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Abstract—In this paper, we describe our systems for the 

DrugProt task of BioCreative VII. This task is to automatically 

detect in relations between chemical compounds/drug and 

genes/proteins. First, we use KeBioLM pretrained language model 

as text encoders and replace the cross-entropy function with focal 

loss to alleviate the imbalance in relation samples. Then we run 

five times with different seeds to obtain our ensemble model. 

Experimental results on the test set demonstrate our ensemble 

model achieves the F1-score of 0.7419, which outperforms the 

mean results of this track by 0.1222. 

Keywords—biomedical relation extraction, multitask learning, 

fine-grained markers, ensemble learning  

I. INTRODUCTION  

 The BioCreative VII launches DrugProt track1 on automatic 
detection of drug/chemical interactions with genes, proteins and 
miRNAs, which is similar to ChemProt track of the BioCreative 
VI(1). These tasks are actually relation extraction (RE) task. 
Relation extraction is an important process to construct 
knowledge graph and aims to extract the semantic relation given 
entities. Traditional relation extraction includes rule-based 
methods (2) and feature-based engineering methods (3). Many 
researchers have recently proposed deep learning methods. Zeng 
et al. (4) first introduce entity position information into relation 
extraction. Multi-Level Attention CNNs (5) is proposed to use 
the attention in the input and used pooling layers to capture key 
information. Sorokin et al. (6) propose a contextual aware 
approach as other relations in the same sentence affect the 
judgment of given entity pair. The superiority of pre-trained 
language model has brought subversive changes to the 
improvement of the field of natural language processing. The 
output of BERT (7) is directly used to represent the word 
embedding, which can be fine-tuned or fixed according to the 
specific tasks. The BERT model has variants in the biomedical 
domain, such as BioBERT (8), SciBERT (9), BlueBERT (10), 
and PubMedBERT (11), which are trained based on different 
pre-training data. PubMedBERT proposes a new paradigm for 
domain-specific pre-training, using PubMed summaries to start 
training from scratch. KeBioLM(12) explicitly uses knowledge 
in UMLS2 and absorbs more biomedical information, 
outperforming other language models on named entity 
recognition and relation extraction of BLURB benchmark. 

In this paper, we employ BioBERT or KeBioLM as model 
encoder and define the input and output of  model encoder. We 
propose some strategies to enhance the model, such as multitask 
learning and relation attention. To alleviate the imbalance of 
different relations, we apply focal loss(13). Since the DrugProt 
track provides fine-grained gene entities, we proposed a simple  

and effective way to replace coarse-grained entity markers. This 
is an alternative approach to multitask learning, releasing from 
the tedious adjustment of hyperparameters. We run five times 
with different seeds and vote them as our ensemble model, 
which achieves precision, recall and F1-score of 0.7671, 0.7183, 
0.7419. Our ensemble model improves about 12.41% 
(precision), 8.92% (recall), 12.22% (F1-score) compared with 
the mean results of this track. 

II. ANALYSIS OF THE DATASET 

A. Preliminary Statistics 

We conduct preliminary statistics on the dataset of DrugProt 
track(14). TABLE I. presents the number of 13 types of 
interactions in the dataset. Surprisingly, we found an imbalance 
in the proportion of category instances. In the training set, the 
interactions with the largest number of instances have 5,392 
instances, while the interactions with the least instances have 
only13 instances. In addition, we also counted the interactions 
between CHEMICAL and GENE-Y/N. Note that GENE-Y and 
GENE-N are unified as GENE in the development set and test 
set. This detail will be applied to our model in the next section. 

TABLE I.  ENTITY TYPE PAIR ON THE TRAINING SET 

Relations  

 Entity Pair 

CHEMICAL-

GENE-Y 

CHEMICAL-

GENE-N 

PRODUCT-OF 677 244 

ANTAGONIST 687 285 

SUBSTRATE 1370 633 

ACTIVATOR 788 641 

INHIBITOR 3423 1969 

INDIRECT-

DOWNREGULATOR 
1048 282 

INDIRECT-

UPREGULATOR 
1052 327 

AGONIST 495 164 

PART-OF 617 269 

DIRECT-
REGULATOR 

1583 667 

AGONIST-

ACTIVATOR 
28 1 

AGONIST-
INHIBITOR 

6 7 

SUBSTRATE_PROD

UCT-OF 
21 4 

1 https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/track-1/ 
2 https://www.nlm.nih.gov/research/umls/index.html 



 

B. Construction of Negative Samples 

In general, many constructions of negative sample methods 
combine two entities with no interacting facts. However, too 
many negative samples will affect the distribution of samples. 
To make the best use of the negative samples, we revise the 
interval across the number of GENE entities for CHEMICAL 
entities. The interval represents the number of GENE crossed 
from the current CHEMICAL to GENE. Our experiments show 
that the interval [-10,16] performs best on the development set. 

III. METHODS 

In this section, we introduce our proposed methods in 
DrugProt task BioCreative VII. Meanwhile, we present the 
details of our proposed fine-grained entity markers replacement 
approach (FGEMR). Compared with multitask learning, 
FGEMR does not require tedious work on adjustment of 
hyperparameters.  

We employ BIOBERT and KEBIOLM as the encoder to 
obtain contextualized embeddings of instances. The relation 
statement 𝑟 = (𝑠, 𝑒1, 𝑒2) contains the sequence of tokens s and 
the entity span identifiers e1 and e2. Similar to PURE (15), we 
define the input encoding and the output relation representation. 

We introduce [𝑆: 𝑒1
𝑡𝑦𝑝𝑒

], [/𝑆: 𝑒1
𝑡𝑦𝑝𝑒

], [ 𝑂: 𝑒2
𝑡𝑦𝑝𝑒

] and [/𝑂: 𝑒2
𝑡𝑦𝑝𝑒

] 

and insert them on both sides of input entities. Accordingly, our 
relation representation is the concatenation of two output 

representations that correspond [𝑆: 𝑒1
𝑡𝑦𝑝𝑒

] and [ 𝑂: 𝑒2
𝑡𝑦𝑝𝑒

]. The 

representational learning framework is illustrated in Fig. 1. 

A. System1: Relation attention with BioBERT 

Relation attention mechanism focuses on the relation that is 
more relevant to a given sentence. In Pre-Processing phase, we 
obtain the relation definition and process as tokens sequences. 
For each relation, we put its definition into the encoder and take 
the embedding corresponding to [CLS]1 as the representation of 
the relation. The attention mechanism is adopted to get the 
relation-enhanced representation, this process can be written as: 

 𝑠𝑗
𝑟  = ∑ 𝑎𝑗

𝑇 ⋅ 𝑅𝑗∈𝐷𝑎𝑡𝑎  () 

 𝑎𝑗  = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑅 ⋅ ℎ𝑗
𝑇) () 

where 𝑠𝑗
𝑟  is the relation representation based on relation 

attention of the j-th instance in dataset. R is the matrix of the 

embeddings of the relations. ℎ𝑗
𝑇  is the relation representation of 

the j-th instance. 

B. System2: Multitask learning with BioBERT 

Multitask Learning proposed by Collobert et al. (16) aims to 
reduce the risk of over-fitting caused by noise through parameter 
sharing. Besides, the auxiliary tasks help the model focus on 
those features that are more important. We first choose entity 
classification as an auxiliary task because of its high correlation  

 
1 The sentence representation of BERT. 

 

 

Fig. 1. The representational learning framework of relation. 

 

Fig. 2. The framework of KeBioLM(12). 

with relation extraction task, which promotes feature interaction 
between the two tasks. Concretely, relation extraction and entity 
classification shared the same encoder. Then we use the start 
maker as the entity representation and modify the objective 
function of our model, 

 ℒ𝑎𝑙𝑙 = λℒ𝐹𝐿  + (1 − λ)ℒ𝑒𝑛 () 

where λ is a hyperparameter to balance the two terms. ℒ𝐹𝐿  is 
the focal loss function, and ℒ𝑒𝑛 is the loss function of the 

entity type classification task. 

C. System 3: Fine-Grained Entity Markers Replacement  

In section II, we learn that GENE-Y and GENE-N are 
unified as GENE in the development and test sets. GENE is a 
coarse-grained entity type, while GENE-Y and GENE-N are 
fine-grained entity types. We need to be consistent in training 
and testing whether we use coarse-grained entity types or fine-
grained entity types.   

Intuitively, fine-grained entity types are better at capturing 
the details of relation, so we use fine-grained entity types as the 
input marker. To obtain fine-grained entity types, we add an 
independent encoder for classifying GENE-Y or GENE-N. For 
entity type encoder, the input is a sequence of tokens with 
coarse-grained entity type markers. After that, we can easily 
acquire the fine-grained classification for GENE.  

 Finally, we replace all coarse-grained entity types with fine-
grained entity types, and the replaced sequence is the input of 
relation extraction encoder. It is worth noting that the objective 
function of entity type encoder is cross-entropy function since 
there has no obvious imbalance between the instances of GENE-
Y and GENE-N.



 

TABLE II.  RESULT OF MODELS ON BIOCREATIVE VII TRACK 1 DEVELOPMENT  TEST S

Encoder Model 
Development set Test set 

P R F1 P R F1 

BioBERT 

Baseline 0.752 0.77 0.761 NA NA NA 

Relation 

attention 
0.757 0.769 0.763 NA NA NA 

Mutitask 
learning 

0.773 0.76  0.766 0.7468 0.7065 0.7261 

FGEMR 0.766 0.766  0.766 0.7475 0.70 0.7229 

Ensemble 0.81 0.757 0.779 0.7782 0.6936 0.7335 

KeBioLM 
Baseline 0.781 0.756 0.768 NA NA NA 

Ensemble 0.792 0.776 0.784 0.7671 0.7183 0.7419 

 

D. System 4: Ensemble learning with KeBioLM 

KeBioLM extracts entities from PubMed abstracts and 

linked with UMLS. It applies the plain text coding layer to learn 

entity representation and the text-entity fusion coding to 

aggregate entity representation, and adds the loss of name entity 

detection and entity linking. Finally, we run five times on 

KeBioLM with different seeds to ensemble our systems. The 

framework of KebioLM is shown in Fig. 2. 

IV. EXPERIMENTS 

A. Implementation Details 

 We evaluate our model on DrugProt dataset(14), and take the 
BioBERTv1.11 and KeBioLM2 as the encoder, where the 
maximum length is 256, and the dimension of    embedding is 
768. The model applies AdamW optimizer (17) to perform 
gradient descent, trains for 10 epochs, and evaluate every 0.5 
epoch. The learning rate is set to 2e-5. The best checkpoint on 
the development will be saved and used for the testing phase 

 In order to solve the problem of serious imbalance of positive 
and negative samples, focal loss (13) reduces the weight of a 
large number of simple negative samples in training. Through 
analysis of the dataset, there is a large gap in the number of 
category instances. We use focal loss instead of cross-entropy to 
alleviate the phenomenon of sample imbalance. The focal loss is 
defined as follows: 

 ℒ𝐹𝐿 = −(1 − 𝑝𝑟)γlog(𝑝𝑟), () 

where γ is a hyperparameter to adjust the weight between simple 
samples and hard samples. 𝑝𝑟 is the probability distribution for 
relations. 

Model ensemble is to improve the generalization ability of 
models by fusing multiple models. The relation predictions use 
hard voting methods on five models, and our model further 
achieves better performance. 

 

Fig. 3. The analysis of hyperparameters. 

B. Results 

 TABLE II. shows the experimental results on the 
development set and test set. The first score is the result of the 
development set, and the second score represents the result on 
the test set. Our baseline introduces focal loss instead of cross-
entropy. FGEMR is the method that uses fine-grained entity 
markers replacement.   

Our ensemble model achieves F1-score 0.7419 on the test set 
and improves about 12.22% compared with the mean results of 
this track. The relation attention performs slightly better than the 
baseline and indicates that the attention mechanism can capture 
informative and subtle features which relate to gold relation. The 
F1-score of multitask learning improves 0.5% compared with 
the baseline on the development set as an auxiliary task with the 
entity type classification to learn more complicated features. 
Similarly, FGEMR leveraging fine-grained entity types gains 
competitive performance. Multitask learning is greatly 
influenced by hyperparameters, while FGEMR saves time and is 
free from manual tuning for hyperparameters. We believe that if 
it could take advantage of more fine-grained entity types, the 
performance of FGEMR would be better. 

We can see that BioBERT performs worse than KeBioLM 
for our baseline because KeBioLM explicitly uses knowledge in 
UMLS and absorbs more biomedical information. It implies the 
effectiveness of using knowledge graph during the training 
phase, especially for the biomedical domain. 

1 https://huggingface.co/monologg/biobert_v1.1_pubmed 
2 https://github.com/GanjinZero/KeBioLM 



 

C. Hyper-Parameter Analysis 

 Fig. 3 shows the F1-score among different γ and λ values, 
respectively. The hyperparameter γ adjusts the weight of simple 
samples. The focal loss degenerates to cross-entropy loss when 
γ  is set to 0, and the experiment illustrates 2 is an optimal 
solution. λ is a trade-off between relation extraction and entity 
type classification, and the model achieves the best performance 
when λ is set to 0.1. 

V. CONCLUSION 

In this paper, we have attempted some meaningful 
experiments for the DrugProt task of BioCreative VII. We apply 
KeBioLM pretrained language model as text encoders and use 
focal loss instead of cross-entropy loss to alleviate the effect of 
imbalance classes. Using model ensemble further improves the 
performance. Experimental results on the test set demonstrate 
our ensemble model achieves the F1-score 0.7419, which 
outperforms the mean results of this track by a large margin of 
12.22%.  
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