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Abstract—Identifying chemicals in biomedical scientific 

literature is a crucial task for drug development research. The 

BioCreative NLM-Chem challenge promoted the development of 

automatic systems that can identify chemicals in full-text articles 

and decide which chemical concepts are relevant to be indexed. 

This work describes the participation of the BIT.UA team from 

the University of Aveiro, where we propose a three-stage 

automatic pipeline that individually tackles (i) chemical mention 

detection, (ii) entity normalization and (iii) indexing. We adopted 

a deep learning solution based on a biomedical BERT variant for 

chemical identification. For normalization we used a rule-based 

approach and a hybrid version that explores a dense retrieval 

mechanism. Similarly, for indexing we also followed two distinct 

approaches: a rule-based, and a TF-IDF based method. Our best 

official results are consistently above the official median and 

benchmark in the three subtasks, with respectively 0.8454, 0.8136, 

and 0.4664 F1-scores. 

Keywords—chemical identification; named entity recognition; 

normalization; chemical indexing; deep learning; transformer based 

model. 

I. INTRODUCTION 

Automatic information extraction from biomedical scientific 
literature is an essential step for helping in curation tasks, 
although it is a challenging task far from being solved (1). 
Particularly, the identification of chemical names advances drug 
development research. This task, known as named entity 
recognition (NER), is usually followed by a normalization step 
where entity mentions are linked to unique codes from a 
standard vocabulary. Predominantly, only PubMed abstracts 
have been used for assessing biomedical information extraction 
systems, as despite the added value of using the extra 
information in PubMed full-text articles, these pose new 
challenges stemming from the more detailed explanations and 
statements, and more complex writing style when compared to 
abstracts. PubMed provides biomedical researchers, biologists, 
pharmacologists, epidemiologists, physicians (and others) a way 
to search for the most relevant research articles. Offering 
accurate search results expedites their work, and to improve the 
quality of PubMed search results it is imperative that related 
information is added to every article. MeSH (Medical Subject 
Headings) identifiers are used to index articles in PubMed, 
however, the addition of the appropriate MeSH identifiers for 
each article is performed manually in a process that costs time 
and requires expertise. The BioCreative VII Track 2 (NLM-
Chem) challenge (2) aims to bring the text mining community 

to tackle this issue. Participating teams are encouraged to 
develop computerized solutions and share their systems, since 
automatic annotations may help expert curators with their 
manual work. 

In this paper we describe the methods from our participation 
in BioCreative VII Track 2 (NLM-Chem).  This track comprises 
two tasks: (i) chemical identification and (ii) chemical indexing. 
In the first task, the goal is to recognize chemical mentions 
(named entity recognition) and link predicted entities to their 
respective MeSH identifiers (normalization). The second task 
aims to predict the chemical MeSH identifiers that should be 
used to index each document (that is, find the more relevant 
MeSH terms for each document). 

II. DATA 

Task organizers provided two main datasets (3): training and 
evaluation, both consisting of PubMed full-text articles. The 
training dataset corresponds to the NLM-Chem corpus (4) 
containing 150 documents, whereas the evaluation dataset is 
comprised of 1387 documents that were scheduled for human 
indexing in 2021. 

During the challenge we only had access to the ground truth 
annotations of the training dataset to develop our system. 
Regarding the evaluation dataset, only a subset of those articles 
was manually annotated for the chemical identification task 
evaluation, whilst for the evaluation of chemical indexing task 
all articles were used (all documents were manually indexed by 
human curators). 

To foster the implementation of enhanced systems, the 
organizers also shared two other compatible datasets that could 
help improving the participants’ systems: CHEMDNER (5) and 
CDR (6). These datasets contain 10000 and 1500 documents 
respectively, but these documents correspond to PubMed 
abstracts and not full-text articles as in the NLM-Chem dataset. 
Both datasets contain the chemical mention annotations and the 
chemical MeSH indexing identifiers, but only the CDR dataset 
contains the MeSH identifiers for each chemical mention 
(normalization). 

We also used other datasets for helping the NER part. We 
used the DrugProt training and development subsets provided in 
BioCreative VII Track 1 (DrugProt), since these contain 
manually annotated chemical mentions. Documents from 
DrugProt that also appear in CDR  and  CHEMDNER  (repeated  
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TABLE I.  DATASETS STATISTICS. 

 
Number of 

documents 

Number of 

chemical mentions 

NLM-Chem 150 38339 

CHEMDNER 10000 84331 

CDR 1500 15943 

DrugProt (filtered) 2180 33866 

CRAFT 22030 6802 

BioNLP11ID 5178 973 

BioNLP13CG 5942 2270 

BioNLP13PC 5051 2487 

PMIDs) were discarded. We also used some of the datasets 

prepared  by  Crichton  et  al.  (7).  The  following  datasets with 

chemical-related mentions were used: CRAFT, BioNLP11ID, 

BioNLP13CG, and BioNLP13PC. For more details on these 

corpora, we refer the reader to the original paper (7). In our 

work, we experimented using all the datasets as additional 

training data for our deep learning NER model. Table I presents 

brief statistics about these corpora. 

III. METHODS 

NLM-Chem track organizers split the problem into two main 
tasks: (i) chemical identification and (ii) chemical indexing. For 
simplicity, we decided to divide the first task into two individual 
subtasks: entity recognition, and normalization. We organized 
the following sections considering these three sub-tasks: (A) 
chemical recognition, (B) chemical normalization, and (C) 
chemical indexing. We view these subtasks as discrete 
objectives that an automatic system should solve. Therefore, our 
approach follows a three-stage pipeline, where each stage 
directly corresponds to a subtask. 

A. Chemical recognition 

The objective of the first stage of our pipeline is to detect the 
boundaries of chemical mentions in the raw document text. Our 
main method relies on the current state-of-the-art BERT 
(Bidirectional Encoder Representations from Transformers) 
model for creating contextualized word representations, that are 
then used as features to train a classifier model. More precisely, 
we adopted the PubMedBERT (8) variant that reports state-of-
the-art results in almost every biomedical task, including NER. 
Regarding the classifier, we followed the BIO notation schema 
to discriminate if a sub-word belongs to an entity (B-Begin, I-
Inside) or does not (O-Outside). Additionally, we also tried 
several architectural variants. However, we quickly found that a 
multilayer perceptron (MLP) followed by a CRF layer 
(conditional random field) yielded the best results whilst also 
being a simple architecture. 

During model conceptualization we also wanted to take full 
advantage of the contextualization power of the transformer 
architecture. Therefore, we decided to set our input size to 512 
tokens (max size of BERT), of which we only forward the 256 
tokens in the center for classification whereas the remaining 256 
tokens (128 to the left and 128 to the right) are only used for 

context. The full-text documents from the NLM-Chem dataset 
are divided into passages (sections) such as abstract, 
introduction, methods, and others, and each passage may 
comprise several sentences or paragraphs. Thus, we split a 
passage into successive sequences shifted by 256 tokens (left 
and right context is kept), and each sequence is fed into BERT. 
An advantage of this method is that we can sequentially feed 
each passage of the document without performing any additional 
splitting such as sentence or paragraph segmentation. 

For model training, we treated it as a simple classification 
problem and adopted the modern AdamW optimizer and the 
non-monotonic Mish activation function for the MLP. 
Additionally, we also experimented with training the last layer 
of the PubMedBERT model in an end-to-end fashion w.r.t. the 
classifier. In this case, since even a single layer of the BERT 
model is very large, we explored its training with additional 
datasets (Table I). This strategy gives the model the opportunity 
to recognize entities that it has never seen, opposed to only using 
the NLM-Chem dataset, at the cost of structural data biases. 

B. Chemical normalization 

After detecting chemical entities using the NER approach 
described in Section III.A, a named entity normalization process 
was developed to convert entities to their corresponding MeSH 
codes. This normalization workflow was divided in two major 
components: (i) a rule-based system and (ii) a deep-learning 
solution based on transformers. To supply both normalization 
components with curated concept-code mappings, two 
dictionary files were created by filtering and restructuring the 
2021 MeSH and SCR (Supplementary Chemical Records) files. 
During this filtering procedure, the MeSH file only retained 
concepts belonging to the "Drugs and Chemical" category as 
these were within the scope of the present challenge. 

1) Rule-based component 
The rule-based component attempts to map entities to their 

corresponding MeSH codes through exact matching 
mechanisms. The development of this component followed an 
incremental workflow as described next. 

For the first iteration of the rule-based system, a simple 
dictionary was configured using only the base mappings from 
the MeSH filtered file, i.e. using only the DescriptorUI-
DescriptorName mappings from the MeSH filtered file. Exact 
matching was then performed using raw text entities and 
lowercased entities, with the latter providing better results. Next, 
to assess the impact of the mapping dictionary in system 
performance, the dictionary was expanded to incorporate 
mappings from the entry terms related to each concept 
(DescriptorName), resulting in an improved performance. 

Since it is common to find plenty of abbreviations within 
biomedical literature, an abbreviation expansion step was added 
to the rule-based system through the integration of the Ab3P tool 
(9). This step was added in two different configurations, the first 
storing a list of previously seen abbreviations per document and 
a second storing the same list per corpus. Obtained results 
showed an overall improved entity-code mapping process in all 
training data splits, with the corpus-level configuration 
obtaining better results than the document-level counterpart. 



In the following iteration, the source dictionary was further 
expanded by adding mappings from the SCR file to the 
previously described dictionary (first system iteration). During 
this merging process, and following a similar approach as 
before, information from the entry terms and heading mappings 
related to each DescriptorName was also integrated in the 
dictionary. By exploring this novel source of information, the 
rule-based system attained improved better results throughout 
all data splits. 

Since there was still a significant amount of entities that the 
system could not map, a partial matching mechanism was added 
to process and map the remaining non-mapped entities. To 
accomplish this, the MetaMap (10) based pyMeSHSim (11) 
Python package was integrated in the rule-based system. 
However, this partial matching mechanism was unsuccessful as 
(i) pyMeSHSim was very slow and thus unusable considering 
the large size of the test dataset, and (ii) pyMeSHSim yielded 
numerous false positives, consequently downgrading the rule-
based system performance. As a result, this partial matching 
mechanism was removed from the solution. 

Finally, complex mappings present in the gold-standard 
annotations (e.g. entities with multiple MeSH codes) were added 
to the source dictionary, improving its coverage, and a deep-
learning component was used to process the remaining 
unmapped entities as described in Section III.B.2. 

2) Deep learning component 

Inspired by the undeniable success of the transformer 
architecture, we built a complementary component that uses a 
dense retrieval technique to map entities to their corresponding 
MeSH codes. This method consists of building a dense 
representation for each MeSH code and every recognized entity. 
Then, we measure the similarity between each entity 
representation and all MeSH code representations, returning the 
top MeSH code with a similarity above a specific threshold.  

More precisely, we leverage the SapBERT (12) model to 
create the dense representations, also known as embeddings, for 
the entities and MeSH codes. SapBERT is a BERT-based model 
that was pretrained for biomedical entity representations by 
clustering similar biomedical terms. Despite not being directly 
trained on MeSH terms, we believe that the domains are closely 
related and, therefore, we used it as a zero-shot approach. We 
create the dense representations for each term (entity or MeSH 
DescriptorName) by feeding their associated textual 
representation to SapBERT. Next, we use the produced [CLS] 

embedding as the dense representation for each term, which was 
the same method used in SapBERT. As similarity measure, we 
adopted the traditional cosine similarity between the two 
embeddings. 

Due to computational limitations, we were only able to use 
the deep learning component as a complementary step to the 
rule-based component. More precisely, we first applied the rule-
based component to map every entity found during NER, and 
the deep learning component was only applied to the remaining 
entities that were not normalized by the previous method. 

C. Chemical indexing 

Finally, after assigning the corresponding MeSH codes to all 
entities, the next step involves selecting from the previous 
identified MeSH codes which ones should be indexed. Similarly 
to the last subtask, we devised two approaches, the first being 
rule-based and the latter being based on TF-IDF scores. 

1) Rule-based approach 

The rule-based approach is a two-stage pipeline focused on 
extracting the MeSH codes present in specific parts of the 
documents, namely the title, abstract and all the captions from 
tables and figures. We considered that these elements of the 
documents would be those where it could be more common to 
find mentions for MeSH codes of interest. This rule was used to 
perform an initial extraction.  

In the second stage, we evaluated the percentage of 
occurrence of each recognized MeSH code in the documents. 
This was used to reduce the previous list of codes, which 
reflected positively in the precision metric on the training 
datasets. Rules applied in this stage had different weights for 
each part of the document, i.e., if the MeSH code was recognized 
in the title, this code needed a percentage of occurrence equal or 
superior to 10%. In the case of the caption, a MeSH code to be 
indexed required a percentage of occurrence of at least 20%, and 
in the abstract 7%. 

In a post-contest phase, we refined these percentages and 
integrated the MeSH codes identified in the conclusion section 
of the documents, when available. The system used percentages 
of occurrence of 6%, 16%, 17%, and 6% for the title, captions, 
abstract, and conclusions, respectively. This change improved 
the F1-score of our approach by approximately 5 percentage 
points in all splits of the training dataset but could not surpass 
our official results in the evaluation dataset. Therefore, we 
conclude that these adjustments severely suffered from 
overfitting and require further investigation. 

2) TF-IDF approach 

The TF-IDF approach takes inspiration on the inner 
workings of traditional information retrieval (IR) models, and 
the main intuition is that ultimately an IR system would be used 
to retrieve the documents by exploring the indexed MeSH codes. 
Therefore, we hypothesize that the indexing task can be viewed 
as an optimization problem w.r.t. the ranking score given by a 
retrieval search engine. Given that not every MeSH code 
contributes equally to the final ranking score, we can select the 
top-k that contribute the most and use those as our indexed list 
since, from an IR system point of view, these are the MeSH 
codes that largely contribute to the final ranking score. 

Unfortunately, due to time constraints we only explored this 
idea in a naive way, where we adopted it to model the 
importance of each MeSH code by using the TF-IDF weighting 
scheme with different SMART (13) variations. The TF-IDF 
scheme models term importance as function of its non-linear 
frequency times its rarity. After computing the importance of 
each MeSH code per document, the next task was to select the 
most important ones. For that, we envisioned several selection 
methods, the main ones being threshold based and probabilistic 
based. After some experiments we decided to use only a simple 
threshold-based method focused on precision. 



TABLE II.  DIFFERENCES OF SUBMITTED RUNS REGARDING THE NAMED 

ENTITY RECOGNITION PART. 

 Training data Selected epoch 

Run 1 
NLM-Chem train, dev, 

and test subsets 
30 

Run 2c 
NLM-Chem train and 

dev subsets 

Best epoch in NLM-

Chem test subset 

Run 3a All datasets 15 

Run 4a,b,c All datasets (except the 

NLM-Chem test subset) 

Best epoch in NLM-

Chem test subset 

Run 5a,c 
All datasets (except the 

NLM-Chem test subset) 

Best epoch in NLM-

Chem test subset 
aIn Runs 3, 4, and 5 we also trained the last layer of BERT. 

bIn Run 4 we further fine-tuned the model (we did a second training 
pass) using only the NLM-Chem train and dev subsets. 

cRuns 2, 4, and 5 were trained for 30 epochs. 

 

D. Submitted runs 

In this subsection, we detail the submitted runs showing their 
differences.  Since this  challenge  was  split  into  three  smaller 
steps (NER, normalization, and indexing) we present the choices 
that were made for each step. Table II highlights the differences 
between each submitted run regarding the named entity 
recognition part. Regarding the normalization step, runs 1, 4, 
and 5 used the rule-based method alone, while runs 2 and 3 used 
the rule-based method followed by the deep learning method. In 
the indexing subtask, runs 1 and 5 used the rule-based approach, 
while 2, 3 and 4 used the TF-IDF based approach. 

IV.  RESULTS AND DISCUSSION 

Table III presents the results of our official submissions and 
includes additional official metrics shared by the organizers. 
From the presented results, it is noticeable a superior 
performance from run 4 in NER and normalization, meaning 
that it was beneficial to train in several datasets if then fine-tuned 
on the NLM-Chem dataset. Another interesting observation is 
that in the normalization, the rule-based method seemed to 
achieve high precision values whilst being competitive in terms 
of recall when compared to the median, giving us a comparable 
higher F1 measure. Furthermore, dense retrieval managed to 
increase recall at the cost of precision, resulting in a similar F1 
score. Therefore, the gains of the hybrid approach remain 
inconclusive, and more experiments are required. In terms of the 
last task, the rule-based approach managed to achieve 
competitive results, outscoring the benchmark by more than 4 
percentage points. On the other hand, TF-IDF did not manage to 
beat the benchmark, showing an overall poor performance, 
which may disprove the main hypothesis behind the idea, or that 
the naive approach was too simple to model this problem. 

V. CONCLUSIONS 

In this work we performed chemical identification and 
normalization followed by chemical MeSH indexing. Our best 
results were 0.8454, 0.8136, and 0.4664 F1-scores in NER, 
normalization, and indexing respectively. We show 
PubMedBERT  helps  NER to perform competitively.  Chemical  

TABLE III.  OFFICIAL OBTAINED RESULTS USING THE EVALUATION 

DATASET. ALL THE RESULTS PRESENTED USE THE STRICT EVALUATION 

METHOD. OUR TOP SCORE RESULTS ARE HIGHLIGHTED IN BOLD. 

 Precision Recall F1-score 

Chemical mention recognition 

Run 1 0.8354 0.8429 0.8392 

Run 2 0.8421 0.8350 0.8386 

Run 3 0.8505 0.7662 0.8062 

Run 4 0.8394 0.8515 0.8454 

Run 5 0.8372 0.7416 0.7865 

Median 0.8476 0.8136 0.8373 

Benchmark 0.8440 0.7877 0.8149 

Chemical normalization to MeSH IDs 

Run 1 0.8582 0.7641 0.8084 

Run 2 0.8221 0.7898 0.8056 

Run 3 0.8124 0.7760 0.7938 

Run 4 0.8621 0.7702 0.8136 

Run 5 0.8310 0.7411 0.7835 

Median 0.7120 0.7760 0.7749 

Benchmark 0.8151 0.7644 0.7889 

Chemical indexing 

Run 1 0.5351 0.4133 0.4664 

Run 2 0.4882 0.3284 0.3927 

Run 3 0.4910 0.3236 0.3901 

Run 4 0.5173 0.3236 0.3981 

Run 5 0.5308 0.3812 0.4437 

Median 0.5173 0.3284 0.3981 

Benchmark 0.3134 0.6101 0.4141 

 

MeSH indexing is the hardest task since there is error 
propagation from the first two steps (NER and normalization), 
and many MeSH terms do not exist after the normalization step 
(that is, are not mentioned directly in the text). 

In the future we aim to (i) improve chemical recognition by 
exploring other model architectures and weighted losses, (ii) 
make further experiments with the SapBERT embeddings for 
normalization, and (iii) investigate the use of the MeSH tree 
structure to analyze if adding parent-related MeSH terms can 
help in the indexing task. 
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