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Abstract—The detection of chemical-protein interactions is an 
important task with applications in drug design and 
biotechnology. The BioCreative VII - DrugProt shared task 
provides a benchmark for the automated extraction of such 
relations from scientific text. This article describes the Humboldt 
approach to solving it. We define the task as a relation 
classification problem, which we model with pretrained 
transformer language models and further use entity descriptions 
as an additional knowledge source. On the hidden test set of 
DrugProt, our model achieves 79.73% F1, yielding an 
improvement of over 17pp over the average score of all task 
participants. 
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I. INTRODUCTION 
With the rapid growth of biomedical literature, it is becoming 
increasingly difficult to obtain comprehensive information on 
any specific entity by only reading. One of the most important 
aspects of drugs are their interactions with other biomedical 
molecules, especially genes and proteins. Recognizing drug-
protein relationships is crucial in various applications such as 
drug discovery (1), precision medicine (2), and curation of 
biomedical databases (3). Manual extraction of such 
relationships from the biomedical literature is costly and often 
prohibitively time-consuming. Alternatively, information 
extraction can help to automatically identify these relationships 
and make them more readily accessible. Extracting 
(biomedical) relationships from text has been investigated 
intensively over the last two decades (4). Methods employed 
hand-crafted features based on lexical or syntactic 
information (5), kernel-based learning (6), or various forms of 
neural networks (7-9). Most recently, a variety of approaches 
utilizing pretrained (transformer-based) language models have 
been introduced and achieved new state of the art performance 
across several domains (10, 11, 15). A plethora of approaches 
explored methods of enriching the training data. For example, 
Vashishth et al. (8) proposed a distantly-supervised method 
which applies Graph Convolution Networks to encode 
syntactic    information   from  text    and   utilizes     additional   

 

 

Fig. 1. Visual description of our approach. The model receives one example 
per valid entity pair in each sentence (S) enriched with chemical descriptions 
(D) derived from the CTD database. [HEAD-S] and [HEAD-E] mark start and 
end of the current head entity and [TAIL-S] and [TAIL-E] start and end of the 
current tail entity.  Chemical mentions are linked with an inhouse BioSyn 
model. 

knowledge   base    data    for   improved   relation    extraction.  
Yuan et al. (16) extracts entities from PubMed abstracts and 
link them to UMLS to train an entity- and knowledge-aware 
language model. 

Since 2003, the BioCreative1 initiative hosts challenges to 
foster the development and evaluation of text mining 
approaches in the biomedical domain and has hosted a 
successful shared task on chemical-protein relation extraction 
before (17). Track 1 (DrugProt) of the 2021 BioCreative VII 
challenge (18) explores the recognition of chemical-protein 
relations in scientific abstracts. The organizers compiled a 
manually annotated corpus of abstracts labeled with all 
chemicals and gene/protein mentions as well as binary 
relationships between them, categorized into 13 different types 
of interactions. Participants of the challenge were asked to 
develop methods which, given the abstract text and annotations 
of the mentioned chemicals and genes/proteins, detect all 
binary relations and their type. In this paper, we describe the 
Humboldt contribution to the challenge. We define the task as 
a relation classification problem, which we model with 
pretrained transformer language models and use entity 

 
1 https:// biocreative.bioinformatics.udel.edu/ 



descriptions as an additional knowledge source. Our code and 
model are publicly available.2 

II. METHOD 

A. Chemical-Protein Relation Extraction as Relation 
Classification 
We model chemical-protein relation extraction as sentence-

level relation classification. To this end, we first split the 
abstract into sentences using segtok3. Next, we generate one 
example for each chemical-protein mention pair, that co-occurs 
in the same sentence. We mark the head entity (chemical) and 
the tail entity (gene) by inserting marker tokens into the 
sentence and then treat the task as a sentence classification 
problem. For an example, see Figure 1, where [HEAD-S] and 
[HEAD-E] mark start and end of the current head entity and 
[TAIL-S] and [TAIL-E] start and end of the current entity tail. 
For classifying the resulting example, we embed the text with a 
RoBERTa-large model (19). Then, we take the embedding of 
the [CLS] token to which we apply dropout (20). Finally, we 
feed the resulting embedding through a linear layer to arrive at 
our predictions. We use a cross entropy loss for training and 
initialize the model by using the weights from the RoBERTa-
large-PM-M3-Voc model 4  of Lewis et al. (21), which was 
trained on the union of 22 million PubMed abstracts, 3.4 
million PMC full texts and data from 60 thousand MIMIC-III 
reports. Finally, we ensemble our models by training ten 
models with different random seeds and then average the 
predicted probabilities for a given example. We train our 
model on the union of training and development set which 
increases the size of the total training data from 17,274 to 
21,035 relations. We implement our model with the 
huggingface transformers framework5. 

B. Entity Descriptions 
We hypothesized that enriching the input with external textual 
descriptions of the head and tail entities could provide 
additional useful information to the model. For instance, the 
given chemical might inhibit the family of proteins to which 
the tail belongs or the protein in question may catalyze a 
reaction in which the chemical is involved. Such information 
can be found in chemical / protein databases, often in the form 
of text. We found in preliminary experiments on the 
development set that providing only a description of the 
chemical led to the largest improvement. Thus, we enriched 
the input only with chemical descriptions, which we created 
by gathering the first sentence of the Definition field of the 
CTD (22) chemicals vocabulary6. To match these descriptions 
with the entity mentions in the to-be-analyzed texts, we 
perform Named Entity Normalization (NEN) using 
BioSyn (23), the state-of-the-art method for this task. We train 
the BioSyn model with its default hyper-parameters for 20 

 
2 https://github.com/leonweber/drugprot 

3 https://github.com/fnl/segtok 
4 https://github.com/facebookresearch/bio-lm 

5 https://github.com/huggingface/transformers 
6 http://ctdbase.org/reports/CTD_chemicals.csv.gz 

epochs on the train and test split of the BioCreative V CDR 
dataset (24) and use it to link every mention to its CTD 
identifier. If the predicted chemical identifier has no 
associated CTD definition, we use the definition of the 
chemical’s parent in the CTD hierarchy. This allows us to 
assign a description to every chemical in the challenge data 
set. For an example of chemical descriptions, see Figure 1. 

 

C. Hyperparameters 
We select hyperparameters by performing an exhaustive grid 
search on the development set for the following values (best 
are marked bold): 

• Learning rate: 5e-5, 3e-5, 1e-5, 5e-6 
• Epochs: 1, 3, 5, 10 

 
We use Adam (25) with a linear decay learning rate schedule 
and 10% warmup (26). We set the maximum length to 256 
subword tokens and first truncate the chemical description 
before truncating the input sentence. The dropout rate is set to 
0.1. 

III. RESULTS 

A. Description of the submitted runs 
We submitted five different runs for the shared task 
evaluation: 

• run-1: Ensemble of ten differently seeded 
RoBERTa-large-PM-M3-Voc models trained on the 
union of training and development set with entity 
descriptions. 

• run-2: Single RoBERTa-large-PM-M3-Voc trained 
on the union of training and development set with 
entity descriptions. 

• run-3: Ensemble of ten differently seeded 
RoBERTa-large-PM-M3-Voc models trained on the 
union of training and development set without entity 
descriptions. 

• run-4: Single RoBERTa-large-PM-M3-Voc model 
trained on the union of training and development set 
without entity descriptions. 

• run-5: Ensemble of ten differently seeded 
RoBERTa-large-PM-M3-Voc models with entity 
descriptions trained on only the training set. 
 

B.  Main results 
 Table 1 shows the main results on the test set of our 
submitted runs. Our best performing model is run1, an 
ensemble of ten differently seeded RoBERTa-large-PM-M3- 
Voc models with CTD chemical descriptions. It achieves a 
micro-averaged F1 score of 79.73%. When compared to the 
average score of all DrugProt participants of 61.96% this 
corresponds to an improvement of 17.77 percentage points 
(pp).   Ablating the entity descriptions (run-3) leads to a  



TABLE I.  RESULTS ON DRUGPROT TEST SET 

 
 
decrease of 0.79 pp F1, while taking only the best single 
model with entity descriptions instead of the 10x ensemble 
(run-2) leads to a decrease in F1 of 1.42 pp. An ablation of 
both ensembling and chemical descriptions leads to 1.7 pp 
lower F1 (run-4). When trained only on the training data 
without the addition of the development data, the F1 score of 
the ensemble decreases by 0.24 pp (run-5). We therefore 
conclude that both ensembling and entity descriptions have a 
positive effect on accuracy and that improvement is more 
pronounced for ensembling. These findings are further 
supported by our experiments on the development set for 
which the results are summarized in Table II. In this setting, in 
which we trained our model on the training set and evaluated 
it on the development set, ensembling leads to a gain of 0.9 pp 
F1 and ablating the entity descriptions causes a drop of 0.9 pp 
in F1. Surprisingly, using the development set as additional 
training data led to only a very modest gain even though it 
increased the size of the training data by over 20%. This might 
indicate that the amount of training data is not the only 
limiting factor. 
 

C.  Results by Relation Type 
Table 2 shows the results of our best submission (run-1) for 
each relation type. There is strong variability across different 
relation types with three relation types having an F1 score of 
zero, while the maximum F1 score is above 91%. The F1 
scores correlate strongly with the number of training instances 
per relation type (Pearson’s R 0.56). All three relation types 
with an F1 score of zero have very few training examples (10 
to 27). However, for the other classes there seem to be 
additional factors influencing performance. For instance, the 
Substrate relation type has 2,003 training examples, but the 
model achieves an F1 score of only 68.18%. We leave a more 
detailed error analysis for future work.  

TABLE II.  RESULTS ON DRUGPROT DEVELOPMENT SET 

TABLE III.  DETAILED TEST SET RESULTS FOR RUN-1 

 

IV. CONCLUSION 
We described our contribution to the DrugProt shared task in 
which we model chemical-protein relation extraction as a 
relation classification problem at the sentence level. We 
propose a model that builds on ensembled pretrained 
transformers and additional textual descriptions of chemicals 
taken form the CTD database. The proposed model achieves 
an F1 score of 79.73% on the hidden DrugProt test set which 
is an improvement of over 17 percentage points over the 
average score of all task participants. Our analysis indicates 
that both ensembling and entity descriptions improve results 
and that the number of training examples strongly influences 
performance for the different relation types.  In future work, 
we want to integrate the proposed chemical-protein relation 
extraction model into our standalone tool for biomedical 
relation extraction (9) and explore generative approaches for 
chemical-protein relation extraction (28), as the intrinsic 
few/zero-shot capabilities of such generative models might 
improve results for relation types with few annotated 
examples.  
 

ACKNOWLEDGMENT 
Leon Weber acknowledges the support of the Helmholtz 

Einstein International Berlin Research School in Data Science 
(HEIBRiDS). Samuele Garda is supported by the Deutsche 
Forschungsgemeinschaft as part of the research unit “Beyond 
the Exome”. 

 REFERENCES 
1. Zheng, S., Dharssi, S., Wu, M., Li, J., & Lu, Z. (2019). Text mining for 
drug discovery. Bioinformatics and Drug Discovery, 231-252. 

 Precision (%) Recall (%) F1 (%) 

run-1 79.61 79.86 79.73 

run-2 76.25 80.49 78.31 

run-3 81.51 76.53 78.94 

run-4 76.16 80.00 78.03 

run-5 79.15 79.83 79.49 

 Precision 
(%) 

Recall 
(%) 

F1 (%) # 
instances 
in train + 

dev 
Activator 83.23 80.24 81.71 1,674 

Agonist 85.11 79.21 82.05 789 

Agonist-Inhibitor 0.00 0.00 0.00 15 

Antagonist 87.95 95.42 91.54 1,190 

Direct-Regulator 75.82 70.16 72.88 2,705 

Indirect-
Downregulator 

74.93 84.54 79.44 1,661 

Indirect-Upregulator 75.09 79.42 77.19 1,680 

Inhibitor 88.01 88.01 88.01 6,538 

Part-Of 71.21 80.26 75.46 1,142 

Product-Of 67.33 75.14 71.02 1,078 

Substrate 72.07 64.68 68.18 2,497 

Substrate_Product-Of 0.00 0.00 0.00 27 

Agonist-Activator 0.00 0.00 0.00 10 

 Precision (%) Recall (%) F1 (%) 

Best single model 78.9 79.5 79.2 

Single  model 
without entity 
descriptions 

77.1 79.6 78.3 

10x Ensemble 80.4 79.7 80.1 



2. Dugger, S. A., Platt, A., & Goldstein, D. B. (2018). Drug development in 
the era of precision medicine. Nature reviews Drug discovery, 17(3), 183-196. 
 
3. Griffith, M., Spies, N. C., Krysiak, K., McMichael, J. F., Coffman, A. C., 
Danos, A. M., ... & Griffith, O. L. (2017). CIViC is a community 
knowledgebase for expert crowdsourcing the clinical interpretation of variants 
in cancer. Nature genetics, 49(2), 170-174. 
 
4. Zhou, D., Zhong, D., & He, Y. (2014). Biomedical relation extraction: from 
binary to complex. Computational and mathematical methods in medicine, 
2014. 
 
5. Giuliano, C., Lavelli, A., & Romano, L. (2006). Exploiting shallow 
linguistic information for relation extraction from biomedical literature. In 
11th Conference of the European Chapter of the Association for 
Computational Linguistics. 
 
6. Tikk, D., Thomas, P., Palaga, P., Hakenberg, J., & Leser, U. (2010). A 
comprehensive benchmark of kernel methods to extract protein–protein 
interactions from literature. PLoS computational biology, 6(7), e1000837. 
 
7. Zhao, Z., Yang, Z., Luo, L., Lin, H., & Wang, J. (2016). Drug drug 
interaction extraction from biomedical literature using syntax convolutional 
neural network. Bioinformatics, 32(22), 3444-3453. 
 
8. Vashishth, S., Joshi, R., Prayaga, S. S., Bhattacharyya, C., & Talukdar, P. 
(2018). Reside: Improving distantly-supervised neural relation extraction 
using side information. arXiv preprint arXiv:1812.04361. 
 
9. Weber, L., Thobe, K., Migueles Lozano, O. A., Wolf, J., & Leser, U. 
(2020). PEDL: extracting protein–protein associations using deep language 
models and distant supervision. Bioinformatics, 36 (Supplement_1), 490-498. 
 
10. Alt, C., Hübner, M., & Hennig, L. (2019). Fine-tuning pre-trained 
transformer language models to distantly supervised relation extraction. arXiv 
preprint arXiv:1906.08646. 
 
11. Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., & Kang, J. 
(2020). BioBERT: a pre-trained biomedical language representation model for 
biomedical text mining. Bioinformatics, 36(4), 1234-1240. 
 
12. Thomas, P., Solt, I., Klinger, R., & Leser, U. (2011). Learning protein–
protein interaction extraction using distant supervision. In Proceedings of 
Workshop on Robust Unsupervised and Semisupervised Methods in Natural 
Language Processing, (pp. 25-32). 
 
13. Smirnova, A., & Cudré-Mauroux, P. (2018). Relation extraction using 
distant supervision: A survey. ACM Computing Surveys (CSUR), 51(5), 1-35. 
 
14. Ye, Z. X., & Ling, Z. H. (2019). Distant supervision relation extraction 
with intra-bag and inter-bag attentions. arXiv preprint arXiv:1904.00143. 
 
15. Phan, L. N., Anibal, J. T., Tran, H., Chanana, S., Bahadroglu, E., 
Peltekian, A., & Altan-Bonnet, G. (2021). SciFive: a text-to-text transformer 
model for biomedical literature. arXiv preprint arXiv:2106.03598. 

 

16. Yuan, Z., Liu, Y., Tan, C., Huang, S., & Huang, F. (2021). Improving 
Biomedical Pretrained Language Models with Knowledge. arXiv preprint 
arXiv:2104.10344. 
 
17. Krallinger, M., Rabal, O., Akhondi, S.A., Pérez, M.P., Santamaría, J., 
Rodríguez, G.P., Tsatsaronis, G. and Intxaurrondo, A. (2017), October. 
Overview of the BioCreative VI chemical-protein interaction Track. 
In Proceedings of the sixth BioCreative challenge evaluation workshop (Vol. 
1, pp. 141-146). 
 
18. Miranda, A., Mehryary, F., Luoma, J., Pyysalo, S., Valencia & Krallinger, 
M. (2021). Overview of DrugProt BioCreative VII track: quality evaluation 
and large scale text mining of drug-gene/protein relations. Proceedings of the 
seventh BioCreative challenge evaluation workshop. 
 
19. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. 
(2019). Roberta: A robustly optimized bert pretraining approach. arXiv 
preprint arXiv:1907.11692. 
 
20. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & 
Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks 
from overfitting. The journal of machine learning research, 15(1), 1929-1958. 
 
21. Lewis, P., Ott, M., Du, J., & Stoyanov, V. (2020, November). Pretrained 
Language Models for Biomedical and Clinical Tasks: Understanding and 
Extending the State-of-the-Art. In Proceedings of the 3rd Clinical Natural 
Language Processing Workshop (pp. 146-157). 
 
22. Mattingly, C. J., Rosenstein, M. C., Colby, G. T., Forrest Jr, J. N., & 
Boyer, J. L. (2006). The Comparative Toxicogenomics Database (CTD): a 
resource for comparative toxicological studies. Journal of Experimental 
Zoology Part A: Comparative Experimental Biology, 305(9), 689-692. 
 
23. Sung, M., Jeon, H., Lee, J., & Kang, J. (2020). Biomedical entity 
representations with synonym marginalization. arXiv preprint 
arXiv:2005.00239. 
 
24. Li, J., Sun, Y., Johnson, R. J., Sciaky, D., Wei, C. H., Leaman, R., ..., & 
Lu, Z. (2016). BioCreative V CDR task corpus: a resource for chemical 
disease relation extraction. Database, 2016. 
 
25. Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic 
optimization. arXiv preprint arXiv:1412.6980. 
 
26. Xiong, R., Yang, Y., He, D., Zheng, K., Zheng, S., Xing, C., Zhang, H., 
Lan, Y., Wang, L. & Liu, T. (2020). On layer normalization in the transformer 
architecture. International Conference on Machine Learning (pp. 10524-
10533) 
 
27. Du, X., Rush, A. M., & Cardie, C. (2021). Template Filling with 
Generative Transformers. In Proceedings of the 2021 Conference of the North 
American Chapter of the Association for Computational Linguistics: Human 
Language Technologies (pp. 909-914). 

 


