example sentence. All three steps are implemented
using an Odin grammar.

After the rule-based extraction, Reach applies further
deterministic steps. It first detects event negation using
the dependency graph, combining the negative decreased
and positive enhances to produce a negative regulation.
Then, it detects that the regulation is hypothesized using
the dependency between hypothesize and the regulation.
Finally, a deterministic coreference-resolution system (7)
determines that its corefers with a previously mentioned
entity EphrinB1 (rather than PTPN13, for example).

In an independently administered evaluation3, Reach
was found to approach human precision at a through-
put capable of reading the entire open source biomedi-
cal literature within days. Participating systems extracted
mechanistic information from a thousand papers about the
Ras signaling pathway over the course of a week. Three
metrics were used to evaluate the participating systems:
throughput, the estimated number of interactions produced
per day; generous precision, the proportion of interac-
tions that were considered useful by the expert panel; and
strict precision, the proportion of interactions that were
completely correct. Four consortia, each one potentially
containing multiple teams, participated in the evaluation.
Team 4 was a consortium between Reach and another
group (4(B)). The results are summarized in Table I.

TABLE I. BIG MECHANISM EVALUATION

Strict Generous
Team Throughput Precision Precision

Team 1 110 54.69% 62.50%
Team 2 975 35.24% 42.07%
Team 3 242 56.76% 75.68%
Team 4 944 50.36% 66.42%
Reach 760 58.76% 74.23%
Team 4(B) 189 30.00% 47.50%

Reach-extracted pathway fragments improve the inference
capacity of existing biological data analysis algorithms
that already benefit from large curated models (“big mech-
anisms”). Specifically, we extended the Pathway Com-
mons4 human-curated pathways with fragments extracted
by Reach from all papers in the Open Access subset of
PubMed (1,046,662 papers as of June 2015) (Fig. 2).

3Conducted in the DARPA Big Mechanism program (www.darpa.mil/program/big-mechanism).
4http://www.pathwaycommons.org/
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Fig. 2. The Reach output is about 12 times larger than the size of Path-
way Commons. We conjecture that the small overlap is caused by the
fact that the Reach interactions are extracted from open-access publica-
tions, whereas Pathway Commons pathways come mostly from other,
paywalled publications. The high-confidence subset is of relations that
were found in more than one paper.

Using this combined prior network we were able to iden-
tify previously unidentified, but highly statistically sig-
nificant mutually exclusively altered signaling modules
in TCGA cancer datasets using the Mutex algorithm de-
scribed above. Fig. 3 shows Mutex groups for TCGA
breast cancer, and Table II summarizes the findings for all
enhanced cancer studies in TCGA. R represents the Mutex
configuration using the combined Reach + Pathway Com-
mons network, P the Mutex configuration using only the
Pathway Commons network, and W the Mutex configura-
tion uninformed by any supporting network.

Pathway Commons only (P) Pathway Commons 

+ REACH (R)

without a network (W)
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Fig. 3. Using Reach-extracted information allows Mutex to detect
7 new “driver” genes for breast cancer which are not detected using
Pathway Commons only or without using any network. We observed
similar results for multiple cancers in the TCGA dataset.

A manual evaluation of these modules by an external can-
cer researcher reveals that, despite the inherent noise in
machine reading, 65% of the hypotheses proposed by Mu-
tex+Reach are indeed correct according to the literature.
Further, a simple redundancy filter that keeps Reach ex-
tractions only if they are seen at least twice in the literature
increased this accuracy to 80%. This demonstrates that
our approach systematically and incrementally increases
coverage of prior, curated networks using NLP strategies,
and, we believe, is valuable for molecular tumor boards

and other cases where one needs to combine system-scale
data with the knowledge in the literature.

TABLE II. MUTEX+REACH ANALYSIS OF TCGA

Cancer study R P W R − P − W RW − P
BLCA 2 2 6 0 0
BRCA 30 17 40 7 12
CESC 5 6 7 0 0
DLBC 0 5 0 0 0
GBM 23 14 40 3 7
HNSC 26 23 25 3 2
KICH 0 0 6 0 0
LAML 2 2 2 0 0
LGG 26 12 51 0 14
LIHC 12 17 16 0 0
LUAD 14 16 11 1 0
OV 7 11 7 2 0
PAAD 22 7 17 10 5
SARC 15 22 25 0 0
THCA 9 11 12 0 0
UVM 2 3 34 0 0
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POSTER SESSION 

1. SPRENO: A BioC Module For Recognizing and Normalizing Species and Their Model 
Organisms (Onkar Singh and Hong-Jie Dai) 

2. KinDER: A Biocuration Tool for Extracting Kinase Knowledge from Biomedical 
Literature (Adam Morrone and Daniel Dopp) 

3. BELMiner – Information extraction system to extract BEL relationships (Ravikumar 
Komandur Elayavilli, Majid Rastegar-Mojarad and Hongfang Liu) 

4. Generating Biological Expression Language Statements with Pipeline Approach and 
Different Parsers (Po-Ting Lai, Ming-Siang Huang, Wen-Lian Hsu, Richard Tzong-Han 
Tsai) 

5. Automatic Extraction of BEL-Statements based on Neural Networks (Mehdi Ali, Sumit 
Madan, Asja Fischer, Henning Petzka and Juliane Fluck) 

6. MayoNLP at the BioCreative VI PM Track: Entity-enhanced Hierarchical Attention 
Neural Networks for Mining Protein Interactions from Biomedical Text (Ravikumar 
Komandur Elayavilli, Majid Rastegar-Mojarad) 

7. Mining protein interactions affected by mutations using a NLP based machine learning 
approach (Jinchan Qu and Albert Steppi) 

8. Identifying Mutation-induced Protein-Protein Interactions in Scientific Literature (Chen-
Kai Wang) 

9. Extracting protein-chemical compound interactions from literature (Pei-Yau Lung, 
Tingting Zhao, Zhe He, Jinfeng Zhang) 

10. SciLite - a platform to bridge scientific articles and biological data. (Aravind Venkatesan, 
Senay Kafkas, Julien Gobeill, Jee-Hyub Kim,  
Francesco Talo, Michele Ide-Smith, Patrick Ruch, Johanna McEntyre) 

11. MecCog: A web-based framework for describing biological mechanism. (Kunal Kundu, 
Lipika R. Pal, Lindley Darden, John Moult) 

12. Inter-annotator agreement and the upper bound on system performance in biomedical and 
general domain natural language processing. (Mayla Boguslav and Kevin Cohen) 

13. A semi-supervised system for ontology enrichment. (Elizabeth T. Hobbs, Matthew Koert, 
Patrick K. O'Neill, Ivan Erill) 

14. Biomedical Information Extraction at the SIB/BioMeXT group (Fabio Rinaldi) 
15. Fast online entity recognition: OntoGene/BioMeXT in the BeCalm challenge (Lenz 

Furrer, Fabio Rinaldi) 
16. Digital assisted curation to the rescue of traditional literature curation. (Fabio Rinaldi, 

Socorro Gama-Castro, Yalbi Itzel Balderas-Martínez, Oscar Lithgow, Hilda Solano, 
Mishael Sánchez-Pérez, Alejandra Lopez-Fuentes, Luis José Muñiz Rascado, Cecilia 
Ishida-Gutiérrez, Carlos-Francisco Méndez-Cruz, Alberto Santos-Zavaleta, Julio 
Collado-Vides) 
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