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Abstract— Automatic text mining the interactions between 

drugs and proteins is significantly beneficial to drug discovery, 
drug repurposing, drug design, and bioinformatics knowledge 

graph mining. The DrugProt track of BioCreative VII aims to 

promote the development and evaluation of systems that are able 

to automatically detect in relations between chemical 

compounds/drugs and genes/proteins. This paper describes our 
method used to create our submissions to the task. We 

formulated the task of extracting the relation pairs of drugs and 

proteins using two separate frameworks: text classification and 

sequence labeling. The cutting-edge biomedical pre-trained 

language models are used for both frameworks. Then different 
ensemble methods are further used to improve the final 

performance. Our best submission achieves the F1-scores of 

0.795 and 0.789 on the main test set and the additional large-scale 

test set, respectively.  
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I. INTRODUCTION 

Extracting the relations between drug/chemical and protein/ 
gene from the exponentially growing biomedical literature is 

crucial in various biomedical tasks such as drug discovery, 
drug repurposing, drug-induced adverse reactions, and 

bioinformatics knowledge graph mining  (1-3). Manually 
curating the interaction between drug and protein from the 

biomedical literature is extremely expensive and time-

consuming. Alternatively, automatic text mining methods 
could detect these relations efficiently. To accelerate the 

method development of extracting the relations between drug 
and protein, the BioCreative VII organized the DrugProt track 

(similar to the previous CHEMPROT task (4) of BioCreative 
VI) for the drug-protein relation extraction task (5). As a 

participant of this task, we developed two independent deep 

learning-based approaches based on the biomedical pre-trained 
language models (PLMs) (6-11). Our best submission achieves 

F1-scores of 0.795 and 0.789 on the main test set and the 

additional large-scale test set, respectively. 

II. METHODS 

In this track, the official corpus includes 3,500 abstracts for 

training, 750 abstracts for development, and 10,750 abstracts 
for testing which contains a subset of a total of 750 Gold 

Standard abstracts that will be used for evaluation purposes. 
Additionally, a  large set of 2,366,081 PubMed records with 

pre-annotations of entity mentions of drugs and proteins is 
provided as the large-scale test set for the additional DrugProt  

Large Scale task (5). According to the characteristic of the 
corpus, only less than 1% of the relations are crossing multiple 

sentences in the training set. Therefore, we focus on the 

challenges of the relation extraction within sentences. 
Specifically, we formulated the task of extracting the relation 

pairs of drugs and proteins using two different frameworks: 

text classification and sequence labeling. 

A. Text Classification Framework 

In the text classification framework, every drug-protein pair 

in a sentence is a target for prediction. The output of the 
classification to this target is to predict the predefined relation 

types (the 13 types of interactions: INDIRECT-
DOWNREGULATOR, INDIRECT-UPREGULATOR, 

DIRECT-REGULATOR, ACTIVATOR, INHIBITOR, 

AGONIST, ANTAGONIST, AGONIST-ACTIVATOR, 
AGONIST-INHIBITOR, PRODUCT-OF, SUBSTRATE, 

SUBSTRATE_PRODUCT-OF and PART-OF) or not a 
relation at all. In the other words, our system treated this task 

as a multi-class classification problem, which represents a 
sentence with a drug/protein pair using two different sequence 

representation ways. The first  representation is to insert  tags of 

“@DRUG$” and “@PROT$” in front of the drug and protein 
entities. We also treated the name text of drug and protein 

entity as the first sentence and use the [SEP] tag to concatenate 
it with the first way’s sequence as the second representation. 

Since keeping the original entities in the sentences brings 
higher performance, our method does not replace the drug and 

protein entities to the tags. The examples in Table 1 illustrate 
the above two ways of text representation. Finally, we used the 



first token [CLS] to represent the output of the whole sequence 

for the classification task. A softmax layer is connected at the 

end for the prediction of the relation type.  

Our text classification models are formed by incorporating 
Biomedical PLMs with a softmax output layer. To select the 

biomedical PLMs with the best performance, we tried  
PubMedBERT (7), BioBERT (8), and BioELECTRA (11).  

Besides, both BioBERT and BioELECTRA have large 
versions of the pre-trained model. After testing those models, 

we chose  PubMedBERT for our final submissions, which  

achieves the best performance (>77%) on the development set. 
We keep both text representations for final submission since 

the performances are similar. 

B. Sequence Labeling Framework 

Inspired by our previous works (12, 13), we proposed a 
novel sequence labeling framework to address the sentence-

level biomedical relation extraction task. Different from the 
conventional text classification framework, the task is 

converted to a sequence labeling problem. Given a candidate 
source entity (e.g., drug entity of “icariin” in  Fig.1) in a 

sentence, the goal of the model is to recognize all the 

corresponding target entities (e.g., protein entities of “PDE5” 
and “PDE4”) that are involved in the drug-protein relations 

with the candidate.  For a sentence with N source entities and 
M target entities, the entire task can be deconstructed into N × 

M independent sentence classification subtasks. But our 
method can effectively narrow down to N sequence labeling 

subtasks. Besides, the sequence labeling framework is able to 

fully exploit the dependencies of source entities and relations. 

More details will be described below. 

1) Tagging Scheme.  Fig. 1  shows an example to tag a 
sentence with our tagging scheme according to the original 

gold standard annotations of the DrugProt dataset. To define 
the boundary of the entities, the “<Arg1>” and “</Arg1>” tags 

are inserted in the start and end of the candidate source entity. 
Besides, “<Drug>”/“<Prot>” and “</Drug>”/“</Prot>” tags 

are inserted in the start and end of the drug/protein mentions to 
aware the entity types and the boundaries. Each token is 

assigned a label that contributes to the extraction. The tokens 

can be divided into two types: (I) the target entities involve in 
the relations; (II) others. Concretely, the labels of type I consist 

of 13 relation types that are predefined according to the  
training sets. We used the label “O” to represent other tokens 

and entities which do not involve in a relation.  As shown in 
Fig. 1, the input sentence contains three entities (i.e., the drug 

entity “icariin” and the protein entities “PDE5” and “PDE4”) 

and two drug-protein relation triples (i.e., {icariin, 
INHIBITOR, PDE5} and {icariin, INHIBITOR, PDE4}). In 

the example, we set up the source entity to drug to predict the 
target entity of protein. We inserted the “<Arg1>” and 

“</Arg1>” tags in the start and end of the candidate source 
entity “icariin”, and added the entity type tags of 

“<Prot></Prot>” to the protein entities of “PDE5” a nd 

“PDE4”. Since the “ PDE5” and “PDE4” participate the 
relation “inhibitor” with the candidate source entity “icariin”, 

their labels are “ INHIBITOR”, and other tokens are “O”. 

2) Model Architecture. Recently, Transformer-based pre-

trained models have shown promising results in a  broad range 
of natural language processing (NLP) tasks a nd are widely  

used in the field of NLP (14).  A large array of pre-trained 

TABLE I.    EXAMPLES OF TEXT CLASSIFICATION 

Entity 
Pair 

Relation 
Type 

Text Representation 1 Text Representation 2 

icariin-
PDE5 

INHIBITOR 

[CLS] The inhibitory effects of @DRUG$ icariin on 
@PROT$ PDE5 and PDE4 activities were investigated by 
the two-step radioisotope procedure with [(3)H]-

cGMP/[(3)H]-cAMP. 

[CLS] icariin and PDE5 [SEP] The inhibitory effects of 
@DRUG$ icariin on @PROT$ PDE5 and PDE4 activities 
were investigated by the two-step radioisotope procedure 

with [(3)H]-cGMP/[(3)H]-cAMP. 

icariin-
PDE4 

INHIBITOR 

[CLS] The inhibitory effects of @DRUG$ icariin on PDE5 
and @PROT$ PDE4 activities were investigated by the two-
step radioisotope procedure with [(3)H]-cGMP/[(3)H]-
cAMP. 

[CLS] icariin and PDE5 [SEP] The inhibitory effects of 
@DRUG$ icariin on PDE5 and @PROT$ PDE4 activities 
were investigated by the two-step radioisotope procedure 
with [(3)H]-cGMP/[(3)H]-cAMP. 
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Fig. 1. The overview of our sequence labeling framework 



models which pre-trained on PubMed abstracts and PMC full-
text articles are available to the biomedical domain. With  

minimal architectural modification, Biomedical PLMs can be 
applied to various downstream biomedical text mining tasks 

and significantly outperforms previous state-of-the-art models 
to the biomedical NLP tasks (6). The architecture of our model 

is illustrated in Fig. 1. To optimize the performance, we feed 

the final hidden representation of the Biomedical PLM for each 
token into a fully connected layer with ReLU (15) activation 

function. Then, we use a softmax classification layer over the 
output label set to predict the label probability score of each 

token. Similar to the text classification framework, we 
evaluated the five biomedical PLMs including PubMedBERT 

(7), BioBERT (8), BioRoBERTa (9), BioM-ELECTRA (10), 
and BioM-ALBERT (10) to the sequence labeling method on 

the development set. 

3) Relation Extraction. During the model development, 
we can set up the source entity to drug (or protein) to predict  

the target entity of protein (or drug). In addition to the standard 
categorical cross-entropy loss function, we also applied sample 

weights in  the loss function for handling class imbalance. Here 
the samples for class C are weighted by the equation: WC = log 

( total number of the samples / number of samples in class C). 

Therefore, we trained four models (the combinations of the 
“drug to protein” and “protein to drug” with standard loss and 

weighted loss) for each kind of PLM. In the test phase, the 
input text is split into sentences and tokenized. The sentences 

with both drug and protein entities are tagged by our trained 
models. If there is a relation type conflict to the tokens of the 

entity, the label of the first token of the target entity is chosen 

to be the relation type. 

C. Model Ensemble 

For each individual model, we tuned the hyper-parameters 

on the development set by random search (16). Our models are 

implemented using the open-source deep learning libraries 
Hugging Face (17) and TensorFlow (18). To further optimize 

the performance, three ensemble alternatives (majority voting, 
voting with random search, and voting with backward search) 

are investigated in our experiments. For the majority voting, 
we select the relations that are predicted by more than half of 

all models. In addition, we search backward and random to 

find a subset of our approaches that might achieve higher 
performance on the development set than using all models. In 

random search, we randomly generate a combination of our 
models every time, and we keep the best performance on the 

development set until the number of combinations reaches our 
predefined value. In backward search, we first combine the 

results of all models, then remove a model which can bring 
higher performance. We iteratively removed the models until 

we found the combination of the models with the h ighest 

performance on the development set. 

III. RESULTS AND DISCUSSION 

During the DrugProt task, we submitted five runs as our 
final submissions. Our submitted five runs in the main task are 

based on the following configurations. 

• Run 1: we merged the official training and development 
sets, then randomly selected 350 abstracts as our 

development set for early stopping strategy (19) and 
remain articles were used as the training set. Only  

sequence labeling models are ensembled with the 

majority voting. 

• Run 2: we used the official training set only for model 
training, and the number of training epochs is chosen by 

early stopping strategy according to the performance on 

the development set. Only sequence labeling models are 

ensembled with simple majority voting. 

• Run 3: In the sequence labeling framework, we first  
used the data augmentation technologies (including  

synonym substitution, swap word randomly, back 
translation) to increase the number of the lower 

resource relation types (i.e., AGONIST-ACTIVATOR,  
AGONIST-INHIBITOR, SUBSTRATE_PRODUCT-

OF), then trained the sequence labeling models. After 

that, both the text classification and sequence labeling 

models are ensembled by voting with backward search. 

• Run 4: the text classification and sequence labeling 
models without data augmentation are ensembled by 

voting with random search. 

• Run 5: all our text classification and sequence labeling 

models are ensembled together by majority voting. 

Table 2 shows the overall resu lts (overall precision, recall,  

and F1 score) of our runs on the official development and main 

test sets. Table 3 shows the detailed granular results by relation 
type (F1-score for each relation type) and overall results of our 

submissions on the test sets as reported by the organizer. Run 5 
(i.e., the ensemble of all models) achieves the highest overall 

F1 score on the main test set.  

TABLE II.    OVERALL RESULTS ON THE DEVELOPMENT AND TEST SETS 

 The development set  The main test set 

 P  R F1  P  R F1 
Run1 - - -  0.782 0.799 0.791 

Run2 0.813 0.811 0.812  0.793 0.795 0.794 

Run3 0.811 0.825 0.818  0.785 0.803 0.794 

Run4 0.819 0.819 0.819  0.790 0.798 0.794 

Run5 - - -  0.785 0.805 0.795 

Note that, Run 1 and 5 use the development set for training, so we do not evaluate their performance on 
the development set. 

For the additional DrugProt large-scale task, we did not use 

all models to predict the results, since some large PLMs are 
computationally expensive on the large-scale test set. Instead, 

we selected four efficient models (i.e., PubMedBERT sequence 
labeling model from protein to drug with standard loss, BioM-

ELECTRA sequence labeling model from drug to protein with 

weighted loss, BioRoBERTa sequence labeling model from 
drug to protein with weighted loss, and PubMedBERT text 

classification model with text representation 2) according to 
the performances on the development set, then used different 

combinations of them with the simple majority voting to 
generate our submissions. Each model took ~5 days for 

predicting the whole large-scale test set on one NVIDIA Tesla 



V100 SXM2 GPU. Our submitted five runs for this task are 

based on the following configurations. 

• Run 1: the ensemble result of all models other than the 

BioM-ELECTRA sequence labeling model. 

• Run 2: the ensemble result of all models other than the 

PubMedBERT sequence labeling model. 

• Run 3: the ensemble result of all models other than the 

BioRoBERTa sequence labeling model. 

• Run 4: the ensemble result of all models other than the 

PubMedBERT text classification model. 

• Run 5: ensemble result of all four models. 

Similar results are observed on the large-scale test set, and 

the best submission achieves an F1-score of 0.785. 

IV. CONCLUSION 

In this paper, we present our method based on the pre-

trained language models in the BioCreative VI DrugProt task. 
In addition to the classic text classification framework, we 

propose a novel sequence labeling framework to extract the 

relations of drugs and proteins. Then different ensemble 
methods are further used to optimize the final performance. 

The results show that our method can effectively extract the 

drug-protein relations from biomedical literature. 
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