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Abstract— It is important to automatically extract the relations 
between drugs and proteins from ever-growing biomedical 
literature, to build up-to-date knowledge bases in biomedicine. 
Through the DRUGPROT track at BioCreative VII, we developed 
automated methods to recognize drug-protein entity relations 
from PubMed abstracts. In this short system description paper, we 
outline and describe our proposed system submissions that 
leverage multiple transformer models pre-trained on biomedical 
data. The outputs of some of the systems have been combined 
using a decision based on majority voting. Our best system 
obtained 80.44% in precision and 74.96% in recall for an F1-score 
of 77.60%, demonstrating the effectiveness of deep learning-based 
approaches for automatic relation extraction from biomedical 
literature for the main track. We also participated in the Large-
Scale Track - the micro-averaged precision, recall and F1-score of 
our best system being 79.49%, 75.27% and 77.32% respectively.   
(Abstract) 
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I. INTRODUCTION  

In the past few decades, biomedical literature has grown 
exponentially and much new knowledge is embedded in 
narrative texts in biomedical articles, requiring automated 
methods such as natural language processing (NLP) to extract 
and normalize them into computable information. Among 
diverse biomedical entities, drugs and proteins, as well as their 
relations, are important for many applications such as drug 
repurposing (1) and drug combination (2, 3) studies. Therefore, 
recognition of drug-protein entities and relations from 
biomedical medical literature has received great attention in the 
past few years. Automated relation extraction between 
gene/protein entities from text previously used methods like 
parsing (4, 5), diverse set of features (6, 7) along with deep 
learning networks (8).  BioCreativeVI Track 5 (14) was 
organized in 2017 to predict Chemical-Protein relations on the 
ChemProt Corpus. 
In 2021, the BioCreativeVII Track 1 (15) corpus aims to 
promote the development and evaluation of systems that are 
able to automatically detect relations between drugs and 
proteins from PubMed abstracts. This competition has two sub-
tracks - the main track and a large-scale track. In this paper, we 
provide brief descriptions of our approaches and results for this 
task. 

II. METHODOLOGY 

A. Dataset 
The organizers provided two different datasets - DrugProt 

corpus for the main track and an un-labelled test corpus for the 
large-scale track. In the main track, the DRUGPROT corpora 
consists of 15,000 PubMed abstracts and titles along with 
PMIDs, essentially published between 2005 and 2014. Of these, 
the data was split into three subsets - training (3,500 abstracts), 
development (750 abstracts) and test (10,750 abstracts). For the 
large scale sub-track, 23, 66081 records are provided with a total 
of 53,993,602 entity annotations. This does not have any entity 
relations labelled.  

• Preprocessing: We used the tool called CLAMP [9] for 
sentence boundary detection. 

• Representation: Each chemical and gene in a sentence 
will be made into a candidate relation pair for 
classifying. Also, text of entity will be replaced into its 
semantic type. For example, in Figure 1, there are 2 
genes and 1 chemical, so totally 2 candidate relation 
pairs are generated. 

• Training sets: Because the estimation of the parameters 
in NLP models is sensitive to the number of instances in 
the training corpus, we trained the models using as 
many annotated instances as possible. We pooled the 
3,500 abstracts in the DrugProt training set and 750 
abstracts in the development set and then randomly split 
them into ten folds. Each fold contains 425 abstracts and 
serves as a re-built development set once during 10-fold 
cross-validation. 

Figure 1. Data representation. 



 
        Figure 2. The architecture of the system. 

B. Biomedical BERT-based models 
Figure 2 shows the architecture of our system. First candidate 
relation pairs were generated as input (see representation in 
section A). Here BERT based models (BioM-BERT, BioM-
ALBERT, BioBERT and PubMed-BERT) were used, and a 
linear classification layer was added on top to predict the label 
of a candidate pair, where the [CLS] vector from output of 
BERT was sent to a classification layer for prediction.  
We aplied the pre-trained BioM-BERT model from (10), the 
implementation of ELECTRA model trained on the corpora of 
PMC and PubMed articles. We also applied the BioM-
ALBERT model (10) on the DrugProt task. This model was 
firstly pre-trained on PubMed Abstracts only for 264K steps 
with a batch size of 8192 based on ALBERTxxlarge. Then it 
was continuously pretrained on PMC full articles for further 
64K steps to investigate the influence of adding PMC articles 
on the language model. The pretrained BioM-
ALBERTxxlarge-PMC model was fine-tuned on two different 
masked input files: one masked file differentiated the 
overlapped chemical and gene entities, resulted the fine-tuned 
model of BioM-ALBERT 1; another mask file ignored the 
overlapped chemical and gene entities, resulted the fine-tuned 
model of BioM-ALBERT 2. 
The pre-trained biomedical language model, BioBERT (11), is 
applied to predict the relationship of a given candidate 
drugprotein pair. The BioBERT model has the same 
architecture and vocabulary set as BERT, and is initialized with 
the weights from BERT, a pretrained model on general domain. 
Then the model is finetuned on PubMed abstracts and PMC 
full-text literature. The performance gets a significant boost in 
various biomedical text mining tasks compared with BERT. In 
this challenge, we adopt the most recently pretrained BioBERT 
large model.  
PubMedBERT (12), another pre-trained BERT model 
developed specifically for biomedical NLP tasks, was also 
applied in this challenge. Different from BioBERT, 
PubMedBERT model, though employing the similar BERT-
base architecture, is trained from the scratch with the 
specifically constructed vocabulary sets. The result 
demonstrated PubMedBERT achieved consistent superior 
performance than the continual pre-training language model. 
Therefore, for this track, we employ five different BERT-based 
models - BioM-ALBERT 1, BioM-ALBERT 2, BioBERT, 
BioM-BERT and PubMedBERT.  

C. Training Models 
Scaling our models to get the desirable set of results on the 
Large Scale subtrack was challenging. We ran the BioM-BERT 
model on the A100-SXM4 GPU. Each fold ran for a total of 
53.5 hours approximately. 

D. Ensemble learning 
Based on the 50 prediction results from the five BERT-based 
models trained by ten different training sets, we combined them 
and further developed two ensemble learners: voting and 
stacking. 
•Majority voting: Based on the order of combining the results 
from different BERT models and training folds, we developed 
three strategies for majority voting: “fold-first”, “model-first”, 
and “overall”. In the fold-first majority voting, we first 
combined the results from the ten folds for each BERT model, 
kept the relations having no less than five votes, and then 
pooled these voting results from the five models and kept the 
relations having no less than three votes. While in the model-
first majority voting, we first combined the results from the five 
models for each training fold, kept the relations having no less 
than three votes, and then pooled these voting results from the 
ten folds and kept the relations having no less than five votes. 
The overall majority voting is to pool the 50 prediction results 
from the five models for the ten folds and then kept the relations 
having no less than 25 votes. 
•Weighted majority voting: We also developed the same 
strategies for weighted majority voting. We gave each vote a 
different weight according to the performance of its relation 
type in different training sets.  
In the fold-first weighted majority voting, the weight is 
calculated as: 
 

  , (1) 
where m represents the type of model, r is the relation type, f 
denotes the index of fold, and Fmrf represents the performance 
(F1 score) of predicting the relation r by the model m in the fold 
f. pmrf is 0 if the relation r between the chemical and the protein 
is predicted negative by the model m in the fold f, while pmrf 
is 1 if the relation is predicted positive. We kept the relation if 
its ωmr is no less than 0.5.  
In the model-first weighted majority voting, the weight is 
calculated as: 
 

  , (2) 
and we kept the relation if its ωrf is no less than 0.5. In the 
overall weighted majority voting, the weight is calculated as: 
 

  , (3) 
and we kept the relation if its ωrf is no less than 0.5. 
•Stacking: Using the prediction results from the five BERT-
based models as binary features (0 for negative and 1 for 



positive) for each chemical-protein combination, we trained a 
J48 decision tree by WEKA [13] with default settings for each 
training set. After implementing the stacking models to the 
DrugProt test set, we pooled the results from each training set 
and then kept the relations having no less than five votes. 

III. RESULTS AND DISCUSSION 
The prediction performances (F-1 scores) of the five BERT-

based models and three ensemble learners for the ten 
development sets created from the training data, are shown in 
Table I. The results show that the overall performances are from 
0.753 (BioBERT) to 0.792 (model-first weighted majority 
voting). Moreover, all three ensemble learners have better 
performances than every single BERT-based model, showing 
improved prediction performance using ensemble learning.  

According to the performance shown in the development 
sets, we chose five models for the test set: fold-first weighted 
majority voting (61,850 relations), model-first weighted 
majority voting (62,398 relations), overall majority voting 
(61,723 relations), stacking (60,786 relations), and BioM-
ALBERT 1 (62,512 relations). In total, there are 67,374 unique 
relations. The overlaps among the five results are shown in 
Figure 3. Although BioM-ALBERT 1 showed a lower 
prediction performance in development sets, Figure 3 shows that 
it provides the most unique predictions (2,311 relations) in the 
test set. The results on the main track and large-scale track of the 
BioCreative VII track are shown in Tables III and IV 
respectively.  

We also provide the results of the top 5 submission runs on 
the main track and large-scale subtrack test sets in Tables II and 
III respectively. Based on the macro-averaged F1-score, we see 
that the Majority voting algorithms perform the best in each 
case. While the model-first Majority Voting has the highest 
score on the main track (77.6%), the fold-first MV algorithm 
was the top scorer (77.3%) on the large-scale subtrack.  

Subsequently, we also report the results by the relation level 
granularity in Tables V and VI for the main track and large-scale 
subtrack. We report the F1-scores for each algorithm’s 
performance in both cases and see the similar trend in the 
prediction values.   

IV. CONCLUSION 
We briefly outline the submitted systems for the BioCreative 
VII DRUGPROT Track. The results demonstrate domain-
specific transformer models achieve reasonable performance on 
the drug-protein extraction task. Our ensemble system can 
further improve its performance with majority voting-based 
ensemble methods performing the best. 
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TABLE II MODEL PERFORMANCE ON THE MAIN TRACK TEST SET 

 

 TABLE III MODEL PERFORMANCE ON THE LARGE-SCALE TEST SET 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 

 
 

                                                                     TABLE I PREDICTION PERFORMANCE ON THE DEVELOPMENT SETS 

 
 

Relation-Type 
  

 BioM- ALBERT 1  Stacking  Voting w FM  Voting w MF  Voting 
MT LS MT LS MT LS MT LS MT LS 

ACTIVATOR 0.81 0.74 0.79 0.81 0.82 0.81 0.81 0.81 0.82 0.81 
AGONIST 0.78 0.70 0.78 0.75 0.78 0.79 0.78 0.78 0.77 0.79 
AGONIST-INHIBITOR 1.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 
ANTAGONIST 0.91 0.84 0.90 0.87 0.90 0.90 0.90 0.89 0.90 0.90 
DIRECT-REGULATOR 0.67 0.65 0.66 0.69 0.68 0.69 0.68 0.69 0.68 0.68 
INDIRECT-
DOWNREGULATOR 0.76 0.74 0.75 0.76 0.77 0.77 0.78 0.77 0.78 0.77 
INDIRECT-
UPREGULATOR 0.77 0.74 0.76 0.74 0.76 0.76 0.77 0.76 0.76 0.76 
INHIBITOR 0.87 0.84 0.85 0.85 0.85 0.85 0.86 0.85 0.86 0.85 
PART-OF 0.68 0.67 0.69 0.69 0.69 0.71 0.70 0.70 0.70 0.71 
PRODUCT-OF 0.70 0.63 0.67 0.60 0.69 0.67 0.68 0.67 0.69 0.68 
SUBSTRATE 0.65 0.60 0.65 0.65 0.65 0.66 0.67 0.66 0.64 0.66 
SUBSTRATE_PRODUCT-
OF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
AGONIST-ACTIVATOR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Run ID Run Name Precision Recall F1 
1 1-Voting w FM 0.795 0.750 0.77193 
2 2-Voting w MF 0.804 0.750 0.776031 
3 3-Voting 0.800 0.746 0.771763 
4 4-Stacking 0.800 0.733 0.765181 
5 5-BioM-ALBERT 1 0.797 0.753 0.774488 

Run ID Run Name Precision Recall F1 
1 1-BioM-ALBERT 1 0.763804 0.713467 0.737778 
2 2-Stacking 0.77619 0.747278 0.76146 
3 3-Voting w FM 0.794856 0.752722 0.773216 
4 4-Voting w MF 0.800799 0.746418 0.772653 
5 5-Voting 0.797194 0.748997 0.772345 

Model     Development sets     Overall 

1 2 2 4 5 6 7 8 9 10 
BioBERT 0.766 0.760 0.717 0.803 0.707 0.771 0.759 0.740 0.724 0.756 0.753 
BioM-ALBERT 1 0.775 0.784 0.711 0.828 0.719 0.806 0.786 0.777 0.739 0.811 0.777 
BioM-ALBERT 2 0.768 0.776 0.718 0.828 0.702 0.773 0.845 0.767 0.742 0.763 0.769 
BioM-BERT 0.760 0.776 0.731 0.828 0.688 0.767 0.794 0.785 0.754 0.785 0.769 
PubMedBERT 0.761 0.778 0.708 0.815 0.705 0.766 0.796 0.797 0.720 0.776 0.765 
Model-first majority voting 0.771 0.806 0.757 0.844 0.728 0.808 0.818 0.787 0.763 0.805 0.791 
Model-first weighted 
majority voting 

0.774 0.806 0.759 0.844 0.730 0.808 0.818 0.789 0.763 0.806 0.792 

Stacking 0.767 0.797 0.735 0.838 0.717 0.762 0.789 0.811 0.750 0.797 0.779 

TABLE IV PREDICTION PERFORMANCE IN F1-SCORE BY RELATIONS ON MAIN TRACK (MT) AND LARGE-SCALE (LS) TEST SETS 


