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Abstract—We built neural models that extract chemical entities 

from full papers, link them to database entries, and select key terms 

from the extracted terms. All our models adopt pretrained BERT 

language models, i.e., SciBERT and PubMedBERT, enabling the 

training of high-performance models from a small amount of data. 
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I. INTRODUCTION  

Chemical names are one of the most searched entities in 
PubMed. Identifying and indexing chemical terms in the 
literature can greatly help researchers find the relevant articles, 
and they can also be useful for downstream NLP tasks. However, 
in practice, the mentions of chemical terms have various aliases 
and chemical formulae. Indexing them is not easy because it 
requires understanding the article’s main topic. BioCreative VII 
track 2 (1, 2) is a shared task for named entity recognition, 
linking, and indexing from full paper articles. In the task, 
annotations for 150 full paper articles are provided as training 
examples. 

In natural language processing, the use of pretrained models 
has recently led to high performance, and they are often 
employed in named entity recognition and linking. Following 
this line, we aim to build a high-performance neural system for 
chemical identification and entity linking. After the official 
submission period, we built a neural chemical indexing model 
that utilizes a bag of sentences as input, often used in distant 
supervision tasks (3), and compared the results with those of the 
TF-IDF (term frequency-inversed document frequency) model. 
As a result, we obtained the F-scores of 0.8284 for NER, 0.7506 
for linking, and 0.3806 for indexing on the strict setting. 

II. BIOCREATIVE VII TRACK 2 

 In the BioCreative VII track 2, there are two subtasks that 
require information extraction from full papers: Chemical 
Identification and Chemical Indexing prediction. 

A. Chemical Identification 

Chemical Identification Subtask is composed of named 
entity recognition and linking. The target entities are chemical 
entities, and they have to be linked to the corresponding MeSH 
Identifiers (IDs) if they exist. Some entities have multiple 
corresponding MeSH IDs. As a preliminary experiment, we 
examined the numbers of the cases where the beginnings or 
endings of the entity spans did not match subword delimiters by 
some publicly-available pre-trained BERT tokenizers as in 

Tab. 1. Of course, if tokens do not fit the delimiters, the model 
we used in this study cannot identify the correct spans. However, 
from the results, such cases are very few, and they are 0.5% of 
the entire entities even for the PubMedBERT tokenizer that 
caused failures most. 

B. Chemical Indexing prediction 

Indexing is the task of assigning index MeSH identifiers 
(IDs) to articles for indexing and searching. The task focuses on 
selecting representative linked entities to be indexed, and this 
task does not require other tasks such as creating the reverse 
index. Key chemicals such as target chemicals and major 
concepts to categorize articles, which may correspond to more 
abstract concepts concerning the MeSH tree structure than the 
concepts directly appearing on the articles, are chosen as the 
index IDs for the articles. 

To understand how the index IDs are chosen, we examined 
the index IDs and their correspondence to the mentions’ IDs in 
the training corpus. Tab. 2 summarizes the statistics of the 
coverage for different settings of candidate IDs. Here, #Cand ID 
denotes the number of the candidate MeSH IDs, #Index ID 
denotes the covered index IDs by the candidates, and Positive 
denotes the ratio of #Index ID to #Cand ID. “Parents” and 
“grandparents” represent the relationships on the MeSH tree 
structure. For the concepts in the supplementary concept records, 
we define the parent relationship with their heading mappings. 
The MeSH tree structure is a forest consisting of several subtrees, 
and one MeSH ID may appear in multiple trees, so one MeSH 
ID may have multiple parents.  

Since the concepts appearing in the indices should not be 
highly abstract, we check if we can reduce the candidates by 
removing the highly abstract concepts. Specifically, we exclude 
concepts that are in the shallow part of the MeSH tree. This 
reduction, however, affects both the number of candidates and 
covered indices, and this turns out not to be always effective.  

III. METHOD 

A. Named Entity Recognition 

We build a simple BERT-based NER model that outputs 
BILOU labels. First, the hidden vectors of the BERT final layer 
are fed to the output layer with the dropout ratio of 0.2. Then, 
the softmax function is applied to the output to obtain a 
probability distribution for the BILOU labels. We employ the 
SciBERT as the pre-trained BERT model since the number of 
missing spans is sufficiently small as in Tab. 1 and its subword 



spans match our linking model. The training is performed with 
Adam with a learning rate of 5e-5 for 5 epochs. We use a batch 
size of 32.  The input raw text is processed by the SciBERT’s 
tokenizer; if the input text length exceeds the maximum length 
of 510 ([BOS], [EOS] excluded), the text is split with the stride 
size of 128 tokens. Finally, we decode the output by the Viterbi 
algorithm. 

B. Linking 

We employ the neural linking model that we built in the n2c2 
2019 Track 3. The model’s hyper-parameters were tuned using 
SciBERT (5) on the n2c2 2019 Track 3, so we decided to employ 
SciBERT as the pre-trained BERT model. The entity linking 
model consists of pre-trained SciBERT with pooling, fully 
connected, and cosine similarity-based output layers. Fig. 1 
shows the overview of our linking model. 

The input of the model is the tokenized entity mention 
without any context. Training instances are built from the 
annotated corpus and the records from a database (i.e., MeSH 
thesaurus). For the corpus, we extract instances according to the 
annotated spans of the entities. If an entity span cannot be 
successfully tokenized from full text, we omit the span from 
training instances. For the database, we extract all the synonyms 
from the MeSH Descriptor file (desc2021.xml) and MeSH 
Supplemental Concept Records file (supp2021.xml)1. The total 
numbers of instances were 30,759 from the 120 papers in the 
training set, 7,000 from the 30 papers in the development set, 
and 957,168 from MeSH thesaurus. Note that the total number 
of mentions differs from the total number of annotated mentions 
because we omitted the mentions that have failed in tokenization. 
Additionally, we use the whole BC5CDR data sets as the 
additional training instances. The total number of instances from 
BC5CDR is 28,785. 

The model first encodes a given mention by the pretrained 
BERT model and obtains the pooled representation by taking the 
average pooling over the BERT’s last hidden subword vectors 
except for ones for special tokens (i.e., [BOS] and [EOS]). After 
that, the mention vector of the input is obtained by applying a 
fully connected layer with a tanh activation to the pooled 
representation. Then the model calculates the cosine similarity 
between the mention vector and the learnable embedding vector 
of each MeSH ID at the output layer. For the out-of-vocabulary 
concepts (denotes as “-” in the corpus), we prepare not the 
embedding vector but a learnable scalar value and use it as the 
similarity. For the sake of simplicity, we treat combined 
concepts as one distinct concept. Finally, the output probabilities 
are obtained with the softmax function over all the similarities 
with temperature parameters. 

 The number of the total embedding vectors is about 348,000. 
Even with the many training instances, the training data is sparse, 
and hence the model tends to underfit during the training 
because of the large number of concept embedding vectors. The 
average accuracy stacks around 62% at the end of the training,  
 

TABLE I.  THE NUMBER OF SPANS FAILED TO TOKENIZE. THERE ARE 

38,339 ANNOTATED MENTION SPANS IN TOTAL FOR CHEMICAL 

IDENTIFICATION SUBTASK. 

Model # Failure 

BERT-base-uncased (4) 43 

SciBERT (5) 34 

BioBERT-v1.1 (6) 15 

PubMedBERT (base, uncased) (7) 197 

TABLE II.  INDEXING STATISTICS ON THE TRAINING CORPUS 

 #Cand ID #Index ID Positive 

Annotated index - 364 - 

Annotated mentions’ IDs 5,039 287 5.70% 

+ Parent IDs 10,521 342 3.25% 

   + limit to depth ≤ 2 10,280 341 3.32% 

   + limit to depth ≤ 3 9,003 330 3.67% 

+ Parents & Grandparents 14,568 344 2.36% 

+ All ancestor IDs 17,845 345 1.93% 

   + limit to depth ≤ 2 16,553 343 2.07% 

   + limit to depth ≤ 3 12,986 331 2.55% 

   + limit to depth ≤ 4 8,943 287 3.21% 

   + limit to depth ≤ 5 5,471 216 3.95% 

TABLE III.  TUNED HYPER-PARAMETERS FOR THE NEURAL INDEXING 

MODEL. 

Parameter Symbol Value Range 

Batch size  8 {8,16,32,64} 

Head size ℎl 8 {1,2,4,8} 

Learning rate  5.74652e-06 [1e-06, 1e-04] 

Dropout rate 𝑝ld 0.430275 [0.0, 0.5] 

Context size 𝑙c 16 {4,8,16} 

Max mention size 𝑙𝑚 13 {0,5,9,13} 

TABLE IV.  NER RESULTS. THE “INDIVIDUAL” ROW SHOWS THE MEAN (STDDEV) VALUES OF 5 DIFFERENT RUNS. WE SUBMITTED THE SAME NER OUTPUT FOR 

ALL 5 SUBMISSIONS. 

Set Run 
Submission 

ID 

Strict Approximate 

P R F P R F 

Dev Individual  0.8443 (0.0121) 0.8139 (0.0156) 0.8286 (0.0054) 0.8988 (0.0123) 0.8677 (0.0180) 0.8827 (0.0036) 

Ensemble  0.8671 0.8305 0.8484 0.9166 0.8804 0.8982 

Test Ensemble 1-5 0.8476 0.8101 0.8284 0.9128 0.8670 0.8893 

1 https://www.nlm.nih.gov/databases/download/mesh.html 



and the training accuracy for IDs with only corresponding 
instances from databases is about 28%. To alleviate this 
underfitting, we employ a trick that overwrites the embedding 
vectors. First, we train the model until the decrease of training 
losses slows down. Then, we substitute the average of the 
vectors of the instances from databases corresponding to each 
concept for the concept’s embedding vector. After overwriting, 
we resume the training with initial Adam parameters for a few 
epochs. This trick increases the accuracies for both the training 
and development sets with limited annotations. 

We employed ArcFace (8) for the loss function and Adam 
for the optimizer. We used hyper-parameters originally tuned on 
the n2c2 2019 Track3 dataset by Optuna (9). We initialized 
SciBERT parameters by the pretrained model “scibert-scivocab-
uncased” and fine-tuned them during the training. Since the 
instances from the corpus were much fewer than those from the 
database, we performed up-sampling to make ratios of instances 
from each domain roughly the same. For prediction, we chose 
the biggest probability class as the predicted label. 

C. Indexing 

We used a TF-IDF model and a neural network-based model 
for Subtask 2 (indexing). Both models predict whether a 
candidate MeSH ID is an index ID or not. Based on the 
investigation described in subsection 2.B for each article, we 
used MeSH IDs that directly appear in the article as well as all 
the parent IDs for candidates. 

1) TF-IDF model for indexing 
TF-IDF was calculated using the number of occurrences of 

the MeSH ID for each article, and the index IDs were 
determined with a certain threshold to the TF-IDF value. First, 
the spans of a chemical that appeared in the papers were replaced 
by its MeSH ID. Next, we calculated IDF based according to the 
training corpus. Then we set a threshold value and determined 
the index IDs by checking whether each TF-IDF value exceeds 
the threshold or not. The threshold value was set differently for 
the MeSH IDs and the parent MeSH IDs. When a MeSH ID 
appeared directly or as a parent MeSH ID, it was judged to be 
an index ID if both of them exceeded the threshold value. The 
threshold value was tuned to maximize the F-score by Optuna.  

2) Neural network model for indexing 
Fig. 2 shows an overview of the indexing model using neural 

networks. Initially, for each MeSH ID directly occurring in the 
paper and its parent MeSH ID, a bag of sentences is created by 
combining the related mentions and their surrounding contexts. 
The sentences in this bag are a combination of the context of the 

previous and following 𝑙c tokens and the mention with special 
tokens. For each sentence, we insert special tokens representing 
the beginning and ending of the mention ([BOM] and [EOM] in 
the figure). In this case, if the mention length exceeds a certain 
threshold lm, we delete the middle token and replace it with the 
special token [SHORT] so that it fits into lm (e.g., in the figure, 
the intention of the second sentence was “1,7-bis(4-hydroxy-
3methoxyphenyl)-1,6-heptadien-3,5-dione”, but it was 
shortened to “1,7-[SHORT] 5-dione”). If the sentence 
corresponds to a child of the MeSH ID of the bag, a special token 
[CSEP] and the entry term of the MeSH ID of the bag are given 
(e.g., the sentence in the bottom row of the figure originally had 
only “ll32”, but it now has “ll32 [CSEP] curcumin”). If the entry 
term exceeds lm, it is shortened using [SHORT] as in the main 
body of the message. 

The bag of sentences created in the above process is used as 
input to the model. Indexing is performed by binary 
classification of whether the MeSH ID of the given bag should 
be an index ID or not. The sentence representation is obtained 
with a word-wise attention module over the subword vectors 
from the BERT encoder. The following attention module over 
the sentence representations is employed to obtain the bag 
representation, and the obtained representation is mapped to one 
dimension by a fully-connected layer. The indexing probability 
is calculated by using a sigmoid function. 

TABLE V.  LINKING RESULTS ON THE DEVELOPMENT SET. OW STANDS 

FOR OVERWRITING THE CONCEPT’S EMBEDDING VECTORS. AB3P STANDS FOR 

RESOLVING ABBREVIATIONS BY AB3P. BC5CDR STANDS FOR USING 

ADDITIONAL TRAINING INSTANCES FROM BC5CDR DATASETS. 
ABBREVIATION STANDS FOR RESOLVING ABBREVIATIONS BY OUR 

ABBREVIATION RESOLVER. 

Model 
Strict 

P R F 

Baseline model 0.7325 0.8812 0.8000 

  - OW 0.7433 0.8380 0.7878 

  + Ab3P 0.7600 0.8855 0.8180 

+ Ab3P, - OW 0.7704 0.8445 0.8058 

  + BC5CDR 0.7400 0.8823 0.8049 

  + BC5CDR, - OW 0.7635 0.8542 0.8063 

  +BC5CDR, Ab3P 0.7640 0.8844 0.8198 

  +BC5CDR, Ab3P, - OW 0.7830 0.8575 0.8186 

  + BC5CDR, Abbreviation 0.7652 0.8834 0.8201 

TABLE VI.  LINKING RESULTS ON THE TEST SET. 

Model 
Submission 

ID 

Strict Approximate 

P R F P R F 

Baseline model 2 0.7078 0.8698 0.7805 0.6612 0.9018 0.7554 

  + Ab3P 3 0.7338 0.8683 0.7954 0.6954 0.8976 0.7760 

  + BC5CDR 4 0.7038 0.8670 0.7769 0.6424 0.8961 0.7399 

  + BC5CDR, Ab3P 5 0.7306 0.8658 0.7925 0.6782 0.8919 0.7625 

  + BC5CDR, Abbreviation 1 0.7038 0.8670 0.7769 0.6421 0.8959 0.7395 



 During training, dropout is performed with probability pld 
for the input to the output layer. Both word- and sentence-level 
attention modules employ the multi-head attention (10), and for 

simplicity, the same number of heads h𝑙 is used. 

IV. EXPERIMENTAL SETTING 

Learning is performed by minimizing the negative log-
likelihood. Adam was chosen as the learning algorithm. BERT 
was initialized with SciBERT. Hyperparameter tuning was done 
using Optuna. The list of tuned hyperparameters, their ranges,  
and their final values are shown in Tab. 3. 

We randomly selected 30 papers out of 150 provided 
training examples as development examples throughout the 
entire task. The neural network models were implemented in 
Pytorch. The experimental environment was TITAN V (12GB 
memory), V100-DGXS (32GB memory), and GeForce 3090 
RTX (24GB memory) GPUs. 

V. RESULTS AND DISCUSSION 

A. Named Entity Recognition 

Table 4 shows NER scores for our BERT-based model. We 
had the ensemble output for the NER model by averaging the 
output probabilities of 5 different runs and then applying Viterbi 
decoding. We submitted the same NER output for all 5 official 
submissions. 

B. Linking 

Table 5 shows the linking scores for the strict setting on the 
development set. If we omitted the weight overwriting at the 
output layer, the baseline model degrades the linking 
performance. However, when we use additional BC5CDR 
corpus for training, the weight overwriting has almost no effect 
on the performance. The model achieved comparable F-scores 
even without the weight overwriting to the baseline model, 
probably because the model has achieved sufficient learning 
using the BC5CDR training examples. Thus, there is no longer 
a need to force learning progression by overwriting weights. 
Since our model makes one prediction for one mention span 
while there should be some mentions that have different surface 
forms but indicate the same concept, the recall scores of our 
model are relatively larger than the precision scores. 

In both models, the abbreviated form resolution by Ab3P is 
valid, and our abbreviation solver has almost the same 
performance as the Ab3P. By applying the Ab3P abbreviation 

solver, predictions for abbreviated mentions are removed, 
leading to precision improvement. 

Table 6 shows the test scores of the linking model. Again, 
the test results have the same tendency as the development set; 
the models trained with BC5CDR corpus show roughly the same 
scores for the ones without it. Using abbreviation solver 
improves the overall scores, while our solver (submission id=1) 
did not work on the test set as we expected because of the bug 
(on the development set, we made characters lowercase, but in 
the test set, we mistakenly skipped the preprocessing.) 

C. Indexing 

Tab. 7 and 8 show the performances of our indexing model. 
While the neural network-based model and the TF-IDF model 
worked on the development set with the gold mention spans and 
the concept labels, it turned much worse than the TF-IDF model 
on the test set. One of the reasons should be the error 
propagation from the NER and linking models. Since our neural 
indexing model was trained with gold spans and concepts, the 
BERT encoder might be sensitive to the wrong spans and output 
the broken sentence representations. On the other hand, the TF-
IDF model counts the number of occurrences and ignores any 
contexts; thus, it is more robust for error propagation than the 
neural model. One possible solution is using the instances with 
spans and concepts labeled by the pipeline systems, but we could 
not have done this due to the time limitation. 

VI. CONCLUSIONS 

We built the pipeline of neural NER, linking, and indexing 
models for BioCreative VII track 2 and the TF-IDF indexing 
model. Our models showed the large performance gaps between 
the predictions from gold spans/concepts and pipeline outputs, 
especially for the neural indexing model. Future work is to 
alleviate the error propagation problem. 

 

TABLE VII.  INDEXING RESULTS ON THE DEVELOPMENT SET FOR THE 

STRICT SETTING. 

Model Setting P R F 

Neural Network 
Gold span & link 0.6557 0.5714 0.6107 

Pipeline 0.2292 0.3143 0.2651 

TF-IDF 
Gold span & link 0.5714 0.5714 0.5714 

Pipeline 0.3651 0.3286 0.3459 

 

TABLE VIII.  INDEXING RESULTS ON THE TEST SET. THESE ARE THE UNOFFICIAL RESULTS SINCE WE SUBMITTED THESE AFTER THE OFFICIAL DEADLINE. 

Model Submission ID 
Strict Approximate 

P R F P R F 

TF-IDF 1 0.2753 0.6163 0.3806 0.3889 0.7924 0.4865 

Neural Network 3 0.2352 0.2661 0.2497 0.3418 0.4677 0.3520 

Ensemble 2 0.3267 0.3276 0.3271 0.4083 0.5377 0.4189 



REFERENCES 

1. Robert Leaman, Rezarta Islamaj and Zhiyong Lu. (2021) Overview of 
the NLM-Chem BioCreative VII track: Full-text Chemical Identification 
and Indexing in PubMed articles. Proceedings of the seventh BioCreative 
challenge evaluation workshop. 

2. Rezarta Islamaj, Robert Leaman, David Cissel, Meng Cheng, Cathleen 
Coss, Joseph Denicola, Carol Fisher, Rob Guzman, Preeti Kochar, 
Nicholas Miliaras, Zoe Punske, Keiko Sekiya, Dorothy Trinh, Deborah 
Whitman, Susan Schmidt and Zhiyong Lu. (2021) The chemical corpus 
of the NLM-Chem BioCreative VII track: Full-text Chemical 
Identification and Indexing in PubMed articles. Proceedings of the 
seventh BioCreative challenge evaluation workshop. 

3. Yankai Lin et al. (2016) Neural Relation Extraction with Selective 
Attention over Instances. In: Proceedings of the 54th Annual Meeting of 
the Association for Computational Linguistics (Volume 1: Long Papers). 
Berlin, Germany: Association for Computational Linguistics, Aug. 2016, 
pp. 2124–2133.doi:10.18653/v1/P16-1200. 
url:https://aclanthology.org/P16-1200. 

4. Jacob Devlin et al. (2019) BERT: Pre-training of Deep Bidirectional 
Transformers for Language Understanding. In: Proceedings of the 2019 
Conference of the North American Chapter of the Association for 
Computational Linguistics: Human Language Technologies, Volume 1 
(Long and Short Papers). Minneapolis, Minnesota: Association for 
Computational Linguistics, June 2019, pp. 4171–4186. doi: 
10.18653/v1/N19-1423. url: https://aclanthology.org/N19-1423. 

5. Iz Beltagy, Kyle Lo, and Arman Cohan. (2019) SciBERT: A Pretrained 
Language Model for Scientific Text. In: Proceedings of the 2019 
Conference on Empirical Methods in Natural Language Processing and 
the 9th International Joint Conference on Natural Language Processing 
(EMNLP-IJCNLP). Hong Kong, China: Association for Computational 
Linguistics, Nov. 2019,pp. 3615–3620. doi: 10 . 18653 / v1 / D19 - 1371. 
url:https://aclanthology.org/D19-1371. 

6. Jinhyuk Lee et al. (2020) BioBERT: a pre-trained biomedical language 
representation model for biomedical text mining. In: Bioinformatics 36.4 
(2020), pp. 1234–1240. 

7. Yu Gu et al. (2020) Domain-Specific Language Model Pretraining for 
Biomedical Natural Language Processing.2020. eprint: 
arXiv:2007.15779. 

8. Jiankang Deng et al. (2019) ArcFace: Additive Angular Margin Loss 
for Deep Face Recognition. In: Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition. 2019, pp. 4690–4699. 

9. Takuya Akiba et al. (2019) Optuna: A Next-generation Hy-
perparameter Optimization Framework. In:The 25thACM SIGKDD 
Conference on Knowledge Discoveryand Data Mining (KDD’ 19). 2019, 
pp. 2623–2631. 

10. Ashish Vaswan et al. (2017)   Attention  is  All  You  Need. In: 
Proceedings of the 31st International Conference on Neural Information 
Processing Systems. pp. 6000–6010.isbn: 9781510860964. 

 

https://aclanthology.org/P16-1200
https://aclanthology.org/N19-1423
https://aclanthology.org/D19-1371


 

Fig. 1. The overview of the linking model. 

 

Fig. 2. The overview of the neural network based indexing model. 

 


