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Abstract—Classifying scientific literature into an abstract set 

of topics requires leveraging various sources from the publication 

and external knowledge. In the BioCreative VII LitCovid track 

on COVID-19 literature multi-label topic annotation, we applied 

state-of-the-art deep learning based document classification 

models (BERT, variations of HAN, CNN, LSTM) and each with a 

different combination of metadata (title, abstract, keywords, and 

journal), knowledge sources, pre-trained embedding, and data 

augmentation techniques. Several ensemble techniques were then 

used to combine individual model outputs for synergized 

predictions. We showed that a class-specific average ensembling 

of the pre-trained and task-specific models achieved the best 

micro-F1 score in validation (90.31%) and testing (89.32%) sets 

in the experiments, beyond the medium (89.25%) and mean 

value (87.78%) of all 80 valid submissions. We summarize lessons 

learned from our work on this task.  
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I. INTRODUCTION 

COVID-19 literature is growing rapidly with over 10,000 
publications each month since spring 2020 (1). This large 
number of publications needs to be well curated for easy access 
by researchers and decision makers. The LitCovid project 
supports the curation of the literature and categorizes them into 
one of eight topics for easy browsing (1). This requires an 
automated annotation of the vast amount of growing literature. 

LitCovid track at BioCreative VII is therefore organized as 
a shared task for COVID-19 literature topic annotation (2-3). 
We experimented with various deep learning based methods 
leveraging different metadata, models, knowledge sources, 
embedding, and data augmentation techniques. We show that a 
class-specific average ensembling of pre-trained and task-
specific models produced the best results. We describe ours 
methods, results, and lessons learned in the following sections. 

II. METHODS 

We formalize the topic annotation task as a multi-label 
classification problem. Deep learning has been well adapted for 
multi-label classification (4-8). One of the earliest work is 
since 2006, showing the advantages of neural networks 

compared to other methods (4). Deep learning based multi-
label classification has been further applied to text 
classification in general (5) and for scientific literature and 
social texts (6), clinical notes (7-8), with superior results than 
conventional methods, e.g. Support Vector Machine (4, 6-7). 

Table I on the next page summarizes the deep learning 
models and their key characteristics we applied for the shared 
task on scientific (COVID-19) literature classification. Our 
team organized the participation as an internal hackathon and 
each of our five members aimed to explore a distinct set of 
approaches for scientific literature classification. The intuition 
is that, the more diverse the individual approaches, the better 
the overall results that could potentially be achieved with a 
good model ensembling strategy (9). We describe the 
characteristics of the individual methods below.  

A. Problem Formulation 

Deep learning aims to learn a document representation v 
and approximates it to the multi-hot representation y of the 
labels where y = [y1, y2, … , yn] and yi is a binary value (0 or 1) 
indicating the relevance of the label to the document (5). The 
multi-label classification model usually has a feedforward layer 
as its last layer which projects the document representation v to 

the logits s in the n-dimensional label space (s ∈Rn). A logistic 

sigmoid activation then casts the logits s into a multi-hot 
prediction y’. The binary cross-entropy is used as the loss 
function which quantifies the distance between y and y’ in a 
continuous manner. Alternatively, a common transformation of 
the multi-label problem is to treat it as n single multi-class 
classification problems. We denote the former multi-label 
formulation as ML and the multi-class formulation as MC. We 
follow the mainstream approach in the deep learning literature 
and used the ML formulation (5-8) for most of our methods.  

B. Data Preprocessing and Representation 

We focus on four aspects to pre-process and represent data.  

Metadata Used The title and abstract information are the 
most relevant sources for a human to annotate a publication. 
Most of our models used both sources. Keywords are a direct 
categorization of a publication, thus relevant to the topic 
annotations. Journal also indicates the discipline of the work. 



TABLE I.  SCIENTIFIC LITERATURE CLASSIFICATION METHODS AND THEIR CHARACTERISTICS APPLIED TO THE BIOCREATIVE VII LITCOVID TRACK 

Method 

ID 

Method Name Metadata 

Used 

Model Problem 

Formulation 

Data 

Representation 

Vocabulary or 

Knowledge Used 

Data 

Augmentation  

1 BlueBERT Title + abstract BlueBERT 

+ FFNN 

ML BlueBERT 

(fine-tuning) 

- - 

2 PubMedBERT-

MLP 

Title + abstract MLP (with 

ReLU) 

ML PubMedBERT 

(as features) 

- - 

3-4 JMAN and 

JMAN-BT 

Title + abstract JMAN ML CBOW from 

MIMIC-III 

discharge 

summaries 

(100dim) 

- w/ or w/o 

Back 

Translation (to 

German) 
5-6 HLAN and 

HLAN-BT 

Title + abstract HLAN ML - 

7-8 HAGRU and 

HAGRU-BT 

Title + abstract HAGRU ML - 

9-10 HAN and 

HAN-BT 

Title + abstract HAN ML - 

11 CNN Title + 

Abstract + 

Keywords 

Multi-

channel 

CNN (with 

ReLU) 

ML GloVe from 

Wikipedia 2014 

+ Gigaword 5 

(100dim) 

- - 

12 SJR-UMLS-

MeSH-MLP 

Journal + Title 

+ Abstract 

MLP (with 

ReLU) 

ML Bag of Words 

(921dim) 

Journal categories 

(SJR) + UMLS 

(MedCAT) + MeSH 

(E-utilities) 

- 

13 UMLS-Bi-

LSTM 

Title + 

Abstract 

Bi-LSTM + 

FFNN 

MC Sequence of 

UMLS 

concepts 

UMLS (SemEHR) - 

 
Vocabulary Used We extracted concepts or vocabularies 

from the title and abstract. We used MedCAT (10) and 
SemEHR (11) to extract the Unified Medical Language System 
(UMLS) concepts and used EFetch in E-utilities (12) to query 
concepts in Medical Subject Headings (MeSH) from databases. 
We queried the data from Scimago Journal & Country Rank 
(SJR) (13) to obtain the disciplinary categories of each journal. 

Data Representation Word embedding (e.g. Continuous 
Bag of Words (CBOW) (14) or GloVe (15)) and contextual 
embedding (e.g. BERT (16)) were used to represent the title 
and the abstract. We applied domain-specific language models, 
BlueBERT (17) and PubMedBERT (18), which have been pre-
trained from texts in PubMed. For the concept annotations and 
the journal categories, Bag of Words was mainly applied. 

Data Augmentation A key characteristic of multi-labelled 
data is class imbalance (19). Over-sampling with data 
augmentation is a key method to alleviate the issue of low 
frequent labels in imbalanced data. We used back translation 
(BT) for data augmentation, which automatically paraphrases a 
document after it being translated to another language (e.g. 
German) and back to English. The document-level semantics is 
not changed and the new document can share the same set of 
labels as the original document. We doubled the samples of the 
training documents for the na lowest frequent labels (na=3). 

C. Models 

The applied deep learning models include the large pre-
trained, self-supervised language models, e.g. BERT (16), and 
the task-specific models, e.g. HAN (20). The pre-trained 
language models like BERT significantly outperforms task-

specific models in a variety of tasks (16-17). But this is not 
always the case in the clinical and biomedical domain, e.g. 
multi-label clinical coding (8, 21).  

For pre-trained language models, we fine-tuned BlueBERT 
with a feedforward neural network layer (FFNN) (method 1) 
and used the second-last layer of PubMedBERT as features 
with a multi-layer perceptron (MLP) (method 2).  

For task-specific models, we applied Hierarchical Attention 
Network (HAN) (20) and its several variations, Joint Multi-
label Attention Network (JMAN) (6), Hierarchical Label-wise 
Attention Network (HLAN) (8), and Hierarchical Attention 
Gated Recurrent Unit (HAGRU) (22). HAN uses word-level 
and sentence-level attention mechanisms to learn to select the 
specific parts of a document for topic annotation. JMAN 
encodes each title and abstract separately, and models the 
attention on each sentence (in the abstract) that is guided by the 
title. HLAN and HAGRU models further have label-wise 
attention mechanisms which generate a distinct document 
representation for each label. HAGRU does not apply the 
label-wise word-level attention mechanism compared to 
HLAN. We also adapted the Convolutional Neural Networks 
(CNN) (23) with multiple channels (method 11), MLP with 
Rectified Leaky Unit (ReLU) activation (method 12), and 
Bidirectional Long Short Term Memory (Bi-LSTM) (method 
13) models for the task. 

D. Model ensemble strategy 

Model ensembling aims to derive a model of better 
performance by aggregating the results from different models. 
Ensemble learning has been applied to predict poor prognosis 



in COVID-19 with a data-specific strategy, e.g. choosing the 
most competent model for each patient (24). Instead, we 
applied a class-specific ensemble of the models (choosing the 
best models for each label). For each label, we selected the top-
k models with the best label-specific F1 score and then 
averaged the raw, continuous-valued predictions of each model 
to produce the final model. This simple averaging can help 
produce a model with lower variance compared to the 
individual models (9). We discovered that k as 5 produced the 
best validation results in our 13 models listed in Table I. 

We also experimented with other strategies on the 
validation set: a class-specific naïve ensembling approach that 
uses the best model for each class in terms of F1 (i.e. k=1); or 
class-agnostic averaging, i.e. averaging the top-k predictions of 
best micro-F1 scores of all labels; a class-agnostic averaging all 
of our models (i.e. k=13); and majority voting instead of 
averaging. Among them, the class-specific model averaging of 
top-5 models achieved the best micro-F1 on the validation set.  

III. EXPERIMENTS 

The overview of the BioCreative VII LitCovid track is in 
(3). We used the training, validation, and testing datasets from 
BioCreative VII LitCovid track on COVID-19 literature 
classification. There are 7 classes, sorted from the highest 
frequency to the lowest in the training set (with rounded 
frequencies in thousands): Prevention (11.1K), Treatment 
(8.7K), Diagnosis (6.2K), Mechanism (4.4K), Case Report 
(2.1K), Transmission (1.1K), Epidemic Forecasting (0.6K). In 
total, there are 24,960, 6,239, and 2,500 publication entries in 
the training, validation, and testing set, respectively. The PMID 
(PubMed ID), journal name (abbreviated), title, abstract, 
keywords, publication types, authors, and DOI were provided 
for each entry. We extracted UMLS, MeSH, and SJR 
vocabularies from the texts and journal names (see Vocabulary 
Used in Section B). For SJR-UMLS-MeSH-MLP (method 12), 
after filtering low frequent annotations, the final number of 
SJR, MeSH, UMLS concepts, and UMLS semantic types were 
70, 139, 597, 115, respectively, altogether 921 dimensions. 

We developed all of our models on the training set only and 
used the validation set for internal benchmarking and 
parameter tuning. We used the Microsoft Translator1 to back 
translate the training documents (titles and abstracts) which are 
associated with the 3 classes of lowest frequencies, i.e. Case 
Report, Transmission, and Epidemic Forecasting. This further 
provided us 3,736 documents for training. 

Our models were implemented using Tensorflow (version 1 
or 2) or PyTorch (for fine-tuning BlueBERT with Huggingface 
Transformers (25)). We also used BERT-as-service2 to extract 
the second-last layer of PubMedBERT. The maximum length 
for BERT models were 512, beyond 99.47% of training 
documents. The hidden sizes of the 4-layer MLP for method 2 
and 12 were [32,32,32,16]. The hidden size for the variations 
of HAN (methods 3-10) were 100. For CNN, all three channels 
were with static embedding; the kernel sizes were [4,8,12] and 
the number of filters was 32. The dropout rate for HAN 

                                                           
1 https://docs.microsoft.com/en-us/azure/cognitive-services/translator/ 
2 https://github.com/hanxiao/bert-as-service 

variations and CNN was 0.5. In method 13, the Bi-LSTM had 
2 layers and FFNN had 3 layers.  

TABLE II.  MICRO-LEVEL TESTING RESULTS OF SUBMITTED MODELS 

 Precision Recall F1 

Mean 0.8967 0.8624 0.8778 

Q1 0.8803 0.8452 0.8541 

Median 0.9108 0.8843 0.8925 

Q3 0.9251 0.8964 0.9083 

Individual model 

BlueBERT 0.8986 0.8850 0.8917 

Class-agnostic averaging 

top-k (k=5) 0.9184 0.8626 0.8896 

all (k=13) 0.9198 0.8501 0.8836 

Class-specific averaging 

naïve (k=1) 0.9183 0.8637 0.8901 

top-k (k=5) 0.9165 0.8711 0.8932 

TABLE III.  MICRO-LEVEL VALIDATION RESULTS OF SELECTED MODELS 

 

Precision Recall F1 

BlueBERT 0.8828 0.8990 0.8908 

PubMedBERT-MLP 0.8980 0.8673 0.8824 

JMAN 0.8927 0.8668 0.8796 

JMAN-BT 0.8725 0.8683 0.8704 

CNN 0.8686 0.7662 0.8142 

SJR-UMLS-MeSH-MLP 0.7364 0.7344 0.7354 

UMLS-Bi-LSTM 0.8080 0.8160 0.8120 

Class-specific ave. top-5 0.9128 0.8936 0.9031 

IV. RESULTS 

Our testing results in the LitCovid shared task are presented 
in Table II. Our best performance (89.32% micro-F1 score) was 
achieved by the class-specific averaging of the top-5 models 
(two BERT models and three HAN variations), better than the 
median, mean and lower quartile (Q1) of all 80 valid 
submissions to the shared task. Our result is below the upper 
quartile (Q3), which may be partly because our team did not 
include the validation set within the final training of models. 

Ensemble of models improved micro-level precision and F1 
over single models, with a slight drop of recall, compared to 
our best performing single model, BlueBERT (Table II-III). 
We can also observe in the testing results (Table II) that 
ensembling the best models for each class (class-specific) 
performed better than simply ensembling the models of best 
micro-F1 regardless of classes (class-agnostic). This is because 
for certain low-frequent labels, e.g. Transmission, models 
trained using augmented data with back translation performed 
significantly better (e.g. improved from 57.8% to 62.5% with 
JMAN for Transmission), but this was not the case for high-
frequent labels, e.g. Treatment.  



Table III also shows the validation results of selected 
models. The two BERT models (fine-tuning or as features) 
performed significantly better than task-specific models 
(JMAN and CNN). Titles and abstracts were the most relevant 
sources for topic annotation, compared to concept annotations 
(UMLS and MeSH), keywords, and journal categories. 

V. CONCLUSIONS AND LESSONS LEARNED 

In this paper, we described our deep learning models and 
their ensembling strategies for multi-label topic annotation of 
publications in the BioCreative VII LitCovid shared task. Our 
experimental results showed that a class-specific averaging of 
both pre-trained language models and task-specific models 
perform the best in terms of micro-level F1.  

We summarize our lessons learned based on the results 
above, which will empower our future natural language 
processing applications in the clinical and biomedical domain: 

Embrace pre-trained language models. The significantly 
better performance of BERT suggests us focusing on self-
supervised contextual embedding for document representation.  

Ensemble pre-trained language models with task-
specific models. Simply averaging the raw predictions of 
BERT models and variations of HAN achieved better micro-
F1. More advanced ensemble learning needs to be explored. 

Tackle challenging labels with data augmentation and 
domain knowledge. In this task, Transmission and Epidemic 
Forecasting were the two most challenging labels for all 
models. Data augmentation strategies were shown effective. 
Back translation significantly improved the performance of 
classifying the Transmission class. Detailed data analysis may 
further help understand the difficult labels. We suggest that a 
domain expert focuses on the two difficult labels to identify 
rules and ontology concepts to complement the BERT models. 
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