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Abstract—For multi-label classification of Covid articles we
present a modular system where the representation learning for
each class is performed by separate, independent modules that
occasionally interact. To further improve the performance of
the system, we also leverage specialized gazetteer lists using an
additional module. All of our submitted runs outperform the
competition mean and our best run performs well in terms of
marco-averaged F1 score.
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I. INTRODUCTION

BioCreative VII Track 5 concerns muti-label classification
of abstracts from Covid-related articles into 7 classes, namely:
Treatment, Mechanism, Prevention, Case Report, Diagnosis,
Transmission, and Epidemic Forecasting (1) and (2).

In a multi-label classification setting, a base network is
responsible for embedding the input for all classes, often
followed by a classification layer that uses this unified rep-
resentation. Although the classes might be related, different
classes often require focus on different parts of the input. We
suggest that decoupling fine tuning is effective.

To address the multi-label classification of Covid articles,
we use the multi-input RIM (mi-RIM) architecture (3), which
comprises M independent, yet interacting recurrent modules.
A cap can be set for the number of modules allowed to be
active at each time step, which leads to competition among
modules. As argued by (4), in competition, modules focus on
specific parts of the input and subsequently, on simpler sub-
problems.

Here we model a multi-label classification problem with
C labels as C independent binary classification tasks. The
representation learning for each task is performed by an
independent module in the mi-RIM architecture. Moreover,
we leverage external knowledge sources (specialized gazetteer
lists) injected in an additional independent module.

II. OVERVIEW OF MI-RIM

Multi-input Recurrent Independent Mechanisms (mi-RIM)
is a modular architecture that models a dynamic system by
dividing it into M recurrent units. The units are selective,
i.e they chose to use or ignore their input, and are able to
communicate with one another (3).

A. Input selection

Each module R,, augments the token input zj* to X" =
7" @0, where 0 is an all-zero vector and & denotes row-level
concatenation. Then, using an attention mechanism, unit R,,
selects input:
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where A" W 34Ty is the query, K,, = X"WkeY is the key,
and V,,, = XtW;jL“l is the value in the attention mechanism.
If the input z; is considered relevant to the task, the attention
mechanism in Equation 1 assigns more weight to it (selects
it), otherwise more weight will be assigned to the null input.
The softmaxz values of Equation 1 determine a ranking for
the modules and a subset S; of the k highest ranked units.
Among M units, those with the least attention on the null
input are the active units. The selected input A" determines
a temporary hidden state ﬁ;” for the active units:

A" = Ry (R 1, AT") m € S, )
where R, (hj*,, A7) denotes one iteration of updating the
recurrent unit 17, based on the previous state ;" ; and the
current input A;". The hidden states of the inactive units R,
(m ¢ Sp) remain unchanged (hy* = h}*; m ¢ Sy).

B. Interaction

To obtain the actual hidden states hj", the active units
communicate using an attention mechanism:
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where
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Both the key K; . and the value V; . depend on the tempo-
rary hidden states of all units, therefore h}" in Equation 3 is
determined by attending to all units.



C. Limit on active modules

A limit on active modules at each time step can be imposed.
Limiting the number of active modules at each time step does
not set an upper bound for the number of predicted labels and
the model can make positive predictions for all of the labels.

III. MULI-INPUT MULTI-LABEL RIM

Independent modules can effectively inject external knowl-
edge into neural nets (3). The configuration has to be matched
to the task. Here we use an independent module for each class
and one for injecting information from DrugBank and MeSH.

A. Gazetteer lists

We compile gazetteer lists from two expert curated on-line
resources: DrugBank' (5) and MeSH? (6).

a) Drug: names of drugs compiled from DrugBank

Example 1: Inhibition of IL-1 by Anakinra (ANK) is poten-
tially life-saving for severe CSS cases.

b) Therap: list of therapeutics compiled from subtree
E02 of MeSH

Example 2: ...to undergo Continuous Positive Airway
Pressure (CPAP) or  Non-Invasive Positive Pressure
Ventilation (NIPPV) due to ...

c) Diag: list of diagnostic techniques and procedures
from subtree E01.370 of MaSH

Example 3: ...including plain radiography, computed
tomography and magnetic resonance imaging, were per-
formed ...

d) Prev: list of terms relating to prevention and public
health practice from node N06.850.780 of MeSH

Example 4: ...and mass screening are the most common
non-pharmaceutical PHIs to cope with the epidemic

e) Trans: terms relating to disease transmission from
node N06.850.335 of MeSH

Example 5: This raises concern that health workers could
act as silent disease vectors

An embedding layer Fy,, € ROG+AD*20 encodes gazetteer
annotations in 20 dimensions. Each row in . embeds one of
the 5 gazetteer lists and an additional row encodes no gazetteer
matches.

B. Architecture

We use a mi-RIM with two sets of recurrent modules,
namely seven class modules and one gazetteer module.

Uhttps://go.drugbank.com/
Zhttps://meshb.nlm.nih.gov/tree View

a) Class modules: M. = {Ri,...,R7}, where each
module R,,, € M, is devised to fine tune for its corresponding
class. This enables differential embeddings of the same input
(e.g. focusing on different lexical triggers) for different classes.
Since the modules are independent, they can develop their
own expertise. We use the token representations (x1,...,Zr)
provided by ClinicalBERT? (7) as input to all class modules.

b) Gazetteer module: Recurrent module Rg is responsi-
ble to inject gazetteer annotations. The embedding layer E,.
provides input to this module.

A class module R,, interacts with other class modules
as well as the gazetteer module Rg and the hidden states

T, ..., hi are obtained by attending to the hidden states of
all other modules.

For each class module R,,, m € 1..7 we consider a
dedicated binary classifier f,,,. The input to the classifier is ob-
tained by applying attention to hidden states h}*,t =1,...,T
of module R,,:

H™ = softmax(wa Ko ) Vin 4

where K,,, =V, = [A]"®...®hJ] and wgy is a learnable
vector. Each module with a positive prediction adds it’s class
label to the overall multi-label prediction of the model. As
an example, if g3 = 1 and g7 = 1, the overall prediction is

[Treatment, Epidemic Forecasting].
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Fig. 1. An overview of the proposed system. Each class module (R1 — —R7)

is responsible to learn representations for its corresponding class

Figure 1 provides an overview over the system. We use
LSTMs for the class modules and a simple RNN for the
gazetter module. The model is implemented using PyTorch (8)

3HuggingFace: https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT
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Fig. 3. Gold=[Diagnosis, Treatment], Prediction[Diagnosis]

and optimized with the Adam optimizer (9) with Ir = 0.5e—5
for 5 epochs. Note that the overall classification loss is the sum
of the losses of all classifiers.

IV. RESULTS

We compare our system without the gazetteer module to a
baseline of ClinicalBert (7) and to the full system that also
includes the gazetteer module in Figure 2.

a) ClinBERT: For our baseline, we use the [CLS] token
of ClinicalBERT as the input to a classification layer with 7
neurons with Sigmoid activation. This is common practice for
multi-label classification problems

b) M_.: mi-RIMs for class modules M. only

¢) M.+ Mg: class modules and gazetteer module (the
full architecture)

A. Development phase

a) Numerical results: Table 2 reports performance on
the development set provided by the organizers. Although for
most of the classes, ClinicalBERT yields a relatively high
F1 score, the classes Transmission and Epidemic Forecasting
show inferior performances. In fact, the two classes are the
two least frequent classes in the training data.

All variants of the proposed system outperform the baseline
significantly and consistently, confirming previous observa-
tions made by (3) and (4). Moreover, limiting the number of
active modules (forcing the modules into competition) yields
further improvements.

Forcing the modules into competition focuses the modules
on different parts of the input and consequently specializes
them for their corresponding class. The gazetteer module M,
further improves the performance of the models, leading to

the best performance across all runs.

b) Activation patterns: Figures 3—-5 show activation pat-
terns of the modules for the best performing configuration
M.+ Mg (k = 3) for three different abstracts. As argued by
(10), the activation patterns can provide some insight into the
functioning of the model and explain why a prediction was
made, which can be used for error analysis.

Figure 3 shows the activation patterns for different snippets
of an abstract. The model makes a true positive prediction for
Diagnosis and a false negative for Treatment. The gazetteer
module Rg is active for the mentions of CTG (Cardiotocogra-
phy, a diagnostic technique), which supports the label Diag-
nosis. Module R is active for parts of the input such as CTG
parameter, observed in all CTG traces, and the CTG changes,
all related to class Diagnosis. This shows that the module has
specialized for classification of its corresponding class. The
module R; (responsible for class Treatment) however fails to
focus on the phrases optimise the maternal environment and
rectify CTG changes both indicating Treatment, explaining the
false negative for Treatment.

Another example of activation patterns is provided in Fig-
ure 4. For this example, the model predicts the label Treatment,
which is a true positive prediction. Module Rg (gazetteer mod-
ule) is active for a mention of drug (Tocilizumab) supporting
a prediction for the Treatment class. Moreover, module R; is
active for phrases “monoclonal antibody against” and “clinical
benefits in”, both further evidence for the Treatment class.

Figure 5 illustrates another activation pattern. In this exam-
ple, the model makes two true positive predictions (Transmis-
sion and Prevention) and one false positive prediction (Case
Report). The module Rj is active for the phrase “hand hygiene,
frequent cleaning and disinfecting” which is a strong indicator



Treat. (R1)
Mech. (R2)
Preven. (R3)
Case Rep. (R4)

Diag. (R5) -
Transmi. (R6)
Epid. (R7)
Gaz. (R8)

Tocilizumab
monoclonal
antibody
against

IL6

could
confer
clinical
benefits

in

patients
with

high

IL6

levels

Fig. 4. Gold=[Treatment] Prediction=[Treatment]

for the Prevention class, and consequently the model makes a
true positive classification. Moreover, the module Rg is active
for “Transmission was observed” which explains the true
positive prediction for class Transmission. Interestingly, the
module R4 (corresponding to the Case Report class) focuses
on the phrase “Transmission was observed from two of three
children”. This phrase could support the Case Report class,
and the model reports the corresponding label as one of the
predictions, nevertheless, the annotation does not report a label
for this class, and this prediction is considered as a false

positive.
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Fig. 5. Gold=[Transmission, Prevention], Prediction=[Transmission, Preven-
tion, Case Report]

B. Evaluation phase

The official competition result is provided in Table 6. Our
best performing run is the full system M. + M, with a cap
of k = 3 on the number of active modules.

macro micro
System k P R Fl P R Fl
M 7 82 .82 82 87 86 .87
¢ 3 82 83 82 87 86 .87
8 84 85 84 88 .89 .88
Me+ M, 3 84 86 84 88 .89 .88

Baseline (ML-Net) (11) | .83 .73 .76 .87 81 .84
Mean (all teams) | .86 .80 .81 .89 .86 .87
Std @ll teams) | .06 .07 .07 .05 .04 .04

Fig. 6. Official test results

The full system with gazetteer module outperforms the class
modules without gazetteers, further supporting the case for

knowledge injection. All our runs beat the official baseline in
recall and F1 and nearly tie for precision. Similarly, our best
run beats the competition mean in recall and F1, but not in
precision.

V. CONCLUSION

For the multi-label classification of abstracts from CoVID
related articles, the addition of external knowledge from dif-
ferent MeSH nodes is effective. The injection of the external
knowledge and a competitive system of seven classifiers for
seven labels is implemented in the architecture of independent,
interacting modules (mi-RIMs). The independence of the rep-
resentation learning components decouples the different labels
and allows them to specialize. Interaction additionally allows
them to benefit from each other’s hidden states.

The proposed system can be inspected trough visualization
of activation patterns, beneficial for inspecting system
behavior for individual samples, such as error cases
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