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Abstract—Team “Catalytic” submitted two system runs to the
DrugProt Main Track competition. First, as a strong baseline, we
reimplemented BioBERT (1) in PyTorch. Second, noting poor
performance of the BioBERT system when drugs and proteins
were distant from one another in the sentence, we implemented a
syntactically-guided bidirectional LSTM (Syn-BiLSTM)
classification model (2) using the sequence of tokens along the
shortest path between the entities in a dependency parse of the
input sentence. The Syn-BiLSTM is trained as a classifier on this
sequence using the final hidden states in the forward and
backward directions. Evaluating as a classifier that predicts
either a null interaction or one of the 13 specific interaction types,
we show that the BiLSTM is more accurate than BioBERT at
longer distances, while preserving accuracy at shorter distances,
and, in a precision/recall evaluation setting, scores higher in
precision and F1, although lower in recall. Additionally, we
surpass the overall mean system precision and F1 performance as
reported in the BioCreative VII official evaluation (3). Neither of
our systems makes any explicit use of ontologies, gazetteers, or
any other distillation of scientific knowledge about drug-protein
interactions, but we anticipate that using such information would
improve performance. The only heuristic constraints on entity
interactions is that we assume interactions occur within
(auto-detected) sentence boundaries. Finally, we discuss specific
interaction type performance, its potential impact in a practical
system, as well as future directions for research.
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I. INTRODUCTION

The life sciences literature is vast and growing
exponentially year over year, necessitating automated means
of surveying the changing landscape of medical facts, such as
interactions between drugs and genes and their protein
products. Here we describe the system submissions of Team
“Catalytic” for the BioCreative VII DrugProt Main Track (3),
which, following the ChemProt task (4), seeks to test the state
of the art in detecting fine-grained drug/chemical interactions
with genes and their protein products (henceforth,
“drug-protein interactions”) from scientific publication texts.

We submitted two system runs:

● A PyTorch reimplementation of the BioBERT system
(1). BioBERT is a standard BERT transformer-based
sequence classifier (5), but where two whole
named-entity phrases (here a chemical/drug entity and

a gene/protein entity) are masked with special tokens,
“@CHEM#” and “@GENE#”. The system is then
trained to classify the whole sequence using the
special “[CLS]” token’s activation vector which is
passed through a linear classification layer. Error
gradients are propagated back through the whole
network, from the classification layer down through
the underlying BERT network.

● Preliminary analysis of the BioBERT system results
on a held-out portion of the development set revealed
that classification accuracy drops considerably as
character distance between drug-protein pairs
increases (see Results). Because of this, we explicitly
parse each input sentence and follow the parse path
between the drug-protein entity pairs, emitting the
token vectors along the way as features to a
bidirectional LSTM classification model (2).

Evaluating as a classifier that predicts either a null
interaction or one of the 13 specific interaction types, we show
that the BiLSTM is more accurate than BioBERT at longer
distances, while preserving accuracy at shorter distances, and,
in a precision/recall evaluation setting, scores higher in
precision and F1, although lower in recall. Additionally, we
surpass the overall mean system precision and F1 performance
as reported in the BioCreative VII overview (3).

Neither system uses named entity resolution, ontologies,
gazetteers, tables of known drug-protein interactions, or any
form of extra scientific knowledge such as drug or protein
structural information. Incorporating such information—either
directly as a rule-based decision process, or indirectly as
features to the classifiers—would likely improve performance.
The only heuristic constraints on entity interactions are that
interactions are assumed to occur within (auto-detected)
sentence boundaries. We discuss implementation details
further in the Methods Section. We give results and further
analyze performance in the Results and Analysis section, and
discuss improvements and future research directions in
Discussion.

II. METHODS

Here we give more details about data preprocessing, as
well as architectural and training details of our two submitted
systems. We refer the reader to the official DrugProt report for
more details about the dataset, annotation guidelines, etc. (3).



A. Data and Preprocessing
The DrugProt data (3) consists of 3,500 training abstracts

and 750 development abstracts. In each of these datasets, drug
and protein named entities have been manually marked up
with character boundaries, and drug-protein interactions (if
any) are manually annotated. The test set consists of 10,750
abstracts, of which only 750 are intended for evaluation. The
identities of these 750 abstracts (in which entity and
interaction type labels are annotated manually) were withheld
from participants, as were the gold-standard relation labels.
We further subdivided the development data into a
development tuning (for measuring progress during training)
and development test (for blind testing and analysis). We split
out approximately 20% of the development abstracts into the
dev-test subset in a grouped (by abstract ID), stratified (by
relation and entity type) fashion. For this, we used a modified
version of the code here:
https://github.com/joaofig/strat-group-split

Each abstract was split into sentences using spaCy (9),
except in cases where named entities would cross sentence
split boundaries or (in the training and development sets only)
where pairs of named entities that are labelled with an
interaction would be separated into two auto-detected
sentences. The training and development events are comprised
of (1) each pair of entities that are labelled with an interaction
type (AGONIST, INHIBITOR, etc.), as well as (2) all
drug-protein pairs that are co-mentioned in the same sentence
but that were not labelled as interacting. The latter cases are
given the implicit null label, “NEGATIVE”. At test time, all
drug-protein pairs in each auto-detected sentence, are
classified with either an interaction label or NEGATIVE.
When submitting responses for the official evaluation, we
simply did not produce a label for any drug-protein pair that
was classified as having a NEGATIVE interaction type.

Table I gives the summary statistics for each dataset
(training, dev-tuning, dev-test and test). In this table, only
sentences that have at least one drug-protein entity pair are
counted.

B. Baseline System: BioBERT (“Run 2”)
Following Lee and colleagues (1), we implement a

sequence classification system that uses a BERT transformer
to aggregate whole sentence information into the special
“[CLS]” token at the start of every sentence encoding.
BioBERT is identical in every way to sequence classification
tasks from the original BERT paper (5, Section 4), except that
the input is rewritten to mask each of a pair of named entity
phrases whose relationship is to be determined with special
tokens. In our case, we use “@CHEM#” and “@GENE#” to
mask each drug/chemical and protein/gene named entity
phrases, resp. The top-level hidden activation of the [CLS]
token is then fed through a linear classifier to predict one of
the 13 interaction types or NEGATIVE. Error gradients are fed
back from the linear classification layer, through the entire
BERT network via the [CLS] token’s top hidden layer. In this
way, the [CLS] top-layer activation is adjusted to express the

TABLE I. DRUGPROT DATA

Features of
Dataset

Datasets

Training Dev-Tuning Dev-Test Testa

Abstracts 3,500 598 152 10,750

Tot. Entities 89,529 15,176 3,682 310,805

Drug 46,274 7,930 1,923 143,767

Protein 43,255 7,246 1,759 167,038

Sentencesb 13,014 2,193 508 48,976

Relations 66,600 11,397 2,428 N/A

Non-neg. 17,273 3,019 738 N/A

Negative 49,327 8,378 1,690 N/A
a. For all but 750 abstracts, the Test entities are automatically assigned.
b. Auto-detected sentences, only counting those with drug-protein pairs.

contextual relationship between the special @CHEM# and
@GENE# tokens, which the linear classifier can then exploit.

Lee and colleagues (1, Table 7) report excellent results on
the 2017 ChemProt challenge (4), and, even though not
directly comparable to the current DrugProt challenge, we
chose this approach as a strong baseline. The system is
implemented using the Huggingface transformer package,
with PubMedBERT (8) trained on uncased full text and
abstracts as the underlying transformer model (available here:
https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-
base-uncased-abstract-fulltext). One departure from the
description of the implementation in (1) is that we account for
nested drug-protein entity pairs, e.g., “protein tyrosine
phosphatase 1B” becomes “@GENE# @CHEM# #GENE@”,
and similarly for the reverse case. Lee and colleagues do not
discuss such cases. Fig. 1 schematically illustrates our
baseline architecture. We refer the reader to the original BERT
paper (5) and the BioBERT paper (1) for more details.

C. Syntactic BiLSTM System: Syn-BiLSTM (“Run 1”)
Preliminary analysis of the BioBERT reimplementation

revealed dropping performance as the drug-protein entity pairs
become more distant from one another. As others have shown
(6,7), BERT transformers can represent linguistic structure at
various layers within their multilayer structures, but such
information is largely latent, and classifiers must be trained
explicitly on hidden activations in the BERT network in order
to accurately reproduce linguistic tasks such as grammatical
parsing (7, Table 2). Instead, we explicitly parse each input
sentence and derive a composite word vector for each
syntactic token, feeding these word vectors and other
parse-derived features into a bidirectional LSTM (BiLSTM)
classification model (2) along the shortest path that the
dependency parse connects the drug and protein entities using
any of their constituent tokens. We call this system the
“Syn-BiLSTM”. The features emitted at each step in this path
are:

https://github.com/joaofig/strat-group-split
https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext
https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext


Fig. 1. BioBERT Baseline System

● The composite (averaged) BERT WordPiece token
activations corresponding to a full syntactic token.

● The dependency relation that the current dependency
parse edge is labeled with.

● Whether or not the current token is the head or
dependent of the current dependency relationship.

To obtain dependency parses, we use spaCy (9), with the
ScispaCy (10) model en_core_sci_lg. We use the spaCy
Transformers library (11) to wrap the Huggingface BERT
model (also PubMedBERT, exactly as the baseline). To
compute the shortest path, we encode each spacy parse as a
networkx (12) Graph and run the built-in
shortest_path(.) algorithm on all token pairs from each
drug-protein entity pair. The shortest path of all token pairs is
used to generate the features described above.

In this preliminary implementation, error gradients from
BiLSTM training are not used to update the underlying BERT
network, but we anticipate doing so in future implementations,
most likely improving overall performance. Fig. 3
schematically illustrates our Syn-BiLSTM system.

D. Training
Both systems were trained using the Huggingface

transformers.Trainer class, with a batch size of 16,
dev-tuning evaluation runs every 1,000 batches, and a patience
of 5 evaluation runs—i.e., if the performance does not
improve after 5 evaluations, training is stopped and the best
model checkpoint so far is retained. We use the Adafactor
optimizer with lr=None, scale_parameter=True,
relative_step=True, warmup_init=True and
weight_decay=0.0 (we did not find weight decay to be
helpful). For both models we explored dropout values {0.1,
0.2, 0.3, 0.4, 0.5} and BiLSTMs of depths 1 and 2, and hidden
layer sizes of {128, 256, 512}. The best-performing systems
were chosen via 50/50 interpolation of F1 and classification
accuracy on the held-out dev-test set. The best-performing
BiLSTM has depth 1 and 256 hidden units and a dropout of

0.3 during training. The best BioBERT model had a dropout
value of 0.5 during training.

III. RESULTS AND ANALYSIS

We evaluate our systems in several ways. First, as simple
classifiers, we evaluate the accuracy of predicting one of the
13 interaction types (AGONIST, INHIBITOR, etc.) or
NEGATIVE (no interaction). We additionally report the
binary accuracy of predicting the presence vs. the absence of a
drug-protein interaction. We use the official DrugProt
evaluation library (13) to compute precision, recall and F1 by
interaction type, as well as by micro-averaged precision, recall
and F1 overall. To illustrate the effect of syntactic parse
information to relate distant phrases effectively, we give
accuracy on the dev-test set binned by 10-character increments
of drug-protein entity distances.

In all instances except recall on the blind test set, the
Syn-BiLSTM outperforms the BioBERT model in aggregate
metrics (Table II), and outperforms the DrugProt mean of
precision and F1 on the test set. The Syn-BiLSTM also
maintains its classification accuracy as the distances between

TABLE II. ACC AND (MICRO-AVERAGED) P, R AND F1

ACC BIN

ACC

P R F1

BIOBERT
BASELINE

DEV 82.8 84.3 66.4 60.7 63.4

DEVTEST 78.0 79.1 69.8 43.0 53.2

TEST N/A N/A 64.3 60.2 62.2

SYN-
BILSTM

DEV 84.3 86.0 69.5 62.0 65.5

DEVTEST 82.2 83.8 73.5 57.4 64.5

TEST N/A N/A 67.5 58.2 62.5

BC7
MEAN

TEST N/A N/A 64.3 62.9 62.0

Fig. 2. Classification Accuracy vs. Drug-Prot Distance



Fig. 3. Syn-BiLSTM System

the drug and protein grow (Fig. 2).

Table III presents the fine-grained results of our
Syn-BiLSTM system on the test set. To better explain these
results, in Fig. 4, we plot Syn-BiLSTM DevTest performance
alongside training set size and Dev F1. As in the test results,
low-data interaction types have zero predictions. As more
training data is available, we see that the type-specific
performance generally improves. AGONIST and
ANTAGONIST labeling performance is very high with less
than 6% training data each, likely due to the lexically signaled
nature of these interaction types—viz., ‘agoni*’ and
‘antagon*’ are in 96% and 97%, resp., of the corresponding
examples. Three interaction types—PRODUCT-OF,
INDIRECT-DOWNREG. and INHIBITOR—have lower
DevTest F1 than Dev F1, indicating possible overfitting.
While a full error taxonomy is beyond the scope of this work,
we note that, in particular, INDIRECT-DOWNREG. is often
(understandably) conflated with INHIBITOR, and
INHIBITOR often occurs in sentential contexts that do not
disambiguate the interaction type—the interaction type can
only be predicted in the context of the whole abstract.

IV. DISCUSSION AND FUTURE WORK

We have presented two main track DrugProt systems: our
baseline, a PyTorch BioBERT reimplementation, and our
Syn-BiLSTM system, which feeds BERT token encodings to a
bidirectional LSTM in dependency parse order. The
Syn-BiLSTM system, as we have shown, is much more
resilient to long distances between drugs and proteins, and
surpasses the BioBERT system in straight classification
accuracy as well as precision and F1.

Finally, we note some obvious areas for improvement.
First, the Syn-BiLSTM system would likely perform better if
we update the underlying BERT model during training.
Second, the use of ontologies, gazetteers and other knowledge
sources—either as features or as rule-based
components—could certainly help with model performance on
known classes of drugs and proteins, especially on those types
of interactions that do not occur frequently in training.

Finally, heuristically or otherwise combining whole-document
information might help overcome false negative predictions
where intra-sentential disambiguating information is lacking.

Fig. 4. Dev F1 and DevTest Performance by Type vs. Training Size

TABLE III. SYN-BILSTM INTERACTION-SPECIFIC P, R AND F1 ON TEST SET

P R F1

Activator 72.3 43.7 54.5

Agonist 75.9 65.3 70.2

Agonist-Inhib. 0 0 0

Antagonist 78.1 65.4 71.2

Direct-reg. 61.7 48.5 54.3

Indirect-downreg. 67.3 46.7 55.1

Indirect-upreg. 60.9 58.1 59.5

Inhibitor 73.5 73.5 73.4

Part-of 58.3 64.5 61.3

Product-of 60.0 60.2 60.1

Substrate 65.7 44.9 53.3

Substrate-product 0 0 0

Agonist-activator 0 0 0
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