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Abstract—This paper describes our team's participation in
Track 1 of the BioCreative VII challenge to automatically detect
relations between chemical compounds/drugs and genes/proteins.
Here, we discuss the three contextualized language-based models
with different input representations: two general Bidirectional
Encoder Representations from Transformers (BERT)-based
models and a BioBERT-based model. Our best model for this
task achieved an overall Precision of 0.55, Recall of 0.52, and an
F1 score of 0.54 on the test set.
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I. INTRODUCTION

Biomedical literature connects several types of users,
including biomedical researchers, clinicians, and database
curators, as they share their findings in articles, patents, or
reports. However, the exponential growth of the literature
makes it difficult for users to retrieve information efficiently in
a timely manner. Therefore, there is an increasing need to
develop Natural Language Processing (NLP) systems to
automatically extract relevant information for users, reducing
the time it takes them to identify and extract the information
manually (1). NLP is an area of research focused on
developing algorithms to allow the computer to process and
analyze unstructured language. One such area is Relation
Extraction (RE), which identifies relationships between
entities in a text.

A considerable amount of existing systems focus on
recognizing mentions of genes/proteins and chemicals in text
automatically, but a limited number of approaches focus on
extracting interactions between them (2). Therefore, it is
necessary to study the different types of relationships of drugs
and chemical compounds with certain biomedical entities,
particularly genes and proteins, and their systematic extraction
to analyze and explore key biomedical properties in
biomedical applications (3).

In this paper, we describe our participation in the
Biocreative VII Track 1 (3), whose task is to automatically
identify the relationship between chemical compounds with
genes in biomedical literature. We explored three variations of
the Bidirectional Encoder Representations from Transformers
(BERT) architectures (5).

II. RELATED WORK

BioCreative VI Task 5 (2) introduced a similar task to
automatically detect relations between chemical
compounds/drugs and genes/proteins in PubMed abstracts,1

and they released a manually annotated corpus, the
CHEMPROT (2). Peng, et al. (11) developed an ensemble of
three systems: Support Vector Machine (SVM), Convolutional
Neural Network (CNN), and Recurrent Neural Network
(RNN). The output is combined using a decision based on
majority voting or stacking. Antunes, et al. (12) used a CNN
and a Bidirectional Long Short-term Memory (Bi-LSTM)
together with a very narrow representation of the relation
instances, using a few words from the shortest dependency
path and the respective dependency edges. Yuksel, et al. (13)
presented a CNN model and used word-embeddings and
distance embeddings to represent a potential relation. Sun, et
al. (14) proposed a novel Deep-contextualized stacked
Bi-LSTM model (DS-LSTM), which consists of deep
contextualized word representations, the entity attention
mechanism, and stacked Bi-LSTMs. Sun, et al. (15) proposed
a novel hierarchical recurrent CNN (Hierarchical
RCNN)-based approach to learn latent features from short
context subsequences efficiently. Liu, et al. (16) used CNNs
and attention-based RNNs, to extract chemical protein
relationships. Hafiane, et al. (17) explored various
BERT-based architectures and transfer learning strategies for
biomedical RE.

III. DATA

We evaluate our models on the Biocreative VII Track 1
DrugProt corpus (3). The training set contains chemical
mentions (46274), gene/protein mentions (43255), and
drug/chemical-protein/gene interactions (17288) from 3500
PubMed abstracts. The development and test set includes 750
and 10750 abstracts, respectively. Fig. 1. shows the Brat Rapid
Annotation Tool (BRAT) annotation of the entities and
relations of a sentence from the dataset.

Fig.1. An example of a BRAT annotated sentence from the training dataset

1 https://www.ncbi.nlm.nih.gov/pubmed/



Table I shows the number of instances for each relation
type in the training and development datasets.

TABLE I. RELATION TYPE STATISTICS OF DRUGPROT CORPUS

Annotated relations statistics

Training set Development
set

INDIRECT-DOWNREGULATOR 1330 332

INDIRECT-UPREGULATOR 1379 302

DIRECT-REGULATOR 2250 458

ACTIVATOR 1429 246

INHIBITOR 5392 1152

AGONIST 659 131

AGONIST-ACTIVATOR 29 10

AGONIST-INHIBITOR 13 2

ANTAGONIST 972 218

PRODUCT-OF 921 158

SUBSTRATE 2003 495

SUBSTRATE_PRODUCT-OF 25 3

PART-OF 886 258

TOTAL 17288 3765

IV. METHODS

In this section, we describe the three models we developed
for chemical-gene RE. Fig. 2. shows the architecture of our
overall system.

Fig.2. Architecture that represents our overall system

BERT is an NLP model introduced by Google in 2018 (4).
BERT is a transformer (8) that utilizes attention mechanisms
to learn the contextualized semantic relations between words
of a text. The encoder reads the input as the sum of token,
segmentation, and position embeddings. BERT is the first
deep bidirectionally trained language model that learns the
representation of a word based on its context. The general
BERT models are trained on a large corpus of English data:

Book-Corpus (800M words) and Wikipedia (2,500M words)
in a self-supervised manner to serve as a general-purpose
language representation model. In this work, we also explore
BioBERT, which is general BERT further pre-trained over a
corpus of biomedical research articles from PubMed abstracts
and article full texts for biological text mining tasks. There are
two BioBERT models: BioBERT-Base and BioBERT-Large.
BioBERT-Large is based on BERT-Large and has twice as
many layers as BERT-base.

To determine the relation between a chemical entity and a
gene entity, we first locate the sentence where the entity pair is
located. Next, we develop a representation specifically for that
entity pair as multiple entity pairs can be located in the same
sentence. We explore two different representations. Fig. 3.
describes the two representations for the entity pair
benzamidine-plasminogen (T1-T14) in (A). Representation B
shows the input representation where the non-targeted entity
pairs (genes plasmin and gp330) are removed from the input
representation. Representation C shows the input
representation where the entity pair is replaced with its
semantic type: benzamidine and plasminogen are replaced
with @Chemical# and @Gene#, respectively.

For our Model-1 and Model-2 (general BERT-based
models), we explore using general BERT-cased embeddings
into a simple feed-forward neural network. The key difference
between the Model-1 and Model-2 is the input sentence
representation. For Model-1, we remove the other entity pairs
in the input sentence except for the targeted entity pair. For
Model-2, to represent the entity pair in an input sentence, we
use the semantic type of an entity to replace the entity itself.
The modified input representation is passed through the
pre-trained general BERT-cased model. The output is fed into
a dropout layer and then a softmax layer for multi-class
classification (6). When there is no relation between a
chemical and gene/protein in a sentence, we treat it as an
instance of a ‘No-Relation’ class during the training. For our
BioBERT-based model (Model-3), we explore using
BioBERT embeddings into a feed-forward network for
multi-class classification. Like Model-2, we represent an entity
pair in a sentence by replacing the entities with the semantic
types (Fig. 3.C). The maximum input sequence length for the
Model-3 is 128. We trim the sentence from both ends if a
sentence is longer than the maximum sequence length. We
perform this by taking the midpoint between the two entities
and extending it by 64 tokens in both directions. We pass the
input into the BioBERT-Large model, and embeddings of the
[CLS] token are fed into a top model, consisting of a dropout
and softmax layers.

V. EXPERIMENTAL DETAILS

Here, we describe our experimental details.

Framework: Our code is open source and freely available at:
● https://github.com/synbioks/Text-Mining-NLP/tree/master/

relation-extraction/biobert_RE/models/pt,
● https://github.com/NLPatVCU/BioCreative-VII-Track1

https://github.com/synbioks/Text-Mining-NLP/tree/master/relation-extraction/biobert_RE/models/pt
https://github.com/synbioks/Text-Mining-NLP/tree/master/relation-extraction/biobert_RE/models/pt
https://github.com/NLPatVCU/BioCreative-VII-Track1


Fig. 3. Different representations of the input sentence used in our models. Model-1 utilizes the input representation B and the Models 2 & 3 utilize the input
representation C

Tokenization: We used spaCy and Scipy to extract input2 3

sentences and the BERT and BioBERT tokenizers to convert
the sentence into tokens.

Training parameters: We used a learning rate of 2e-5
(Model-1&2) and 3e-5 (Model-3) and a linear learning rate
schedule with 1/10th of the total training steps as a
warm-up. We used a batch size of 12 for the training in all
models. We applied early stopping to the training for both
BioBERT-based models (six epochs) and the BERT-based
models (15 epochs).

Downsampling: We downsampled the class that denotes no
relation between the entity pairs by 75% to overcome the
heavy class imbalance during the training in the
BERT-based models.

VI. EVALUATION CRITERIA

We evaluated our system using the DrugProt
evaluation library provided by the organizers. Our approach
was evaluated using micro-averaged Precision (P), Recall
(R), and F1 score (F). Precision calculates how many
instances are predicted correctly out of all instances, and
Recall calculates out of all the correct instances that should
have been predicted how many instances are correctly
predicted. F1 score is the harmonic mean of Precision and
Recall.

VII. RESULTS AND DISCUSSION

Here, we discuss the results of our three models on the
development and training sets. Table II shows the Precision,

3 https://www.scipy.org/
2 https://spacy.io/

Recall, and F1 scores for our three models on the
development and test sets. The bold terms indicate the best
F score of each class for development and test sets.

A. Results over the development set
We utilized the development set results to obtain the best

set of weights for our model. The results show that Model-3
(BioBERT-based model) outperformed the other two models
(general BERT-based models) except for two classes. Also,
we can see a decrease in performance when the number of
class instances decreases, especially the three classes
AGONIST-ACTIVATOR, AGONIST-INHIBITOR, and
SUBSTRATE_PRODUCT-OF, which have the lowest
number of instances. This is mainly because these classes do
not have enough instances to be differentiated from other
classes during training.

Compared to Models 1 & 3, Model-2 could predict
instances for the classes AGONIST-ACTIVATOR,
AGONIST-INHIBITOR despite fewer training instances.
We believe this is because we downsampled the
‘No-Relation’ (entity pairs with no relation between the
entities) due to the heavy class imbalance during training.
Downsampling and the input representation of the Model-2
improved the performance of the classes with few instances.

Overall performance of Model-2 is higher than Model-1,
but the Recall of Model-1 is higher than Model-2 for most
classes. We assume this is due to the difference in the input
representation of the models. Since Model-1 eliminates the
entities except for the targeted entities, the Recall is high.
We experimented with both general BERT-cased and
BERT-uncased, and we found that comparatively,
BERT-cased performed better.



TABLE II. PRECISION (P), RECALL (R), AND F1 SCORE (F) RESULTS FOR ALL MODELS OVER THE DEVELOPMENT AND TEST DATA.

Development set Test set
Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

P R F P R F P R F P R F P R F P R F

INDIRECT-DOWN
REGULATOR 0.48 0.69 0.57 0.62 0.67 0.64 0.75 0.73 0.74 0.44 0.57 0.50 0.50 0.72 0.59 0.67 0.72 0.70

INDIRECT-UPREG
ULATOR 0.33 0.64 0.44 0.58 0.66 0.62 0.76 0.78 0.77 0.34 0.63 0.44 0.49 0.68 0.57 0.68 0.75 0.71

DIRECT-REGULAT
OR 0.35 0.67 0.46 0.48 0.63 0.54 0.72 0.52 0.61 0.34 0.55 0.42 0.41 0.6 0.48 0.70 0.57 0.63

ACTIVATOR 0.32 0.61 0.42 0.53 0.63 0.58 0.78 0.75 0.77 0.47 0.61 0.53 0.56 0.74 0.63 0.79 0.70 0.74

INHIBITOR 0.50 0.82 0.62 0.65 0.83 0.73 0.86 0.83 0.85 0.53 0.75 0.62 0.61 0.78 0.69 0.81 0.79 0.80

AGONIST 0.43 0.63 0.51 0.67 0.68 0.67 0.74 0.75 0.74 0.49 0.67 0.57 0.58 0.63 0.61 0.73 0.65 0.69

AGONIST-ACTIVA
TOR 0.0 0.0 0.0 0.75 0.3 0.43 0.0 0.0 0.0 0.0 0..0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

AGONIST-INHIBIT
OR 0.0 0.0 0.0 0.25 0.5 0.33 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.33 0.50 0.0 0.0 0.0

ANTAGONIST 0.43 0.76 0.55 0.68 0.76 0.72 0.91 0.90 0.90 0.54 0.80 0.64 0.65 0.88 0.74 0.86 0.85 0.86

PRODUCT-OF 0.25 0.47 0.33 0.38 0.53 0.44 0.61 0.58 0.60 0.33 0.43 0.38 0.42 0.63 0.50 0.61 0.59 0.60

SUBSTRATE 0.31 0.69 0.43 0.44 0.69 0.54 0.72 0.76 0.74 0.42 0.44 0.43 0.38 0.53 0.44 0.61 0.55 0.58

SUBSTRATE_PRO
DUCT-OF 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0..0 0.0 0.0 0..0 0.0 0.0 0.0 0.0

PART-OF 0.31 0.45 0.37 0.46 0.41 0.44 0.76 0.68 0.72 0.40 0.38 0.39 0.39 0.49 0.43 0.71 0.61 0.66

0.39 0.69 0.50 0.56 0.69 0.62 0.78 0.74 0.76 0.33 0.45 0.38 0.46 0.54 0.48 0.55 0.52 0.54

Therefore, we assume the difference in the casing of the
words in the dataset played a role in determining the context
of the words. Also, we experimented with BioBERT-Base
and BioBERT-Large and found that BioBERT-Large
provided a performance improvement of 1.6%. Again, we
assume this is because BioBERT-Large is based on
BERT-Large, which has twice as many layers as BERT-base
and is trained over a more extensive biomedical-based
vocabulary.

B. Results over the test set
The observations from the results of the test set are

similar to the development set. Overall, Model-3
(BioBERT-based model) outperformed the other two models
except for one class. However, the overall results of the test
set are lower compared to the development set. Here, also
we can see a decrease in performance when the number of
class instances decreases. However, Model-2 could predict
all the positive instances correctly (Precision-1.0) for the
class AGONIST-INHIBITOR.

From the results of both the development and test sets,
Model-2 performed better than Model-1. Therefore, it is safe
to assume that replacing the entities with their semantic
types is an efficient way of representation than training with
the actual entity tokens. Furthermore, since the BioBERT is
pre-trained on biomedical articles, it gives more efficient
contextualized embeddings than the BERT trained on
general English. We believe this is why Model-3

(BioBERT-based model) outperforms the other two models
(general BERT-based models).

VIII. CONCLUSION

This paper presented three contextualized
language-based models, a BioBERT-based and two general
BERT-based models, to automatically detect relations
between chemical compounds/drugs and genes/proteins. We
evaluated our models on the DrugProt dataset and found that
the BioBERT-based model outperformed the other models.
From the results of both the development and the test set,
we can conclude that BioBERT embeddings represent the
tokens effectively when used on biomedical data. Also,
replacing the entities with their semantic types is an
effective unique representation of the input sentence.

Here, we use a simple neural network on the output of
the contextualized embeddings. In the future, we plan to
explore more complex deep neural networks with
contextualized embeddings, for example, Graph
Convolutional Networks (GCNs) (9). Traditional neural
networks perform well on euclidean data; however, they do
not handle non-euclidean data representations within
language well because the model considers the positional
information of the words. Therefore, utilizing GCN with
contextualized embeddings provides the flexibility of
language when expressing relationships between entities.
Also, we plan to explore Joint Learning for RE in the future.
Named entities are essential to extract relations, and named
entity recognition (NER) helps identify the entities in the



text (10). Therefore, simultaneously learning NER and RE
can be beneficial to capture such two different types of
information in the learning process.
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