U.S. National Library of Medicine NCBI

Chemical-protein relation extraction with ensembles of SVM, CNN, and RNN models

Yifan Peng¹, Anthony Rios^{1,2}, Ramakanth Kavuluru^{2,3}, Zhiyoong Lu¹ National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health ²Department of Computer Science, University of Kentucky Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky

an Peng, Anthony Rios, Ramakanth Kayuluru, Zhiyong Lu Chemital-orstein relati

Chemical-protein relations

- A multiclass classification problem
- The chemical-protein relations occurring in a single sentence

Chemicalcontein relation extraction with ensembles of SVM CNN, and RNN

SVM with rich feature vector

SVM

- Linear kernelOne-vs-rest scheme
- Miwa, M.; Særte, R.; Miyao, Y. & Tsujii, J. A rich feature vector for protein-protein interaction extraction from multiple corpora. Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, 2009, J, 121-130

Rich Feature Vector

· Words/Part-of-speech tags surrounding the chemical and gene mentions

Rins, Ramakanth Kasulum, Zhivong Lu, Chemical-rottein relation extraction with ensembles of SVM, CNN, and RNN models

- · Bag-of-words between the chemical and gene mentions
- Distance between two entity mentions
- · Shortest path in a dependency graph

Shortest path in a dependency graph

Obtained using Bllip parser + Stanford dependencies converter

Centilitation of the state of t

- inhibits *dobj* induction
- induction nmod:of GENE
- Edge walks
- nsubj inhibits dobj
- dobj induction nmod:of

Convolutional Neural Network

Convolutional Neural Network

- Word embedding: 300
- trained on PubMed using word2vec
- Part-of-speech, chunk and named entities: one-hot encoding
 Obtained using Genia Tagger
- Convolutional window size: 3 and 5
- Filters: 300

Recurrent Neural Network

Kavuluru, R.; Rios, A. & Tran, T. Extracting Drug-Drug Interactions with Word and Character-Level Recurrent Neural Networks. 2017 IEEE International Conference on Healthcare Informatics (ICHI), 2017, 5-12

Recurrent Neural Network

- · Pairwise ranking loss
 - The output layer has 5 positive classes
 - If all 5 class scores are negative, then we predict the negative class
- Preprocessing
- Replace word occurs less than 5 times with an UNK token
- Word embedding: 300
 - Obtained from GloVe

Santos, C. N.; Xiang, B. & Zhou, B. Classifying Relations by Ranking with Convolutional Neural Networks. *ACL*, **2015**, 626-634

Ensembles of SVM, CNN, and RNN models

- Majority voting
- Select the relations that are predicted by more than 2 models
- Stacking
- Random Forest classifier
- 17 features:
 - 6 from SVM
 - 6 from CNN
 - 5 from RNN (pariwise ranking loss)

Results for 5-fold cross validation

- Combine training and development sets
- 5-fold cross validation
 - 60% for training
 - 20% for development (also used to train the stacking systems)
 - 20% for test

blac of SIM CNN, and SNN a

Results of 5-fold cross validation

Models	Р	R	F
SVM	0.629	0.478	0.543
CNN	0.641	0.571	0.602
RNN	0.608	0.614	0.609
Majority voting	0.741	0.552	0.632
Stacking	0.755	0.552	0.638

Results on test set

Run	System	Р	R	F
1	Majority Voting	0.7437	0.5529	0.6343
2	Majority Voting	0.7283	0.5503	0.6269
3	Stacking	0.7426	0.5382	0.6241
4	Stacking	0.7311	0.5685	0.6397
5	Stacking	0.7266	0.5735	0.6410

Results on test set

	System	Р	R	F
5-fold CV	Majority voting	0.7408	0.5517	0.6319
	Stacking	0.7554	0.5524	0.6378
Testing	Majority Voting	0.7437	0.5529	0.6343
	Stacking	0.7266	0.5735	0.6410

hies of SVM_CNN_and RNN models

Summary and future work

Summary

- Ensemble systems of three models: SVM, CNN, and RNN
- · Results are consistent on training + development set and on the test set
- Ensemble methods improved the precisions
- Performance of CNN and RNN are comparable

Future work

- Error analysis
- Fair comparisons between CNN and RNN
- Effects of different parts of deep learning models

kanth Kawilunu. Zhivono Lu

Acknowledgement

· The organizers of the BioCreative VI CHEMPROT task

fan Peng Anthony Bios Ramakanth Kawakuni Zhiwong Lu

- Members
 - Yifan Peng, NCBI •
 - Anthony Rios, Department of Computer Science, University of Kentucky Ramakanth Kavuluru, Department of Internal Medicine, University of Kentucky

an Peng, Anthony Rios, Ramakanth Kayuluru, Zhiyong Lu Chemical crotein relation extraction with ensembles of SVM, CNN, and RNN m

Zhiyong Lu, NCBI

Thank You! yifan.peng@nih.gov

ein relation extraction with ensembles of SVM. CNN. and RNN models