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Abstract—For the task of relation extraction between chemicals
and genes we report on the potential of dependency relations.
Entities of interest are explicitly marked in our input. All our
runs outperform the competition mean (.61) and our best run
yields a F1 score of .67.
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I. INTRODUCTION

This paper describes the CLaC submission to BioCreative
VII Track 1: Drug-Prot relation extraction (4). The Drug-Prot
track involves finding possible relations between a set of pre-
annotated chemicals and genes or gene products. In the case of
a relationship between a chemical and a gene, the relation has
to be classified into one of the 14 categories listed in Figure 1.
Figure 2 illustrates gold standard annotations for an instance
of the DIRECT-REGULATOR relation between the chemical
NCFP and the gene mGlu5. Note that no relation should be
reported for the pair CPPHA and mGlu5.

To address the task, we explicitly feed the two entities of
interest along with the sentence as input to ClinicalBERT
and use the CLS token in a modular model that leverages
dependency relations.

None | PART-OF | ACTIVATOR | INHIBITOR
INDIRECT-DOWNREGULATOR | DIRECT-REGULATOR
INDIRECT-UPREGULATOR | ANTAGONIST
AGONIST-INHIBITOR | AGONIST-ACTIVATOR | AGONIST
SUBSTRATE | PRODUCT-OF | SUBSTRATE PRODUCT-OF

Fig. 1. 14 relation types for Drug-Prot task
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Fig. 2. An example of two chemical mentions, one gene mention, and an
instance of a DIRECT-REGULATOR relation

II. SYSTEM DESCRIPTION

A. Preprocessing

We process the abstracts using a GATE pipeline (9). The
text is tokenized using ANNIE English tokenizer (the alternate

version) and for sentence splitting the ANNIE sentence splitter
is used. It should be noted that we merge all tokens in the span
of a chemical into a single token.

B. Multi-input RIMs

Multi-input Recurrent Independent Mechanisms (mi-RIMs)
is a modular architecture that comprises M recurrent modules
(2). The modules can enter into competition mode by forcing
only k of them to be active at each time step. In addition to
competition, the modules are able to interact with one another.
At each time step, the module attend to each others hidden
states and update their hidden state accordingly.

C. Input configuration

a) Marking entities in input: Considering an input sen-
tence Si and a chemical-gene entity pair (Chemk, Genej),
we construct an input for ClinicalBERT (1) that explicitly
identifies the entities of interest as

[CLS] Chemk [SEP] Genej [SEP] Si

as exemplified in Figure 3.

D. Task specific representation learning

We use a mi-RIM with two recurrent modules R1 and
R2. The module R1 is a simple LSTM unit operating on
ClinicalBERT embeddings and R2 is a Graph-LSTM (5)
that encodes dependency information using a bi-directional
recurrent architecture. The forward pass encodes all of the
dependencies from a dependency parse where the dependent
follows the governor, and the backward pass encodes those
dependencies, where the dependent precedes the governor in
the input sequence (see Figure 4). At time step t the input to
the recurrent module is the token at position t as well as the
hidden states at all time steps corresponding to its governors.

We use the Stanford Parser (3) for extracting dependency
relations.

E. Classification

We use the [CLS] token of ClinicalBERT as well as all
hidden states of module R1 to classify the input for its relation
type. During inference time, we do not report the pairs for
which no target relation is predicted.
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Fig. 3. A multi-input RIM with one LSTM on ClinicalBert embeddings (top) and a Graph-LSTM encoding dependency relations over the same embedding
input (bottom) for a forward pass
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Fig. 4. Graph-LSTM model for encoding dependency relations

F. Training paradigm

Only a small fraction of chemical-gene pairs in a sentence
actually realize one of the target relationships and the system
should not predict any of the 13 target relation types for pairs
that have no relations. We introduce the None label to specify
all unrelated pairs.

Suppose Ci and Gi are the set of chemical and gene
entities in sentence Si, respectively. We calculate the cross
product Ci × Gi for all chemical-gene pairs. Pairs for which
the training data does not report a label are considered
unrelated pairs (i.e. assigned our None label). Consider, for
example, the set of chemicals C = {NCFP,CPPHA}
and the set of genes G = {mGlu5} in Figure 2. C ×
G = {(NCFP,mGlu5), (CPPHA,mGlu5)} specifies all
possible pairings where (NCFP,mGlu5) = DIRECT −
REGULATOR and (CPPHA,mGlu5) = None.

Since the None labels far outnumber other labels we have
to address the imbalance issue. We randomly drop out (with

a probability p = 0.5) those pairs whose label is None, i.e.we
do not use them for calculating loss. All pairs with labels
other than NONE are used for training.

We train the proposed system for 10 epochs using Adam
optimizer (6) with lr = .1e− 5. The PyTorch library is used
for implementations (7).

III. RESULTS

A. Development phase

Figure I reports the performance of the proposed system on
the development set provided by the organizers. We note that
the size of the development set (750 abstracts) is significantly
smaller than the training (3499 abstracts) and test sets (10750
abstracts). We report the results for two variants of the
proposed model, ClinBERT (single LSTM on ClinicalBERT
without dependencies) and +Dep (one LSTM on ClinicalBERT
plus a Graph-LSTM encoding dependencies).

Adding the dependency module leads to consistent improve-
ments across all classes for precision and recall.

TABLE I
RESULTS ON DEVELOPMENT DATA

ClinB (k = 1) +Dep (k = 1) +Dep (k = 2)
Relation type P R F1 P R F1 P R F1
ACTIV .75 .54 .64 .80 .58 .67 .81 .62 .70
AGONIST .68 .62 .65 .70 .65 .67 .71 .67 .68
AGONIST-INHIB .00 .00 .00 1 .50 .66 1 .50 .66
ANTAGONIST .72 .77 .74 .76 .78 .77 .77 .78 .78
DIRECT-REGU .60 .60 .60 .65 .61 .63 .65 .63 .64
IND-DOWNREG .67 .66 .66 .72 .68 .70 .73 .69 .70
IND-UPREG .73 .62 .67 .76 .63 .69 .76 .65 .70
INHIBITOR .74 .81 .77 .76 .82 .78 .77 .85 .80
PART-OF .59 .56 .57 .65 .59 .61 .65 .62 .63
PROD-OF .50 .54 .51 .54 .55 .55 .55 .57 .56
SUBS .52 .68 .58 .58 .69 .63 .70 .65 .67
SUBS PROD-OF .00 .00 .00 1 .66 .80 1 .66 .80
AGONIST-ACTIV .00 .00 .00 .80 .40 .53 .80 .40 .53
Mirco-average .66 .68 .66 .70 .69 .69 .72 .71 .71



For the classes AGONIST-INHIBITOR, AGONIST-
ACTIVATOR, and SUBSTRATE PRODUCT-OF, adding the
dependency module leads to significant changes in scores.
This is due to the fact that these classes are rare. For
instance, of 3761 annotated relations only 10 are of type
AGONIST-ACTIVATOR and any correct prediction leads to
a sizeable improvement in the score.

Overall, limiting activation to one active module does not
lead to performance gain in this system configuration, neither
on the development set nor the test set.

a) Error analysis:

Example 1 shows two instances of the chemical rifampicin
({T3, T4}) and one instance of the gene nuclear pregnane
X receptor ({T11}). Consequently, the system considers two
candidate pairs (T3, T11) and (T4, T11). All three variants of
the system classify both pairs as ACTIVATOR. Note that the
trigger word activates suggest this classification. However,
only the prediction for (T4, T11) is correct and the gold
label for (T3, T11) is reported as AGONIST-ACTIVATOR. We
consider the basis of this classification to lie outside the sample
sentence that requires additional lexicalization or expertise.

Example 1:
In general, rifampicinT3 can act on a pattern:
rifampicinT4 activates the nuclear pregnane X
receptorT11

Example 2 on the other hand shows a correct classification
due to the dependency module. The pair (T7, T22) belongs
to the AGONIST-ACTIVATOR relation. Note that the two
entities are far apart in the sentence. We observed that in such
cases, the ClinicalBERT model fails to provide correct pre-
dictions and often predicts no relations (None). This confirms
the observations made by studies such as (8) that BERT-like
models often fail to capture long distance dependencies.

Example 2:
In conclusion, fenoterol-induced constitutive
beta(2)-adrenoceptorT22 activity reduces muscarinic
receptor agonist- and histamine-induced
contractions of bovine tracheal smooth muscle,
which can be reversed by the inverse agonist
timololT7 .

Our experiment shows that explicit dependency information
can overcome that tendency in ClinicalBERT. On the
development data, adding the dependency module did not
result in performance loss (exception: recall for SUBS).

A majority of sentences in the training data include several
entities. Example 3 shows a sentence that includes two
mentions of chemicals {T1, T11} and two mentions of genes
{T12, T13}. For this example, the set of all possible pairs is
{(T1, T12), (T1, T13), (T11, T12), (T11, T13)}, among which
only (T11, T12) and (T1, T13) have ANTAGONIST relation

and no relation (None) should be reported for the other two
pairs. The two variants ClinB (k = 1) and +Dep (k = 1)
classify all pairs as ANTAGONIST, however, +Dep (k = 2)
successfully classifies those pairs that have no relations.
While not fully realized on the test set, this potential of
dependencies to filter out unrelated pairs is interesting.

Example 3:

In the hot-plate test in mice, the antinocicep-
tive action of the alpha 2-adrenoceptorT12 ago-
nist, UK 14,304T11 , was abolished by the alpha
2-adrenoceptorT13 antagonist, idazoxanT1 . . .

B. Evaluation phase

The official competition results are provided in Figure II. All
of our submissions significantly outperform the competition
mean micro-average. The competition results, however, are
not commensurate with development results. As expected, the
dependency relations improve precision, however, a significant
drop in recall offsets the gains.

TABLE II
OFFICIAL COMPETITION RESULTS

ClinB (k = 1) +Dep (k = 1) +Dep (k = 2)
Relation type P R F1 P R F1 P R F1
ACTIV .75 .68 .71 .72 .71 .72 .72 .71 .72
AGONIST .69 .68 .69 .77 .69 .73 .77 .69 .73
AGONIST-INHIB .00 .00 .00 .50 .33 .40 .00 .00 .00
ANTAGONIST .73 .84 .79 .72 .84 .77 .72 .84 .77
DIRECT-REGU .58 .58 .58 .61 .55 .58 .61 .55 .58
IND-DOWNREG .63 .75 .68 .73 .60 .66 .73 .60 .66
IND-UPREG .68 .62 .65 .64 .54 .59 .64 .54 .59
INHIBITOR .74 .81 .78 .78 .74 .76 .78 .74 .76
PART-OF .50 .58 .54 .61 .43 .51 .61 .43 .51
PROD-OF .44 .68 .53 .60 .57 .59 .60 .57 .59
SUBS .51 .59 .54 .52 .49 .50 .52 .49 .50
SUBS PROD-OF .00 .00 .00 .00 .00 .00 .00 .00 .00
AGONIST-ACTIV .00 .00 .00 .00 .00 .00 .00 .00 .00
Micro-average .64 .70 .67 .68 .63 .66 .68 .63 .66

Competition Mean .64 .62 .61
Competition Std .19 .24 .22

IV. CONCLUSION

Injecting dependency information through one of two
LSTMs in the multi-input RIM architecture for the task
of relation extraction between chemicals and genes showed
promise on the development data but failed to produce our
best run in competition on a test dataset much bigger than
the training dataset. Interestingly, injecting dependencies led
to improvements in precision, but to a larger loss in recall. The
baseline ClinicalBERT system performed, in contrast, almost
identically on development and test sets.
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