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Abstract—In Track-1 of the BioCreative VII Challenge partic-
ipants are asked to identify interactions between drugs/chemicals
and proteins. In-context named entity annotations for each
drug/chemical and protein are provided and one of fourteen
different interactions must be automatically predicted. For this
relation extraction task, we attempt both a BERT-based sentence
classification approach, and a more novel text-to-text approach
using a T5 model. We find that larger BERT-based models
perform better in general, with our BioMegatron-based model
achieving the highest scores across all metrics, achieving 0.74 F1
score. Though our novel T5 text-to-text method did not perform
as well as most of our BERT-based models, it outperformed those
trained on similar data, showing promising results, achieving 0.65
F1 score. We believe a text-to-text approach to relation extraction
has some competitive advantages and there is a lot of room for
research advancement.
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I. INTRODUCTION

The task of relation extraction, particularly for drug/chemical and
protein, can be useful for many applications. For instance, finding if
a chemical is a down-regulator or up-regulator of a protein can be
useful for drug discovery. Christopoulou et al. (1) show using relation
extraction for finding adverse drug events.

With this motivation, the DrugProt shared task in BioCreative VII
challenge/workshop is to find the relation between drug/chemical and
proteins from biomedical literature in PubMed. The task is to classify
drug/chemical and protein relation into 13 possible classes, where
the named entities of drug/chemical and proteins (candidates for the
relations) are provided as annotated.

There was a previous related ChemProt task (2), where the data
format and task are similar. DrugProt task has more data and the
relation annotations are more granular. Since the introduction of the
ChemProt task, Lee et al. (3) and many others have shown the
effectiveness of BERT (4) models pre-trained in-domain PubMed
data. In addition, Beltagy et al. (5) and Gu et al. (6) show the benefits
of in-domain vocabulary set learned from PubMed literatures.

Furthermore, Shin et al. (7) show the additional benefit of larger
model size with their BioMegatron models. Here, the authors show
that larger domain-specific language models outperform their smaller
out-of-domain counterparts on a variety of biomedical natural lan-
guage processing tasks. For our BioCreative VII Track-1 submission,
we first repeat the BioMegatron study with the given Track-1 data,
verifying the size and domain-specific hypothesis.

We then experiment with a novel text-to-text approach using
T5 (8). We convert the relation extraction task from sentence classi-
fication into a text-based question answering problem. We introduce
novel ideas such as multi-step question answering and question
balancing to improve performance.

Lastly, we use a model ensemble technique (9) to boost the final
performance of our submissions.

§In reverse alphabetical order - authors contributed equally.

II. DATASET, PRE-PROCESSING AND SOFTWARE

The DrugProt dataset (10) contains abstract, named entities of
drug/chemical and protein pairs. In the training and development
set, the relation annotation for the pairs are also provided. We
conduct minimal pre-processing where we (i) break the abstracts into
sentence-level, and (ii) sub-tokenize the words as in (4, 8).

We use Pandas data library 1 for pre-processing, and PyTorch-
based Megatron-LM (11) and NeMo 2 codebase for further pre-
processing, training, and testing.

III. BERT-BASED MODELS

Our BERT-based models use the widely adopted relation extraction
approach of annotating entities with special tokens and performing
sentence classification. Formulated as multi-class classification, there
are 14 total classes – 13 relation classes and an additional no-relation
class. We also try the recent advanced method of “matching the
blanks” (12) using open-sourced code (13), but find the benefits
of model size and a domain-specific pre-training corpus outweigh
the benefit of a novel training scheme.

Examples of converting the original text and dataset for multi-
relation sentence classification is shown in Figure 1. We break
each abstract into sentences and annotate entity pairs of interest
with special tokens to facilitate relation extraction as a sentence
classification task. We experiment with two slightly different entity
annotation schemes: (i) masking the entities with special chemical
and gene tokens (14), and (ii) surrounding the entities with chemical
and gene tags (15).

We attach a fully-connected layer to the final BERT pooling layer
for the classification. We experiment with {1, 2} number-of-layers
and {128, 256, 384, 512} number of hidden-units for the fully-
connected layer. Other hyper-parameters we experiment are: max-
sequence-length of {128, 256, 512}, dropout-rate of {0.1, 0.5, 0.9},
learning-rate of {5e-6, 9e-6, 1e-5, 5e-5}. We use Adam optimizer (16)
with cross-entropy loss and train for 5 to 40 epochs. The BERT-cased
vocabulary (4) is used due to the time limitation to conduct enough
experiments by the submission deadline.

Development set BERT-based evaluation results are shown in
Table I. Because the methods, vocabulary sets, and hyper-parameters
are not consistent, it is not a completely controlled experiment.
Nonetheless, we can observe the general trend of (i) domain-specific
models (BioBERT, BioMegatron) and (ii) larger model size contribut-
ing beneficially to improved performance.

IV. T5-BASED MODELS

While BERT-based models have been a standard for some time
now, more recent “text-to-text” or “prompting” based methods (8, 17)
have several advantages over transformer encoder language models
with additional task specific architectures. One of the most notable
advantages is the ability to perform multiple tasks without needing
distinct specialized layers for each task. Through this formulation,

1https://pandas.pydata.org/
2https://github.com/NVIDIA/NeMo



Fig. 1. An example converting the original text and dataset for multi-relation sentence classification into our BERT fine-tuning format. In the TreeLSTM
(14) format, we mask the entities of interest with special chemical (BC6ENTC) and gene (BC6ENTG) tokens, while masking other chemicals and genes not
under consideration with the special “other” token (BC6OTHER). False CPR:0 indicates there is no relationship between the two entities under examination
while True CPR:12 signifies the true relationship’s index is twelve, corresponding to ”product-of”. In these examples T1 indicates androstanediol, the first
entity to appear in the abstract, and T9 human type 12 RDH is the ninth entity in the abstract. In the SemEval2010 (15) format, we surround the entities of
interest with special chemical (<ec>human type 12 RDH</ec>) and gene (<eg>androstanediol</eg>) tags, leaving all other chemicals and genes found
in the sentence unannotated.

Fig. 2. An example of converting the original text and dataset into the text-to-text T5-base fine-tuning and evaluation format. The abstract is split into
sentences. Each sentence is transformed into a sequence of question and answer pairs: first, asking if a relationship between two specific entities is present
in the sentence, and second, prompting the model to predict the relationship if it indicated one exists.

every task can share the same cross-entropy minimization training
objective and the inductive bias learned about biomedical entities for
one task can possibly be transferred to another.

A further advantage is the potential for “zero-shot” or “few-
shot” learning (17). When tasks are expressed as text-based question
answering problems, with sufficient model capacity, text-to-text gen-
erative models can produce impressive results on multiple tasks with
little or no task-specific fine-tuning (18). Though we fine-tune on the
challenge data training set for this submission, we view this as the
necessary first step in working towards our end goal of few-shot or
zero-shot relation extraction.

Many natural language processing tasks have been successfully
reformulated as text-to-text tasks, such as text classification, natural
language inference, summarization, and reading comprehension. To
our knowledge there are no published studies to date that use a text-
to-text approach for relation extraction, although a prompting-based
approach using masked language modeling has been explored by Wei
et al. (19).

We use T5 (8) for our text-to-text approach. Figure 2 shows
an example of data conversion from the given biomedical abstract
and entity annotations into the T5 prompting input and output. The
abstract is split into sentences, and each sentence is turned into a

sequence of natural language questions and answers. We first ask the
model to identify if a specific relation is present in the sentence. If
there is, we ask it to predict the relation. We investigated different
prompt formats and empirically found this setup to yield the highest
scores. We fine-tuned an off-the-shelf T5-base model that was pre-
trained on general domain text via the methodology described by
Raffel et al. (8).

Evaluation results using T5 on the development set are shown
in Table I. A noticeable improvement is achieved by balancing
the positive and negative examples of sentences with and without
relations and then over sampling the number of negative examples in
the training set. Our best T5 model out performed our BERT-Base
with BERT-uncased vocabulary model and performed within 0.01 F1
score of our BERT-Base with cased vocabulary model. BERT-Large
models and BERT-Base models pre-trained on biomedical domain
data out-score fine-tuned T5, but perhaps with in-domain pre-training
and larger model capacity, T5 could further improve.

Recent studies (18, 20) show that model size needs to be suf-
ficiently large, such as having 5 billion parameters, in order to
achieve good zero-/few-shot performance. Since our T5 models were
relatively small (345 million parameters), we will definitely need to
increase model size for few or zero shot relation extraction to be



TABLE I
PRECISION, RECALL, AND F-1 SCORES OF T5 AND BERT MODELS ON THE DEVELOPMENT SET.

Model Method #Parameters Vocabulary Prec Rec F-1
BERT-base (12) 110m BERT-uncased 0.68 0.59 0.63

BioBERT-base (12) 110m BERT-uncased 0.71 0.67 0.69
BERT-base — 110m BERT-cased 0.77 0.58 0.66
BERT-large — 345m BERT-cased 0.74 0.70 0.72

BioMegatron — 345m BERT-cased 0.76 0.71 0.74
T5-base over sampling positive 345m BERT-uncased 0.36 0.78 0.49
T5-base balancing negative/positive 345m BERT-uncased 0.54 0.71 0.61
T5-base over sampling negative 345m BERT-uncased 0.67 0.63 0.65

feasible. Nevertheless, our results are encouraging.

V. MODEL ENSEMBLE AND FINAL TEST-SET SCORES

Model ensembling (9) is a widely used technique to increase the
final performance of machine learning models by combining multiple
models’ predictions, often averaging them.

For our final submission, we use an ensemble of different models
and attain noticeable improvement in evaluation scores on both the
development and test sets. We ensemble the models by taking a
weighted average of each model’s predicted probability vector then
selecting the argmax from this averaged vector as our final prediction.
This approach can work across a diverse set of models, even between
our BERT and text-to-text models. In fact, ensembling diverse models
is desirable because each single model’s unique prediction errors
can be overcome by generally low probability scores from the other
models in the ensemble, masking individual model mistakes.

We make four submissions in total. Ordered as in Table II, our
first submission is an ensemble of our fine-tuned BioBERT-Base and
best T5 models. Our second submission is from our best T5 model
alone. Third, we submit single model predictions from fine-tuned
BioMegatron. Finally, our fourth and best submission as an ensemble
of fine-tuned BERT-Base, BERT-Large, and BioMegatron.

TABLE II
FINAL PRECISION, RECALL, AND F-1 SCORES ON THE TEST SET.

Model(s) Prec Rec F-1
[BioBERT, T5]-ensemble 0.71 0.67 0.69
T5 0.64 0.58 0.61
BioMegatron 0.74 0.72 0.73
[BERT-base&large, BioMegatron]-ensemble 0.77 0.73 0.75

Table II shows the final official evaluation scores on the test set.
The best scores are achieved using an ensemble of multiple BERT-
base&-large, and BioMegatron models. Table III shows the final
official evaluation scores on the test set at a more granular level
for each relation type. Some relations with only a few samples in the
training data are generally difficult to classify correctly.

VI. LARGE-SCALE SUB-TRACK

For the large-scale track we did not perform additional model
development due to time constraints. We only remove pipelines
unnecessary for inference from our smallest BERT-base model. This
mostly includes convenience pipelines in PyTorch-Lightning. We then
run inference on four GPUs, dividing the dataset into four sub-parts.
Our resulting BERT-base model reports lower evaluation scores on
the development set. It is possible we lost some performance due
to lack of attention in model-stripping. Nonetheless, we finished
inference on the large-scale sub-track test data. The overall- and
granular- official evaluation scores for the large-scale sub-track are
shown in Table IV and Table V.

TABLE III
GRANULAR SCORES FOR EACH RELATION TYPE FOR TWO OF OUR

BEST-PERFORMING ENSEMBLE MODELS.

[BioBERT, T5] [BERT, BioMegatron]
Relation-Type Prec Rec F-1 Prec Rec F-1
ACTIVATOR 0.75 0.64 0.69 0.77 0.76 0.77
AGONIST 0.81 0.73 0.77 0.76 0.722 0.74
AGONIST-INHIBITOR 1.0 0.33 0.5 0.0 0.0 0.0
ANTAGONIST 0.84 0.87 0.85 0.85 0.92 0.88
DIRECT-REGULATOR 0.68 0.56 0.62 0.73 0.65 0.69
INDIRECT-DOWNREGULATOR 0.62 0.77 0.69 0.74 0.76 0.75
INDIRECT-UPREGULATOR 0.71 0.67 0.69 0.76 0.78 0.77
INHIBITOR 0.75 0.77 0.76 0.84 0.84 0.84
PART-OF 0.64 0.66 0.65 0.72 0.59 0.65
PRODUCT-OF 0.64 0.59 0.61 0.70 0.56 0.62
SUBSTRATE 0.63 0.46 0.53 0.68 0.53 0.59
SUBSTRATE PRODUCT-OF 0.0 0.0 0.0 0.0 0.0 0.0
AGONIST-ACTIVATOR 0.0 0.0 0.0 0.0 0.0 0.0

TABLE IV
FINAL PRECISION, RECALL, AND F-1 SCORES ON THE LARGE-SCALE

SUB-TRACK.

Model(s) Prec Rec F-1
BERT-base 0.73 0.33 0.46

VII. DISCUSSION

Our results confirm previous findings that larger models tend to
perform better than smaller ones, and models trained on domain-
specific text tend to perform better than those trained on general
domain data. For our BERT-based models, performance could po-
tentially be improved beyond what we reported here by using even

TABLE V
GRANULAR SCORES FOR EACH RELATION TYPE ON THE LARGE-SCALE

SUB-TRACK.

Relation-Type Prec Rec F-1
ACTIVATOR 0.69 0.35 0.46
AGONIST 0.74 0.40 0.52
AGONIST-INHIBITOR 0.0 0.0 0.0
ANTAGONIST 0.75 0.48 0.58
DIRECT-REGULATOR 0.66 0.19 0.30
INDIRECT-DOWNREGULATOR 0.71 0.35 0.47
INDIRECT-UPREGULATOR 0.70 0.43 0.53
INHIBITOR 0.81 0.45 0.58
PART-OF 0.60 0.15 0.25
PRODUCT-OF 0.62 0.23 0.33
SUBSTRATE 0.69 0.17 0.27
SUBSTRATE PRODUCT-OF 0.0 0.0 0.0
AGONIST-ACTIVATOR 0.0 0.0 0.0



larger BioMegatron models, which we did not have time to complete
and submit. For our T5 models, larger model size and pretraining on
in-domain text would likely improve performance. We also confirm
that model ensembling gives an additional performance boost, even
when model architectures are different (BERT- and T5- based).

Although our text-to-text based methods did not perform as well as
the largest BERT models we trained, their performance was similar
to or better than BERT base models pretrained on general domain
text. These results indicate that relation extraction can be successfully
framed as a text-to-text task, while also highlighting some challenging
aspects of the approach. In particular, we find that careful attention
should be paid to class balancing during fine-tuning and to the design
of prompts used for inference.

For the large-scale sub-track, we could only use our smallest
BERT-base model. Further improvement could be seen by applying
advanced model optimization techniques such as quantization and
pruning, allowing use of our larger models for the large-scale
inference task.

REFERENCES

1. F. Christopoulou, T. T. Tran, S. K. Sahu, M. Miwa, S.
Ananiadou, Journal of the American Medical Informatics
Association 27, 39–46 (2020).

2. O. Taboureau et al., Nucleic acids research 39, D367–
D372 (2010).

3. J. Lee et al., Bioinformatics 36, 1234–1240 (2020).
4. J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, arXiv

preprint arXiv:1810.04805 (2018).
5. I. Beltagy, K. Lo, A. Cohan, arXiv preprint

arXiv:1903.10676 (2019).
6. Y. Gu et al., ACM Transactions on Computing for

Healthcare (HEALTH) 3, 1–23 (2021).
7. H.-C. Shin et al., arXiv preprint arXiv:2010.06060

(2020).
8. C. Raffel et al., arXiv preprint arXiv:1910.10683 (2019).
9. G. Hinton, O. Vinyals, J. Dean, arXiv preprint

arXiv:1503.02531 (2015).
10. A. Miranda et al., Overview of DrugProt BioCreative VII

track: quality evaluation and large scale text mining of
drug-gene/protein relations, 2021.

11. M. Shoeybi et al., arXiv preprint arXiv:1909.08053
(2019).

12. L. B. Soares, N. FitzGerald, J. Ling, T. Kwiatkowski,
arXiv preprint arXiv:1906.03158 (2019).

13. https : / /github.com/plkmo/BERT- Relation- Extraction,
[Online; accessed 1-Sep-2021].

14. S. Lim, J. Kang, Database 2018 (2018).
15. I. Hendrickx et al., arXiv preprint arXiv:1911.10422

(2019).
16. D. P. Kingma, J. Ba, arXiv preprint arXiv:1412.6980

(2014).
17. P. Liu et al., arXiv preprint arXiv:2107.13586 (2021).
18. T. B. Brown et al., arXiv preprint arXiv:2005.14165

(2020).
19. X. Chen et al., KnowPrompt: Knowledge-aware Prompt-

tuning with Synergistic Optimization for Relation Extrac-
tion, 2021, arXiv: 2104.07650 (cs.CL).

20. J. Wei et al., arXiv preprint arXiv:2109.01652 (2021).


