
TTI-COIN at BioCreative VII Track 2
Fully neural NER, linking, and indexing models

Tomoki Tsujimura, Ryuki Ida, Isanori Oiwa, Makoto Miwa, and Yutaka Sasaki

 Toyota Technological Institute, Nagoya, Aichi, Japan

Abstract—We built neural models that extract chemical entities

from full papers, link them to database entries, and select key terms

from the extracted terms. All our models adopt pretrained BERT

language models, i.e., SciBERT and PubMedBERT, enabling the

training of high-performance models from a small amount of data.

Keywords–—linking; indexing; neural network; representation

learning; TF-IDF

I. INTRODUCTION

Chemical names are one of the most searched entities in
PubMed. Identifying and indexing chemical terms in the
literature can greatly help researchers find the relevant articles,
and they can also be useful for downstream NLP tasks. However,
in practice, the mentions of chemical terms have various aliases
and chemical formulae. Indexing them is not easy because it
requires understanding the article’s main topic. BioCreative VII
track 2 (1, 2) is a shared task for named entity recognition,
linking, and indexing from full paper articles. In the task,
annotations for 150 full paper articles are provided as training
examples.

In natural language processing, the use of pretrained models
has recently led to high performance, and they are often
employed in named entity recognition and linking. Following
this line, we aim to build a high-performance neural system for
chemical identification and entity linking. After the official
submission period, we built a neural chemical indexing model
that utilizes a bag of sentences as input, often used in distant
supervision tasks (3), and compared the results with those of the
TF-IDF (term frequency-inversed document frequency) model.
As a result, we obtained the F-scores of 0.8284 for NER, 0.7506
for linking, and 0.3806 for indexing on the strict setting.

II. BIOCREATIVE VII TRACK 2

 In the BioCreative VII track 2, there are two subtasks that
require information extraction from full papers: Chemical
Identification and Chemical Indexing prediction.

A. Chemical Identification

Chemical Identification Subtask is composed of named
entity recognition and linking. The target entities are chemical
entities, and they have to be linked to the corresponding MeSH
Identifiers (IDs) if they exist. Some entities have multiple
corresponding MeSH IDs. As a preliminary experiment, we
examined the numbers of the cases where the beginnings or
endings of the entity spans did not match subword delimiters by
some publicly-available pre-trained BERT tokenizers as in

Tab. 1. Of course, if tokens do not fit the delimiters, the model
we used in this study cannot identify the correct spans. However,
from the results, such cases are very few, and they are 0.5% of
the entire entities even for the PubMedBERT tokenizer that
caused failures most.

B. Chemical Indexing prediction

Indexing is the task of assigning index MeSH identifiers
(IDs) to articles for indexing and searching. The task focuses on
selecting representative linked entities to be indexed, and this
task does not require other tasks such as creating the reverse
index. Key chemicals such as target chemicals and major
concepts to categorize articles, which may correspond to more
abstract concepts concerning the MeSH tree structure than the
concepts directly appearing on the articles, are chosen as the
index IDs for the articles.

To understand how the index IDs are chosen, we examined
the index IDs and their correspondence to the mentions’ IDs in
the training corpus. Tab. 2 summarizes the statistics of the
coverage for different settings of candidate IDs. Here, #Cand ID
denotes the number of the candidate MeSH IDs, #Index ID
denotes the covered index IDs by the candidates, and Positive
denotes the ratio of #Index ID to #Cand ID. “Parents” and
“grandparents” represent the relationships on the MeSH tree
structure. For the concepts in the supplementary concept records,
we define the parent relationship with their heading mappings.
The MeSH tree structure is a forest consisting of several subtrees,
and one MeSH ID may appear in multiple trees, so one MeSH
ID may have multiple parents.

Since the concepts appearing in the indices should not be
highly abstract, we check if we can reduce the candidates by
removing the highly abstract concepts. Specifically, we exclude
concepts that are in the shallow part of the MeSH tree. This
reduction, however, affects both the number of candidates and
covered indices, and this turns out not to be always effective.

III. METHOD

A. Named Entity Recognition

We build a simple BERT-based NER model that outputs
BILOU labels. First, the hidden vectors of the BERT final layer
are fed to the output layer with the dropout ratio of 0.2. Then,
the softmax function is applied to the output to obtain a
probability distribution for the BILOU labels. We employ the
SciBERT as the pre-trained BERT model since the number of
missing spans is sufficiently small as in Tab. 1 and its subword

spans match our linking model. The training is performed with
Adam with a learning rate of 5e-5 for 5 epochs. We use a batch
size of 32. The input raw text is processed by the SciBERT’s
tokenizer; if the input text length exceeds the maximum length
of 510 ([BOS], [EOS] excluded), the text is split with the stride
size of 128 tokens. Finally, we decode the output by the Viterbi
algorithm.

B. Linking

We employ the neural linking model that we built in the n2c2
2019 Track 3. The model’s hyper-parameters were tuned using
SciBERT (5) on the n2c2 2019 Track 3, so we decided to employ
SciBERT as the pre-trained BERT model. The entity linking
model consists of pre-trained SciBERT with pooling, fully
connected, and cosine similarity-based output layers. Fig. 1
shows the overview of our linking model.

The input of the model is the tokenized entity mention
without any context. Training instances are built from the
annotated corpus and the records from a database (i.e., MeSH
thesaurus). For the corpus, we extract instances according to the
annotated spans of the entities. If an entity span cannot be
successfully tokenized from full text, we omit the span from
training instances. For the database, we extract all the synonyms
from the MeSH Descriptor file (desc2021.xml) and MeSH
Supplemental Concept Records file (supp2021.xml)1. The total
numbers of instances were 30,759 from the 120 papers in the
training set, 7,000 from the 30 papers in the development set,
and 957,168 from MeSH thesaurus. Note that the total number
of mentions differs from the total number of annotated mentions
because we omitted the mentions that have failed in tokenization.
Additionally, we use the whole BC5CDR data sets as the
additional training instances. The total number of instances from
BC5CDR is 28,785.

The model first encodes a given mention by the pretrained
BERT model and obtains the pooled representation by taking the
average pooling over the BERT’s last hidden subword vectors
except for ones for special tokens (i.e., [BOS] and [EOS]). After
that, the mention vector of the input is obtained by applying a
fully connected layer with a tanh activation to the pooled
representation. Then the model calculates the cosine similarity
between the mention vector and the learnable embedding vector
of each MeSH ID at the output layer. For the out-of-vocabulary
concepts (denotes as “-” in the corpus), we prepare not the
embedding vector but a learnable scalar value and use it as the
similarity. For the sake of simplicity, we treat combined
concepts as one distinct concept. Finally, the output probabilities
are obtained with the softmax function over all the similarities
with temperature parameters.

 The number of the total embedding vectors is about 348,000.
Even with the many training instances, the training data is sparse,
and hence the model tends to underfit during the training
because of the large number of concept embedding vectors. The
average accuracy stacks around 62% at the end of the training,

TABLE I. THE NUMBER OF SPANS FAILED TO TOKENIZE. THERE ARE

38,339 ANNOTATED MENTION SPANS IN TOTAL FOR CHEMICAL

IDENTIFICATION SUBTASK.

Model # Failure

BERT-base-uncased (4) 43

SciBERT (5) 34

BioBERT-v1.1 (6) 15

PubMedBERT (base, uncased) (7) 197

TABLE II. INDEXING STATISTICS ON THE TRAINING CORPUS

 #Cand ID #Index ID Positive

Annotated index - 364 -

Annotated mentions’ IDs 5,039 287 5.70%

+ Parent IDs 10,521 342 3.25%

 + limit to depth ≤ 2 10,280 341 3.32%

 + limit to depth ≤ 3 9,003 330 3.67%

+ Parents & Grandparents 14,568 344 2.36%

+ All ancestor IDs 17,845 345 1.93%

 + limit to depth ≤ 2 16,553 343 2.07%

 + limit to depth ≤ 3 12,986 331 2.55%

 + limit to depth ≤ 4 8,943 287 3.21%

 + limit to depth ≤ 5 5,471 216 3.95%

TABLE III. TUNED HYPER-PARAMETERS FOR THE NEURAL INDEXING

MODEL.

Parameter Symbol Value Range

Batch size 8 {8,16,32,64}

Head size ℎl 8 {1,2,4,8}

Learning rate 5.74652e-06 [1e-06, 1e-04]

Dropout rate 𝑝ld 0.430275 [0.0, 0.5]

Context size 𝑙c 16 {4,8,16}

Max mention size 𝑙𝑚 13 {0,5,9,13}

TABLE IV. NER RESULTS. THE “INDIVIDUAL” ROW SHOWS THE MEAN (STDDEV) VALUES OF 5 DIFFERENT RUNS. WE SUBMITTED THE SAME NER OUTPUT FOR

ALL 5 SUBMISSIONS.

Set Run
Submission

ID

Strict Approximate

P R F P R F

Dev Individual 0.8443 (0.0121) 0.8139 (0.0156) 0.8286 (0.0054) 0.8988 (0.0123) 0.8677 (0.0180) 0.8827 (0.0036)

Ensemble 0.8671 0.8305 0.8484 0.9166 0.8804 0.8982

Test Ensemble 1-5 0.8476 0.8101 0.8284 0.9128 0.8670 0.8893

1 https://www.nlm.nih.gov/databases/download/mesh.html

and the training accuracy for IDs with only corresponding
instances from databases is about 28%. To alleviate this
underfitting, we employ a trick that overwrites the embedding
vectors. First, we train the model until the decrease of training
losses slows down. Then, we substitute the average of the
vectors of the instances from databases corresponding to each
concept for the concept’s embedding vector. After overwriting,
we resume the training with initial Adam parameters for a few
epochs. This trick increases the accuracies for both the training
and development sets with limited annotations.

We employed ArcFace (8) for the loss function and Adam
for the optimizer. We used hyper-parameters originally tuned on
the n2c2 2019 Track3 dataset by Optuna (9). We initialized
SciBERT parameters by the pretrained model “scibert-scivocab-
uncased” and fine-tuned them during the training. Since the
instances from the corpus were much fewer than those from the
database, we performed up-sampling to make ratios of instances
from each domain roughly the same. For prediction, we chose
the biggest probability class as the predicted label.

C. Indexing

We used a TF-IDF model and a neural network-based model
for Subtask 2 (indexing). Both models predict whether a
candidate MeSH ID is an index ID or not. Based on the
investigation described in subsection 2.B for each article, we
used MeSH IDs that directly appear in the article as well as all
the parent IDs for candidates.

1) TF-IDF model for indexing
TF-IDF was calculated using the number of occurrences of

the MeSH ID for each article, and the index IDs were
determined with a certain threshold to the TF-IDF value. First,
the spans of a chemical that appeared in the papers were replaced
by its MeSH ID. Next, we calculated IDF based according to the
training corpus. Then we set a threshold value and determined
the index IDs by checking whether each TF-IDF value exceeds
the threshold or not. The threshold value was set differently for
the MeSH IDs and the parent MeSH IDs. When a MeSH ID
appeared directly or as a parent MeSH ID, it was judged to be
an index ID if both of them exceeded the threshold value. The
threshold value was tuned to maximize the F-score by Optuna.

2) Neural network model for indexing
Fig. 2 shows an overview of the indexing model using neural

networks. Initially, for each MeSH ID directly occurring in the
paper and its parent MeSH ID, a bag of sentences is created by
combining the related mentions and their surrounding contexts.
The sentences in this bag are a combination of the context of the

previous and following 𝑙c tokens and the mention with special
tokens. For each sentence, we insert special tokens representing
the beginning and ending of the mention ([BOM] and [EOM] in
the figure). In this case, if the mention length exceeds a certain
threshold lm, we delete the middle token and replace it with the
special token [SHORT] so that it fits into lm (e.g., in the figure,
the intention of the second sentence was “1,7-bis(4-hydroxy-
3methoxyphenyl)-1,6-heptadien-3,5-dione”, but it was
shortened to “1,7-[SHORT] 5-dione”). If the sentence
corresponds to a child of the MeSH ID of the bag, a special token
[CSEP] and the entry term of the MeSH ID of the bag are given
(e.g., the sentence in the bottom row of the figure originally had
only “ll32”, but it now has “ll32 [CSEP] curcumin”). If the entry
term exceeds lm, it is shortened using [SHORT] as in the main
body of the message.

The bag of sentences created in the above process is used as
input to the model. Indexing is performed by binary
classification of whether the MeSH ID of the given bag should
be an index ID or not. The sentence representation is obtained
with a word-wise attention module over the subword vectors
from the BERT encoder. The following attention module over
the sentence representations is employed to obtain the bag
representation, and the obtained representation is mapped to one
dimension by a fully-connected layer. The indexing probability
is calculated by using a sigmoid function.

TABLE V. LINKING RESULTS ON THE DEVELOPMENT SET. OW STANDS

FOR OVERWRITING THE CONCEPT’S EMBEDDING VECTORS. AB3P STANDS FOR

RESOLVING ABBREVIATIONS BY AB3P. BC5CDR STANDS FOR USING

ADDITIONAL TRAINING INSTANCES FROM BC5CDR DATASETS.
ABBREVIATION STANDS FOR RESOLVING ABBREVIATIONS BY OUR

ABBREVIATION RESOLVER.

Model
Strict

P R F

Baseline model 0.7325 0.8812 0.8000

 - OW 0.7433 0.8380 0.7878

 + Ab3P 0.7600 0.8855 0.8180

+ Ab3P, - OW 0.7704 0.8445 0.8058

 + BC5CDR 0.7400 0.8823 0.8049

 + BC5CDR, - OW 0.7635 0.8542 0.8063

 +BC5CDR, Ab3P 0.7640 0.8844 0.8198

 +BC5CDR, Ab3P, - OW 0.7830 0.8575 0.8186

 + BC5CDR, Abbreviation 0.7652 0.8834 0.8201

TABLE VI. LINKING RESULTS ON THE TEST SET.

Model
Submission

ID

Strict Approximate

P R F P R F

Baseline model 2 0.7078 0.8698 0.7805 0.6612 0.9018 0.7554

 + Ab3P 3 0.7338 0.8683 0.7954 0.6954 0.8976 0.7760

 + BC5CDR 4 0.7038 0.8670 0.7769 0.6424 0.8961 0.7399

 + BC5CDR, Ab3P 5 0.7306 0.8658 0.7925 0.6782 0.8919 0.7625

 + BC5CDR, Abbreviation 1 0.7038 0.8670 0.7769 0.6421 0.8959 0.7395

 During training, dropout is performed with probability pld
for the input to the output layer. Both word- and sentence-level
attention modules employ the multi-head attention (10), and for

simplicity, the same number of heads h𝑙 is used.

IV. EXPERIMENTAL SETTING

Learning is performed by minimizing the negative log-
likelihood. Adam was chosen as the learning algorithm. BERT
was initialized with SciBERT. Hyperparameter tuning was done
using Optuna. The list of tuned hyperparameters, their ranges,
and their final values are shown in Tab. 3.

We randomly selected 30 papers out of 150 provided
training examples as development examples throughout the
entire task. The neural network models were implemented in
Pytorch. The experimental environment was TITAN V (12GB
memory), V100-DGXS (32GB memory), and GeForce 3090
RTX (24GB memory) GPUs.

V. RESULTS AND DISCUSSION

A. Named Entity Recognition

Table 4 shows NER scores for our BERT-based model. We
had the ensemble output for the NER model by averaging the
output probabilities of 5 different runs and then applying Viterbi
decoding. We submitted the same NER output for all 5 official
submissions.

B. Linking

Table 5 shows the linking scores for the strict setting on the
development set. If we omitted the weight overwriting at the
output layer, the baseline model degrades the linking
performance. However, when we use additional BC5CDR
corpus for training, the weight overwriting has almost no effect
on the performance. The model achieved comparable F-scores
even without the weight overwriting to the baseline model,
probably because the model has achieved sufficient learning
using the BC5CDR training examples. Thus, there is no longer
a need to force learning progression by overwriting weights.
Since our model makes one prediction for one mention span
while there should be some mentions that have different surface
forms but indicate the same concept, the recall scores of our
model are relatively larger than the precision scores.

In both models, the abbreviated form resolution by Ab3P is
valid, and our abbreviation solver has almost the same
performance as the Ab3P. By applying the Ab3P abbreviation

solver, predictions for abbreviated mentions are removed,
leading to precision improvement.

Table 6 shows the test scores of the linking model. Again,
the test results have the same tendency as the development set;
the models trained with BC5CDR corpus show roughly the same
scores for the ones without it. Using abbreviation solver
improves the overall scores, while our solver (submission id=1)
did not work on the test set as we expected because of the bug
(on the development set, we made characters lowercase, but in
the test set, we mistakenly skipped the preprocessing.)

C. Indexing

Tab. 7 and 8 show the performances of our indexing model.
While the neural network-based model and the TF-IDF model
worked on the development set with the gold mention spans and
the concept labels, it turned much worse than the TF-IDF model
on the test set. One of the reasons should be the error
propagation from the NER and linking models. Since our neural
indexing model was trained with gold spans and concepts, the
BERT encoder might be sensitive to the wrong spans and output
the broken sentence representations. On the other hand, the TF-
IDF model counts the number of occurrences and ignores any
contexts; thus, it is more robust for error propagation than the
neural model. One possible solution is using the instances with
spans and concepts labeled by the pipeline systems, but we could
not have done this due to the time limitation.

VI. CONCLUSIONS

We built the pipeline of neural NER, linking, and indexing
models for BioCreative VII track 2 and the TF-IDF indexing
model. Our models showed the large performance gaps between
the predictions from gold spans/concepts and pipeline outputs,
especially for the neural indexing model. Future work is to
alleviate the error propagation problem.

TABLE VII. INDEXING RESULTS ON THE DEVELOPMENT SET FOR THE

STRICT SETTING.

Model Setting P R F

Neural Network
Gold span & link 0.6557 0.5714 0.6107

Pipeline 0.2292 0.3143 0.2651

TF-IDF
Gold span & link 0.5714 0.5714 0.5714

Pipeline 0.3651 0.3286 0.3459

TABLE VIII. INDEXING RESULTS ON THE TEST SET. THESE ARE THE UNOFFICIAL RESULTS SINCE WE SUBMITTED THESE AFTER THE OFFICIAL DEADLINE.

Model Submission ID
Strict Approximate

P R F P R F

TF-IDF 1 0.2753 0.6163 0.3806 0.3889 0.7924 0.4865

Neural Network 3 0.2352 0.2661 0.2497 0.3418 0.4677 0.3520

Ensemble 2 0.3267 0.3276 0.3271 0.4083 0.5377 0.4189

REFERENCES

1. Robert Leaman, Rezarta Islamaj and Zhiyong Lu. (2021) Overview of
the NLM-Chem BioCreative VII track: Full-text Chemical Identification
and Indexing in PubMed articles. Proceedings of the seventh BioCreative
challenge evaluation workshop.

2. Rezarta Islamaj, Robert Leaman, David Cissel, Meng Cheng, Cathleen
Coss, Joseph Denicola, Carol Fisher, Rob Guzman, Preeti Kochar,
Nicholas Miliaras, Zoe Punske, Keiko Sekiya, Dorothy Trinh, Deborah
Whitman, Susan Schmidt and Zhiyong Lu. (2021) The chemical corpus
of the NLM-Chem BioCreative VII track: Full-text Chemical
Identification and Indexing in PubMed articles. Proceedings of the
seventh BioCreative challenge evaluation workshop.

3. Yankai Lin et al. (2016) Neural Relation Extraction with Selective
Attention over Instances. In: Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers).
Berlin, Germany: Association for Computational Linguistics, Aug. 2016,
pp. 2124–2133.doi:10.18653/v1/P16-1200.
url:https://aclanthology.org/P16-1200.

4. Jacob Devlin et al. (2019) BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers). Minneapolis, Minnesota: Association for
Computational Linguistics, June 2019, pp. 4171–4186. doi:
10.18653/v1/N19-1423. url: https://aclanthology.org/N19-1423.

5. Iz Beltagy, Kyle Lo, and Arman Cohan. (2019) SciBERT: A Pretrained
Language Model for Scientific Text. In: Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP). Hong Kong, China: Association for Computational
Linguistics, Nov. 2019,pp. 3615–3620. doi: 10 . 18653 / v1 / D19 - 1371.
url:https://aclanthology.org/D19-1371.

6. Jinhyuk Lee et al. (2020) BioBERT: a pre-trained biomedical language
representation model for biomedical text mining. In: Bioinformatics 36.4
(2020), pp. 1234–1240.

7. Yu Gu et al. (2020) Domain-Specific Language Model Pretraining for
Biomedical Natural Language Processing.2020. eprint:
arXiv:2007.15779.

8. Jiankang Deng et al. (2019) ArcFace: Additive Angular Margin Loss
for Deep Face Recognition. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2019, pp. 4690–4699.

9. Takuya Akiba et al. (2019) Optuna: A Next-generation Hy-
perparameter Optimization Framework. In:The 25thACM SIGKDD
Conference on Knowledge Discoveryand Data Mining (KDD’ 19). 2019,
pp. 2623–2631.

10. Ashish Vaswan et al. (2017) Attention is All You Need. In:
Proceedings of the 31st International Conference on Neural Information
Processing Systems. pp. 6000–6010.isbn: 9781510860964.

https://aclanthology.org/P16-1200
https://aclanthology.org/N19-1423
https://aclanthology.org/D19-1371

Fig. 1. The overview of the linking model.

Fig. 2. The overview of the neural network based indexing model.

