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Abstract— This systems description paper details our entry to 

the BioCreative 7 NLM-Chem track challenge. We compared 

two different approaches to chemical entity recognition. First, we 

fine-tuned the PubMedBERT transformer model using the 

NLM-Chem dataset only. We then tried building a stacking 

model using the outputs from the NLM-Chem PubMedBERT 

transformer and two additional PubMedBERT transformers: 

one fine-tuned with BioCreative IV’s CHEMDNER dataset, and 

the other fine-tuned with BioCreative V’s CDR dataset. We 

observed no difference in performance between the single 

PubMedBERT transformer, fine-tuned using the NLM-Chem 

dataset only, and the stacking model. The single PubMedBERT 

transformer scored significantly higher than the baseline system 

in the challenge evaluation, achieving an F1 score of 0.8493 in the 

strict evaluation. We extended the baseline MeSH normalization 

procedure, using biomedical word embeddings to try to improve 

recall. Our system scored slightly lower than the baseline in the 

strict evaluation, achieving an F1 score of 0.7870. Our entry for 

the automatic MeSH indexing sub-task achieved an F1 score of 

0.3334. 

Keywords— Named Entity Recognition, Entity Normalization, 

Transformer, Stacking Ensemble, Indexing 

I. INTRODUCTION  

The NLM-Chem track of the BioCreative VII challenge is 
divided into two subtasks. The first subtask focuses on the 
automatic identification of chemical entities in biomedical 
literature and their subsequent normalization to Medical 
Subject Heading (MeSH) codes. The second subtask is related 
to automatic document level MeSH indexing (1). The NLM-
Chem dataset (2, 3) is made up of 150 full PubMed articles, 
with each chemical entity character span labelled, as well as 
any MeSH codes each entity maps to. Each article also 
contains a list of MeSH index terms. 

In recent years transformer models have become very 
popular in natural language processing (NLP). Large 
transformer language models (e.g. BERT), trained with very 
large datasets, are easily repurposed for novel tasks via transfer 
learning, with impressive results (4, 5). The adaptation of 
general domain transformer models to the biomedical domain 
is an active research area. Initial efforts involved continuing the 
BERT pre-training process using biomedical corpora (6, 7). Gu 
et al. went a step further by training a BERT model from 
scratch using biomedical corpora (PubMedBERT), and 
demonstrated this approach improved performance across a 
range of tasks (8). We chose to work with this model 
(PubMedBERT) for the chemical entity recognition challenge 

component. In addition to the NLM-Chem dataset, we made 
use of two chemical NER datasets from previous BioCreative 
challenges: the CDR, and CHEMDNER datasets (9, 10). The 
three datasets have distinct annotation guidelines and therefore 
can’t easily be combined. We aimed to investigate whether a 
secondary model, trained using the outputs of separate models, 
each fine-tuned using one of the three datasets, could improve 
on the performance of a single model, trained using the NLM-
Chem dataset only. 

 The paper introducing the NLM-Chem dataset (2) presents 
baseline methods for chemical entity recognition and 
subsequent normalization to MeSH IDs. Their normalization 
method is based on the sieve approach (11). In this work, we 
aimed to improve the baseline normalization approach’s recall 
by identifying predicted entity synonyms using a biomedical 
word embedding model (12).  

For the indexing task, we trained a logistic regression 
model to predict whether a given MeSH code – identified using 
the automatic chemical NER and normalization systems - 
appears in the article index based on its mention frequency, 
identity, and the document metadata. 

II. METHOD 

We fine-tuned separate PubMedBERT models using the 
NLM-Chem, CDR, and CHEMDNER datasets. Table 1 lists 
the model and training parameters. A subset of the parameters 
were tuned using the validation sets included with each of the 
datasets - the token level micro-averaged F1 score was used to 
select the optimal parameters. Following parameter tuning, 
each model was fine-tuned again using the optimal parameters 
with early stopping. When training with early stopping, each 
model was evaluated using the validation set at intervals of 100 
iterations, and training was terminated when the token level 
micro-averaged F1 score failed to improve after 500 iterations. 
The best performing model checkpoint was selected for the 
evaluation. Each model was trained for a maximum of 10 
epochs, but training terminated before then during each 
training run. Note that PubMedBERT is able to process 
sequences containing a maximum of 512 tokens. All training 
and validation sequences were truncated to this length prior to 
model training. Next, we generated predictions for the NLM-
Chem dataset using each of the models. We then trained 
several neural network stacking models to combine the 
individual model predictions at the token level using the NLM-
Chem dataset. We trained the stacking models with a  



TABLE 1: MODEL/TRAINING PARAMETERS. PAREMETERS WITH MULTIPLE 

ENTRIES WERE TUNED DURING OUR EXPERIMENTS. 

 

 

batch size of 1024 for a maximum of 500 epochs using 
early stopping based on validation loss, with a patience of 3 
epochs. Table 1 lists the model and training parameters, some 
of which were tuned.  

The NLM-Chem dataset contains full articles, and as a 
result, many of the included passages are too long to be 
processed by PubMedBERT. When generating predictions for 
the evaluation set, instead of truncating long texts, as we did 
when training the models, we split each text into overlapping 
sequences of 512 tokens, processed each of the sequences 
individually, and then averaged the outputs. We used a stride 
of 255 tokens to ensure an even coverage of backward and 
forward context when generating predictions (we used a stride 
of 255 instead of 256 because the first and final tokens are 
special reserved tokens). 

We adopted a normalization sieve approach that is similar 
to those presented in (2, 11). First, we normalized each of the 
terms contained in the Medical Subject Headings (MeSH) 
database by lowercasing, removing whitespace, and 
substituting Greek characters with their English spellings. We 
then defined a set of string manipulation and substitution 
methods designed to improve recall when normalizing entities 
to MeSH codes. The string manipulation methods included 
stemming, and non-alphanumeric character removal. The 
substitution methods included abbreviation expansion using 
Ab3p (13) and similar entity substitution using BioWordVec 
embeddings (12). Abbreviation expansion involves identifying 
abbreviations and resolving them to their long form, which is 
typically less ambiguous. The similar entity substitution 
method using BioWordVec embeddings works as follows: 
given an entity, the ten most similar BioWordVec strings – 

according to cosine similarity - are retrieved, strings with a 
similarity score below some threshold are discarded (the 
optimal threshold was determined empirically), the remaining 
strings are then resolved to MeSH codes where possible, and 
the final MeSH code is determined by majority vote. We made 
use of several synonym data sources in addition to the MeSH 
database: ChEBI (14), UMLS (15), NCI Thesaurus (16), UNII 
(https://fdasis.nlm.nih.gov/), and PubChem (17). We evaluated 
the normalization precision of each of the data source and 
string manipulation/substitution method combinations and used 
this information to construct the normalization sieve. 

For the indexing subtask we trained a logistic regression 
model to predict whether an identified MeSH code belongs in 
the article’s index. The model used the following features: 
mention count, normalized mention count, number of different 
passages the code is mentioned in, passage type mention count 
(e.g. code is mentioned 3 times in the abstract), and the code 
identity. 

III. RESULTS 

Table 2 compares the chemical entity span identification 
performance of the single PubMedBERT model with the 
stacking model (trained using outputs from the NLMChem, 
CDR, and CHEMDNER models). The models performed 
equally well, therefore we chose the simpler, single 
PubMedBERT model when generating predictions for the 
challenge submission. Note that before generating the final test 
set predictions, we re-trained the model using the optimal 
configuration and early stopping with a new training set 
combining the original training and test sets. Our system’s 
performance is compared with the baseline system in Table 3 
and Table 4. Our chemical NER model significantly 
outperformed the baseline: its recall was considerably higher 
while its precision was only slightly lower. Our system 
performed slightly worse than the baseline in the strict 
evaluation and scored significantly worse in the approximate 
evaluation. Our system scored higher in recall, with a lower 
precision in both evaluations when compared with the baseline. 
It’s worth noting that our normalization procedure was 
evaluated using the output of a more effective entity 
recognition system, therefore the evaluation is biased in favour 
of our system, and the baseline normalization procedure may 
outperform ours by a greater margin when normalizing the 
same input.  

Table 5 compares the normalization sieve performance on 
the NLM-Chem dataset with different components removed 
both for the full ground truth dataset, and the model’s 
validation set predictions. Including additional data sources 
produced a large performance improvement: recall was 
improved dramatically with a comparatively small reduction in 
precision. String manipulation is the next most important 
component – removing this harms F1 score in both the ground 
truth dataset and the validation set predictions. The impact of 
removing the abbreviation expansion and similar entity 
components is less clear cut: the difference in F1 score with 
and without these components is very small. Even so, we 
included both components in the normalization procedure 
because we observed no evidence that they harmed 
normalization performance. 

PubMedBERT 

Batch size 16, 32 

Epochs 2, 3, 4, 5 

Learning rate 1e-5, 3e-5, 5e-5 

Learning rate 

schedule 
Linear, warm-up ratio = 0.1 

Optimizer 
AdamW (beta1=0.9, beta2=0.999, epsilon=1e-8 

decay=0.01) 

Max gradient 

norm 
1.0 

Stacking Model 

Dropout 0.0, 0.01, 0.025, 0.05, 0.10 

L2 coefficient 0.0, 0.01, 0.05 

# ReLU layers 0, 1 

# Hidden units 0, 1024 

Optimizer Adam (beta1=0.9, beta2=0.999) 

Learning rate 0.001 

Loss Categorical crossentropy 



Table 6 compares our automatic indexing system with the 
baseline system. Our system is more precise but with a much 
lower recall, resulting in a lower F1 score. Neither system 
performs well, reflecting the difficulty of the task. Two major 
shortcomings of our approach are: it doesn’t exploit the article 
content, and it assumes the index terms are independent. Future 
work could address these issues. 

IV. CONCLUSION 

We compared two different approaches to chemical NER: a 
single PubMedBERT model fine-tuned using the NLM-Chem 
dataset, and a stacking model combining three separate 
PubMedBERT models, each fine-tuned with one of three 
datasets: NLM-Chem, CHEMDNER, and CDR. The stacking 
model didn’t improve upon the single PubMedBERT model, so 
we chose a single fine-tuned PubMedBERT model for the final 

evaluation. The single PubMedBERT model significantly 
outperformed the baseline. We extended the baseline 
normalization sieve approach with an additional component 
designed to improve recall by identifying similar chemical 
entities using the BioWordVec biomedical word embedding 
model. Our normalization approach performed slightly worse 
than the baseline system in the strict evaluation and scored 
significantly worse in the approximate evaluation. We trained a 
logistic regression model to identify index MeSH codes. It is 
more precise than the baseline system, but achieved a 
significantly lower recall, and a lower F1 score. 

 

 

 

 

 

TABLE 2: COMPARISON OF FINE-TUNED PUBMEDBERT MODEL AND STACKING MODEL, EVALUATED USING THE NLM-CHEM TEST SET. 

Model 
Strict evaluation 

Precision Recall F1 

PubMedBERT 0.806 0.854 0.829 

Stacking model 0.795 0.860 0.827 

 

TABLE 3:  CHALLENGE EVALUATION RESULTS -  STRICT/APPROXIMATE CHEMICAL ENTITY SPAN IDENTIFICATION. 

System 

Chemical Entity Span Identification 

Strict evaluation Approximate evaluation 

Precision Recall F1 Precision Recall F1 

Baseline 0.8440 0.7877 0.8149 0.9156 0.8492 0.8811 

Ours 0.8338 0.8654 0.8493 0.8953 0.9309 0.9127 

 

TABLE 4: CHALLENGE EVALUATION RESULTS – STRICT/APPROXIMATE ENTITY NORMALIZATION. 

System 

Chemical Entity Normalization 

Strict evaluation Approximate evaluation 

Precision Recall F1 Precision Recall F1 

Baseline 0.8151 0.7644 0.7889 0.7917 0.7889 0.7857 

Ours 0.7890 0.7849 0.7870 0.7192 0.8254 0.7628 

 

      TABLE 5: NORMALIZATION SIEVE ABLATION STUDY. 

Ablation details 
NLM-Chem ground truth Validation set predictions 

Precision Recall F1 Precision Recall F1 

MeSH data only 0.915 0.682 0.781 0.839 0.667 0.743 

No string manipulation 0.880 0.801 0.839 0.808 0.779 0.793 

No abbreviation expansion 0.877 0.808 0.841 0.805 0.790 0.797 

No similar entity matching 0.885 0.801 0.841 0.815 0.787 0.80 

Complete sieve 0.881 0.808 0.843 0.809 0.790 0.799 

 



TABLE 6: CHALLENGE EVALUATION RESULTS – STRICT/APPROXIMATE INDEXING. 
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System 

Chemical Entity Normalization 

Strict evaluation Approximate evaluation 

Precision Recall F1 Precision Recall F1 

Baseline 0.3134 0.6101 0.4141 0.4510 0.7816 0.5329 

Ours 0.4073 0.2822 0.3334 0.4844 0.4612 0.4380 
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