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Abstract—Automatically extracting relations from scientific 

literature is a major task in biomedical text mining that is helpful 

in database curation. Particularly, the automatic extraction of 

chemical–protein interactions is relevant for accelerating drug 

discovery. This work describes the participation of the BIT.UA 

team from the University of Aveiro: we use PubMedBERT to 

create embedding representations for candidate pairs which are 

then forwarded through a neural network classifier. Our best 

system achieved a 0.7114 micro-averaged F1-score which is above 

the official mean by 9 percentage points. 
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I. INTRODUCTION 

Biomedical relation extraction (RE) aims to detect 
relationships between specific entities in the life sciences 
domain (such as chemicals, genes, and diseases). The automatic 
extraction of these interactions assists human experts during 
their manual curation labor and supports biomedical research. 
Particularly, finding interactions between drugs (chemicals) and 
genes (proteins) can be relevant for drug discovery, drug 
repurposing, and chemical health risk assessments (1). 

The BioCreative VII DrugProt (Track 1) challenge (2), 
similarly to the ChemProt initiative (3), promoted the 
development of RE systems that can identify interactions 
between drugs (chemical compounds) and GPROs (gene and 
protein related objects) in PubMed abstracts. In comparison to 
the preceding challenge, the DrugProt track organizers prepared 
a larger dataset and allowed the prediction of more relation 
types. Also, the organizers formulated an additional sub-track—
DrugProt Large Scale—where a much larger dataset containing 
more than two million PubMed records was built to call for 
teams that could deliver systems able to make predictions in 
large scale. Herein, we describe the methods from our 
participation in the main task (DrugProt) of BioCreative VII 
Track 1. Due to resource and time limitations, we did not apply 
our model in the DrugProt Large Scale dataset, but we aim to 
improve the robustness and execution performance of our 
system in future work. 

II. DATA 

In this section we detail the data used for development and 
official evaluation of our system. BioCreative VII Track 1 
organizers prepared the DrugProt corpus (2) which was built 
upon the existent ChemProt corpus (3). It contains PubMed 

abstracts annotated with chemical and gene entities, and their 
interactions. The DrugProt dataset has a total of 5000 
documents—where 2432 documents are from the ChemProt 
dataset and 2568 are new documents—and is split into three 
subsets: training, development, and test with 3500, 750, and 750 
documents respectively. However, at the time of the challenge 
the test subset was mixed with 10000 additional ‘background’ 
documents to fend against manual annotation. The training and 
development subsets were used for developing our model, and 
final predictions were made in the test subset to be evaluated 
officially by the organizers. 

For this task, entities are provided and participants must only 
focus on the RE problem. In the training and development 
subsets gold standard entities and relations are given, whereas in 
the test subset participants only have access to the entities, 
having to predict the relations. 

Table I presents statistics about the DrugProt dataset (only 
training and development subsets, since the test subset is mixed 

TABLE I.  DRUGPROT TRAINING AND DEVELOPMENT SUBSET STATISTICS. 

  Training Development 

Documents With no relations 1067 208 

 With one or more relations 2433 542 

Entities Chemical 46274 9853 

 Protein 43254 9005 

Relations Indirect-downregulator 1329 332 

 Indirect-upregulator 1378 302 

 Direct-regulator 2247 458 

 Activator 1428 246 

 Inhibitor 5388 1150 

 Agonist 658 131 

 Antagonist 972 218 

 Agonist-activator 29 10 

 Agonist-inhibitor 13 2 

 Product-of 920 158 

 Substrate 2003 494 

 Substrate_product-of 24 3 

 Part-of 885 257 
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with background records). It is noticeable that a significant 
number of documents do not contain any relation, yet these are 
useful to create negative instances (chemical–protein pairs 
without any relation) for training a machine learning model. The 
dataset comprises 13 relation types and is highly unbalanced 
(scarce relations include ‘Agonist-activator’, ‘Agonist-
inhibitor’, and ‘Substrate_product-of’). The ‘Inhibitor’ relation 
is the most frequent relation by a considerable margin. Around 
1% of chemical–protein pairs (231 out of 20804) were 
associated with two relation types, while most positive instances 
were only associated with one relation. 

III. METHODS 

In this section we describe our methods (pre-processing and 
deep learning approach) and the five submitted runs. A 
schematic overview of the base model architecture used in this 
work is provided in Fig. 1. We implemented the system in 
Python programming language using the TensorFlow and 
Hugging Face frameworks. 

A. Pre-processing 

The first step was to pre-process the PubMed records (each 
document only contained the title and the abstract). We 
performed sentence splitting using the scispaCy library (4) 
which is specific for biomedical, scientific and clinical text. To 
simplify the problem, we decided to target only chemical–
protein relations within the same sentence, since relations 
between entities from different sentences are rare in the dataset. 
Similarly, we ignored relations between overlapping entities, 
which are also scarce. Apart from overlapping entities, we 
considered all combinations between chemicals and proteins 
within the same sentence to create candidate pairs. 

We denote a sample as (𝑥, 𝑒1, 𝑒2) , where 𝑥  is the input 
sentence, 𝑒1  corresponds to the chemical entity and 𝑒2  to the 
protein entity. Note that it is possible to have different samples 
sharing the same input sentence, 𝑥 , when the sentence has 
multiple chemical–protein candidate pairs. We restricted the 
length of the input sentence to 256 tokens, and therefore left and 
right truncation is applied when the maximum length is 
exceeded (we centered sentences according to the position of the 
target entities). Also, if the target entities are not present within 
a span of 256 tokens, then the corresponding candidate pair is 
ignored. 

B. Problem formulation 

First and foremost, we provide a formal description of the 
problem and solution. Relation extraction can be defined as 
finding a function 𝑓 that maps each sample to a set of relations, 
𝑟 = 𝑓(𝑥, 𝑒1, 𝑒2) , where 𝑟 ⊂ 𝑅  and 𝑅  represents the set that 
contains all valid relation classes. We relied on neural networks 
to approximate 𝑓 and considered it as a composition of 𝑓𝑒 and 

𝑓𝑐 , thus 𝑟 = 𝑓𝑐(𝑓𝑒(𝑥, 𝑒1, 𝑒2)). More precisely, we denote 𝑓𝑒  as 

our encoder function, that aims to create a dense representation 
of the input which is then classified by 𝑓𝑐, our classifier function. 
Furthermore, in all our experiments we consider 𝑓𝑒  to be fixed, 
i.e., we do not train any parameter of 𝑓𝑒, and only 𝑓𝑐 is trained. 
An important note is that 𝑓𝑐 can be formulated as either a multi-
class single-label or multi-label problem: the former case 

requires the creation of an additional class for representing the 
absence of a relation, whereas the latter does not. 

C. Encoder 𝑓𝑒 

For implementing 𝑓𝑒  we considered the transformer 
architecture of BERT (Bidirectional Encoder Representations 
from Transformers) (5), more precisely the PubMedBERT 
model that, at the time of writing, presents state-of-the-art results 
in many biomedical downstream tasks including relation 
extraction on the ChemProt dataset (6). Furthermore, when 
feeding 𝑥  to the transformer model, we experimented different 
input and output strategies inspired by previous works (6, 7). 

1) Simple case 

The input corresponds to 𝑥 (no changes) and the output uses 
the [CLS] token and (or) the entities representations. 

2) Dummification case 

Chemical and protein mentions present in input 𝑥  are 
replaced with the special tokens $CHEMICAL and $GENE, 

respectively, and the output uses the [CLS] token and (or) the 

entities special token representations. 

3) Entity markers case 

We added a special token before ([E1]) and after ([/E1]) 

the chemical entity mention, and similarly we added [E2] and 

[/E2] before and after the protein mention; for the output we 

considered the same approach from the simple case 1) where the 
special tokens are also included. 

Note that in cases 1) and 3) an entity can be represented by 
multiple sub-tokens. Therefore, we compute the maximum or 
average pooling over all the sub-token representations to derive 
the final entity representation. 

After preliminary experiments we settled for the 
dummification technique since it presents a simpler and 
straightforward approach while being as competitive as the 
entity markers technique, and the output was fixed to the 
concatenation of the [CLS] token and the entities special token 

representations ($CHEMICAL, $GENE). 

Fig. 1. Overview of the base model architecture (BERT-MLP). Sentence 

example from PubMed identifier 1911436. 



D. Classifier 𝑓𝑐 

Regarding 𝑓𝑐, we considered three classifier variants, each 
with increasing complexity levels: 

1) Base 

The first variant consisted of a simpler approach, denoted 
here as ‘base’, which adopts a two-layer MLP (multi-layer 
perceptron) that outputs probabilities for each relation class. 

2) Attention 

The next approach, denoted ‘attention’, tries to find relation 
mentions directly on the input sentence by leveraging the 
searching capabilities of the multi-head attention 
mechanism 𝑀𝐴(𝑄, 𝐾, 𝑉) . More precisely, we firstly create 
relation class embedding representations using the textual 
definitions from the ChemProt annotation guidelines (the textual 
definition was fed to the transformer model and the resulting 
[CLS] token representation was used). Then, by considering 

each previously created class representation as queries, 𝑄, and 
the input sentence, 𝑥, as key and values, 𝐾 and 𝑉, we leverage 
the multi-head mechanism to create a new representation that 
condenses the input sentence information most related to our 
classes’ representations. The intuition behind this mechanism is 
to give the model an idea of what type of information we are 
looking for in each class. The resulting representation is 
concatenated with the [CLS] and entities representations, being 

then forwarded through a two-layer MLP to predict the final 
class probabilities.  

3) Last layer 
The final approach, denoted ‘last layer’, uses the same 

architecture from the first method, but the last layer of the 
transformer model is also trained, i.e., 𝑓𝑒  represents the 
transformer except for the last layer, and  𝑓𝑐 starts with this last 
layer of the transformer model followed by the MLP. 

Softmax and sigmoid activations were used for single-label 
and multi-label predictions, respectively. In both cases, we used 
class weights inversely proportional to class frequency, and we 
fine-tuned a multiplicative factor for the weight of the negative 
class which was set to 1.5. Additionally, we applied a further 
step to attempt a maximization of the F1-score metric by 
balancing precision and recall. For that, in the single-label 
approach we multiplied the predicted probability of the negative 
class by 0.60 (then, the class with the highest probability is 
chosen), whereas in the multi-label approach we set the 
prediction threshold to 0.40 (classes with predicted probabilities 
above this threshold are chosen). All these values were adjusted 
according to evaluation on the development subset during early 
experiments. 

E. Submitted runs 

We made five variants for submission which are detailed 
here. Runs 1 and 2 use the ‘last layer’ approach, Run 3 used the 
‘base’ approach, and Runs 4 and 5 used the ‘attention’ approach. 
Runs 1–4 were trained as a multi-class single-label classification 
problem, while Run 5 was trained as a multi-label classification 
problem. We used a batch size of 64 and a total number of 30 
epochs. In Run 1 only the training subset was used for model 
training, and the model from the best epoch on development 
subset was selected, whilst for Runs 2–5 the training and 

developments subsets were used for training and the model from 
the last epoch was used. Lastly, for each run we made an average 
of the predicted probabilities from four experiments using 
different random initializations. 

IV. RESULTS AND DISCUSSION 

Table II presents the official results shared by the organizers, 
including our five submitted runs and average statistics from the 
submissions of all participating teams. Our best method (Run 2) 
achieved a F1-score of 0.7114 which is above the mean 
performance by around 9 percentage points. Runs 1 and 2 had a 
close performance showing that using the development subset 
for monitoring (as validation data for selecting the best epoch) 
or as additional training data yields similar models. Our baseline 
system (Run 3) obtained the lowest performance (0.6059 F1-
score) but a balancing between precision and recall could prove 
beneficial, since recall is much higher than precision (0.7080 vs 
0.5296). Runs 4 and 5 obtained superior performance when 
compared to our baseline method (Run 3), demonstrating the 
effectiveness of using relation class embedding representations. 

From these results we conclude that training the last layer of 
BERT (Runs 1 and 2) brought a great performance 
improvement, surpassing our baseline model that did not train 
any BERT layer (Run 3) in about 10 percentage points. We 
hypothesize that training more layers from the BERT model 
could further improve system performance, but at a higher 
computational cost and risk of overfitting. 

Our multi-label system (Run 5) achieved 0.6628 F1-score, 
which is slightly below the similar yet single-label system (Run 
4) leading us to believe that predicting multiple relations for a 
candidate pair is hard and ends up hurting the performance. We 
suspect this is also because only a small number of pairs were 
associated with more than one relation type. 

Table III presents the detailed results from our best model 
(Run 2) with the metrics obtained for each relation type. The 
‘Antagonist’ and ‘Inhibitor’ relation types achieved the highest 
results with F1-scores above 0.80. Regarding rare relation types 
(Table I), the model was unable to find ‘Agonist-activator’ and 
‘Substrate_product-of’ interactions but was able to successfully 
predict  ‘Agonist-inhibitor’  relations  (0.6667  F1-score). At the  

TABLE II.  OFFICIAL RESULTS IN THE TEST SUBSET USING MICRO-
AVERAGED METRICS. THE BEST SCORES ARE HIGHLIGHTED IN BOLD. 

 Precision Recall F1-score 

Run 1b 0.6916 0.7298 0.7102 

Run 2 0.7003 0.7229 0.7114 

Run 3 0.5296 0.7080 0.6059 

Run 4 0.6623 0.6794 0.6707 

Run 5 0.6750 0.6510 0.6628 

Meana 0.6430 0.6291 0.6196 

SDa 0.1962 0.2473 0.2317 

aMean and SD (standard deviation) values calculated 

from the submissions of all teams. 
bThe same model achieved a 0.7139 F1-score in the 

development subset showing stable generalization.  



TABLE III.  OFFICIAL GRANULAR RESULTS, PER RELATION TYPE, OF OUR 

BEST PREDICTIONS (RUN 2). SCORES PRESENTED IN DESCENDING ORDER. 

 Precision Recall F1-score 

Antagonist 0.8363 0.9346 0.8827 

Inhibitor 0.7656 0.8392 0.8007 

Activator 0.7584 0.7425 0.7504 

Agonist 0.7576 0.7426 0.7500 

Indirect-downregulator 0.6295 0.7434 0.6818 

Agonist-inhibitor 0.6667 0.6667 0.6667 

Indirect-upregulator 0.6493 0.6751 0.6619 

Direct-regulator 0.6494 0.6433 0.6494 

Part-of 0.6023 0.6974 0.6463 

Product-of 0.6193 0.6022 0.6106 

Substrate 0.6391 0.5155 0.5707 

Agonist-activator 0.0000 0.0000 0.0000 

Substrate_product-of 0.0000 0.0000 0.0000 

 

of writing, we do not have access to the test subset relation 
statistics, but we suspect these scarce interactions appear only a 
few times and it is challenging for the model to successfully 
detect them. Concerning the remaining relation types, the model 
achieved F1-scores between approximately 0.57 and 0.75. 
Excluding the rare relation types, the model obtained the lowest 
F1-score in the ‘Substrate’ relation type which indicates the 
increased difficulty in predicting this interaction. 

V. CONCLUSIONS 

Our best method achieved a competitive performance, 
considerably above the official mean, which demonstrates the 
encoding ability of PubMedBERT for representing biomedical 
scientific text. However, during the development of our models 
many aspects were left aside with only a small number of 
preliminary experiments being carried out. Therefore, we 
acknowledge that various mechanisms can be further 
investigated. In future work, we suggest evaluating more 
thoroughly the impact of using entity markers (7) against entity 
dummification, exploring other encoder models such as 
BioELECTRA (8), and addressing the possibility of including 
cross-sentence relations and relations between overlapping 
entities. 

In this work, we used the tokens from the whole sentence for 
representing a chemical–protein candidate pair. However, a 
different approach would be to use only the tokens from the 
shortest dependency path between the chemical and protein 
entities, which has been a traditional technique in relation 
extraction—this approach proved valuable in our past work on 
the ChemProt task (9). 

An important aspect of a RE system is the trade-off between 
the quality of its predictions and its computational performance, 
since prompt automatic predictions may be required for user 
interaction. Following this idea, an interesting research direction 
would be to make our system less resource-hungry and more 
scalable to be applied to the DrugProt Large Scale dataset. 
Finally, a more realistic scenario is the case where the system 
would only have access to raw text, with gold standard entities 
not being provided. As such, we leave for future work the 
development of an end-to-end approach, using joint learning, for 
entity and relation extraction. 
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