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Abstract— We propose two neural network-based methods 

that use external knowledge to predict drug-protein interactions 

in biomedical texts. In the first method, we construct denoised 

distant supervision data from external drug and protein databases. 

Then, we train a neural network model by adding the distant 

supervision data set to the annotated supervised data set. In the 

second method, we utilize the description and structure 

information registered in drug and protein databases. 

The experimental results show that the distant supervision 

data set improve F-scores for some interaction labels, although the 

overall micro-averaged F-score does not improve.  The description 

and structure information is effective for the extraction of drug-

protein interactions. Furthermore, the ensemble of the models 

mentioned above slightly enhanced the performance on the 

development data set. 
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I. INTRODUCTION 

There is a growing need for systems that automatically detect 
in text chemical-protein interactions that are of crucial relevance 
for biology (1). The DrugProt task of the BioCreative VII Track 
1 (2) aims to promote the development of systems that extract 
their interactions. We tackled the DrugProt task with neural 
models that employ external knowledge. Our models are based 
on BERT, which shows the state-of-the-art performance on 
several NLP tasks and can be considered external knowledge 
from other texts. In addition, we utilize distant supervision data 
and structural information of drugs and proteins as external 
knowledge from knowledge bases. 

II. TASK DEFINITION 

The DrugProt task provides a corpus that domain experts 
annotated exhaustively, and all drug and protein mentions in the 
corpus are labeled. In addition, binary relationships 
corresponding to the 13 types of drug-protein interactions are 
annotated for all possible drug-protein pairs. In other words, 
when multiple binary relations exist, the drug-protein pair has 
multiple interactions. Conversely, when no binary relations exist, 
there is no interaction between the pair. The goal of the task is 
to correctly predict the interactions between drug-protein pairs 
given the input sentences and the mentions of drugs and proteins. 

III. METHODS 

We propose two models and their ensembles; the first model 
utilizes the description and structural information of the protein 
and drug entities, while the second model considers distant 

supervision data. In this section, we first explain the 
preprocessing of the input data, which is common to all the 
models in section III A. We then explain the two models in 
section III B and section III C . We finally explain the ensemble 
method in section III D.  

A. Preprocessing 

The given abstract texts are first split into sentences by 
ScispaCy (3). Then, the drug-protein pairs are created from each 
sentence, and for each pair, the mentions of the target drug and 
protein are replaced with Entity1 and Entity2, respectively. 
Table I shows an example of this preprocessing. The sentence 
contains three drug mentions (androstenedione, oestrone, 
oestrone) and one protein mention (aromatase). Three drug-
protein pairs are created from these with the mentions replaced.  

B. Utilizing description and structural information of entities 

The first model utilizes the description and structural 
information of the protein and drug entities. This model is based 
on the drug-drug interaction extraction method of Asada et al. 
(4), and we have extended the method for drug-protein 
interaction extraction. The drug and protein mentions in an input 
sentence are linked to the databases DrugBank (5) and Uniprot 
(6), respectively. The textual information and structural 
information registered in the databases are then used for relation 
extraction. Fig. 1 shows the overview of the model. 

The mentions in the sentence and database entries are linked 
by relaxed string matching. For each drug, the “description” 
item registered in DrugBank is used as the description 
information, and the “SMILES” (7) item is used as structural 
information. For each protein, the “function” item registered in 
Uniprot is used as the description information, and the 
“sequence” item is used as the structural information.  

1) Encoding input sentences 
Each preprocessed input sentence is fed into a BERT 

encoder, and the embedding of [CLS] token  is used as the input 
sentence representation vector 𝒉𝑖𝑛𝑝𝑢𝑡. We then take 𝒉𝑖𝑛𝑝𝑢𝑡 as 

the input of the fully connected layer and obtain the 𝑑𝑟-

dimensional vector 𝒉𝑖𝑛𝑝𝑢𝑡
𝑓𝑐

, where 𝑑𝑟 is the number of relation 

labels, including the negative label. It should be noted that 
although the DrugProt data set contains multiple labels for each 
instance, our approach cannot predict the multiple labels 
correctly. However, since it is known that the number of 
instances with multiple labels is relatively few in our 
preliminary experiment, we employ such a standard 
classification approach. 



   

 

   

 

We convert 𝒉𝑖𝑛𝑝𝑢𝑡
𝑓𝑐

 into the probability of possible relations 

by a softmax function 𝒑𝑖𝑛𝑝𝑢𝑡=softmax(𝒉𝑖𝑛𝑝𝑢𝑡
𝑓𝑐

). The cross-

entropy loss 𝐿=𝒚∑log𝒑𝑖𝑛𝑝𝑢𝑡 is used as the loss function, 

where 𝒚 is the gold type distribution. 𝒚 is a one-hot vector 
where the probability is 1 for the correct label and 0 otherwise. 

2) Encoding description information 

The descriptions registered in the database are also encoded 

by BERT in the same way as the input sentence of the corpus. 

A separate BERT is prepared for database descriptions. We 

convert the vector 𝒉𝑑𝑒𝑠𝑐_𝐶𝐿𝑆 of the BERT [CLS] token into a 

𝑑𝑑-dimensional vector 𝒉𝑑𝑒𝑠𝑐 as follows: 

 𝒉𝑑𝑒𝑠𝑐=GELU(𝑾𝒉𝑑𝑒𝑠𝑐_𝐶𝐿𝑆+𝒃), (1) 

where the GELU is an activation function, and 𝑾 and 𝒃 are 
weights and bias of the linear layer, respectively. We 
concatenate the representations of the entity 1 description 
𝒉𝑑𝑒𝑠𝑐1 and the entity 2 description 𝒉𝑑𝑒𝑠𝑐2 and the input 
sentence 𝒉𝑖𝑛𝑝𝑢𝑡. We then used the resulting vector as the input 
to the fully connected layer: 

 𝒉𝑑𝑒𝑠𝑐
𝑓𝑐

=FC([𝒉𝑖𝑛𝑝𝑢𝑡;𝒉𝑑𝑒𝑠𝑐1;𝒉𝑑𝑒𝑠𝑐2]), (2) 

where FC is a fully connected layer and [;] denotes the vector 

concatenation. We convert 𝒉𝑑𝑒𝑠𝑐
𝑓𝑐

 into the probability 𝒑𝑑𝑒𝑠𝑐 by 
a softmax function, and the model parameters are updated by 

minimizing the loss function 𝐿=𝒚∑log𝒑𝑑𝑒𝑠𝑐. 

3) Encoding structural information 

For drugs, we use the SMILES strings as the structural 

information. For proteins, we use amino acid sequences. Both 

SMILES strings and amino acid sequences are encoded by 

character-based CNNs.  

First, we assign the 𝑑𝑐-dimensional character embedding to 

each character of the structural sequence; specifically, atoms of 

drugs such as ‘C’ and ‘N’, or bonds of drugs such as ‘=’ and ‘#’, 

amino acid symbols of proteins such as ‘A’, ‘R’, and ‘N’. 

After each character of the sequence is converted to the 

corresponding embedding, all character embeddings are 

encoded as the inputs to CNNs with multiple convolutional 

window sizes (8), and max pooling is employed to obtain the 

whole sequence representation. 

We concatenate the representation of the entity 1 structural 

representation 𝒉𝑠𝑡𝑟𝑢𝑐𝑡1, the entity 2 structural representation 

𝒉𝑠𝑡𝑟𝑢𝑐𝑡2, and the input sentence representation 𝒉𝑖𝑛𝑝𝑢𝑡 to make 

the input of the fully connected layer: 

 𝒉𝑠𝑡𝑟𝑢𝑐𝑡
𝑓𝑐

=FC([𝒉𝑖𝑛𝑝𝑢𝑡;𝒉𝑠𝑡𝑟𝑢𝑐𝑡1;𝒉𝑠𝑡𝑟𝑢𝑐𝑡2]), (3) 

We convert 𝒉𝑠𝑡𝑟𝑢𝑐𝑡
𝑓𝑐

 into the probability 𝒑𝑠𝑡𝑟𝑢𝑐𝑡 by a 

softmax function, and update the model parameters by 

minimizing the cross-entropy loss.  

 

4) Inference 

We finally combine description and structure information 

using an ensemble technique when predicting the drug-protein 

relation label. 

The final prediction is obtained by averaging the prediction 

probabilities of the three models described in the previous 

section as follows: 

 𝒑𝑎𝑙𝑙=
1

3
(𝒑𝑖𝑛𝑝𝑢𝑡+𝒑𝑑𝑒𝑠𝑐+𝒑𝑠𝑡𝑟𝑢𝑐𝑡).          (4) 

We calculate the relation label prediction as argmax(𝒑𝑎𝑙𝑙). 

C. Methods with distant supervision data 

 We tackled a method for training neural network models by 
adding distant supervision data constructed from databases to 
the DrugProt dataset. 

1) Constructing distant supervision data 
 The flow of the creation of the distant supervision data is 
shown in Fig. 2. Four databases are used to create the distant 
supervision data: the drug database DrugBank, the protein 

database UniProt, the chemical substance database CTD (9), 

and the medical literature database PubMed (10). 

 First, relation triples are obtained from DrugBank. Relation 
triples are triples of IDs of interacting drugs and proteins and 
their interaction names. Next, a drug name dictionary is 
assembled by mapping drug IDs to surface expressions based on 
the information in DrugBank and CTD. Similarly, a protein 
name dictionary is assembled from UniProt and CTD. Then, we 
extract texts from the PubMed literature, split the extracted texts 
into sentences, and extract entities from the sentences using 
ScispaCy. Finally, we create distant supervision data by 
dictionary matching of drugs and proteins in the relation triples 
to the extracted entities from the PubMed using the drug name 
dictionary and protein name dictionary. The mapping between 
the relations on DrugBank and those on the task is done by using 
a dictionary created based on the descriptions of the relations in 
the DrugProt corpus relation annotation guidelines (11) (e.g., 
Inducer is included in INDIRECT-UPREGULATOR), and the 
instances of the relations on DrugBank that cannot be mapped 
by the dictionary are filtered out. As a result, 400,867 were used 
for training. 

TABLE I.  Examples of preprocessing of drug-protein pairs in the sentence “The aromatase enzyme, which converts androstenedione to 

oestrone, regulates the availability of oestrogen so support the growth of hormone-dependent beast tumours.” 



   

 

   

 

2) Denoising distant supervision data 
Since the distant supervision data is automatically generated 

from a database, it contains a lot of false positives, which can be 
noise in training. To alleviate this, we built a denoising model 
that recognizes and reduces noise, assuming that negative 
examples of the DrugProt dataset have characteristics similar to 
noise. 

The input to the denoising model is a sentence in which the 
target entities are masked. BERT is used as the sentence encoder. 
The BERT [CLS] token is passed to a single fully connected 
layer for binary classification. The parameters are updated by 
minimizing the cross-entropy loss. 

 The training of the denoising model is performed in a semi-
supervised way by combining a part of the training data from the 
DrugProt dataset and distant supervision data. Three-way cross-
validation is used to create three denoising models, where two-
third of the training data is utilized for training the model with 
distant supervision data, and the remaining data is utilized for 
the validation. The detailed training flow of one model is as 
follows: We first prepare the train part of the DrugProt dataset 
as the training data. We then perform one epoch training of the 
denoising model on the training data. Next, we apply the trained 
denoising model to the distant supervision data and add the top 
500 positive and negative examples to the training data. After 
training the model, we evaluate the performance of the binary 
classifier on the validation data set. Finally, we repeat training 
and adding distant supervision data until the performance of the 
validation data stops increasing. 

 We use the three denoising models to predict and denoise 
distant supervision data. We take the average of the prediction 
scores of the three models as the prediction score of the entire 

denoising model, and denoise distant supervision data by a 
threshold.  

 Data classified as non-noise with a score above a specified 
threshold (0.999 in the experiment) are added to the training data 
for relation extraction as positive instances, and data classified 
to be noise with a score above the threshold are added to the 
training data for relation extraction as negative instances.  

3) Learning models using both distant and direct 

supervision data 
 We use the DrugProt dataset and denoised distant 
supervision data to train a BERT-based relation classification 
model. The input is a sentence with the target entity masked. 
BERT is used as the sentence encoder. The BERT [CLS] token 
is passed to a single fully connected layer  for multiclass 
classification. The parameters are updated by minimizing the 
cross-entropy loss. 

 First, we train the relation extraction model on the denoised 
distant supervision data. Next, we initialize the weights of the 
model with the weights of the model trained on the distant 
supervision data, and train the model on the DrugProt dataset. 

D. Ensemble 

 We combine the two models explained in section III B and 
section III C using an ensemble technique. We perform the 
ensemble by averaging the probability vectors of the two models 
after passing through the softmax layer.  

TABLE III. F-scores per class on development set. 

TABLE II. Micro-averaged F-scores on development set and test set. The results on the test set are shown only for the five submitted 

models. Bold is the best F-score. 

 



   

 

   

 

IV. EXPERIMENTS 

A. Models 

We have submitted the following five models. 

1-desc_struct   A model using the description and structure 

information of protein/drug entity. 

2-ds_desc_struct   The ensemble of models 1 and 4 

3-ds_init_desc_struct   The ensemble of models 1 and 5 

4-ds_pretrain   A model using distant supervision data. All 

parameters are pre-trained on distant supervision data 

5-ds_pretrain_init   A model using distant supervision data. 

Layers other than the fully connected layer are initialized 

with parameters pre-trained on distant supervision data 

B. Experimental settings 

Our system was implemented in Python3 (12), using 

Pytorch (13) as the machine learning library. For the model 1-

desc_struct, BioBERT-Large (14) is used as the text encoder. 

Adam (15) is used as the optimization method,  and the model 

was trained with a batch size of 128. The BioBERT-Large was 

prepared separately for the input sentence and the entity 

description, and they are fine-tuned during training. The 

maximum sentence length was set to 128 for both the input 

sentence and the entity description. 
 For drugs, string matching was performed for the entry names, 
synonyms, product names, and brand names in DrugBank. For 
proteins, string matching was performed for the entry names, 
recommended names, alternative names, and gene names in 
Uniprot. As a result, 94% and 99% of drug and protein mentions 
in the training data set matched the DrugBank and Uniprot 
entries. When the entity could not link to database entries or the 
description and structure information is not registered in the 
database, we use an empty string as the input of BERT and 
CNNs, i.e., all tokens are replaced with the padding token. In the 
structural information encoding using character CNNs, the 
maximum sequence length of SMILES was set to 200, and     
that of amino acid sequences was set to 1,500. For both drugs  
and proteins, the character embedding dimension size 𝑑𝑐 was set 
to 100, the convolution output vector dimension size was set to 
16, and the convolution window size was set to [3,5,7]. Since we 
used three convolution windows, the dimension sizes of the 

structural vectors 𝒉𝑠𝑡𝑟𝑢𝑐𝑡1 and 𝒉𝑠𝑡𝑟𝑢𝑐𝑡2 are both 16×3=48.  

For 4-ds_pretrain and 5-ds_pretrain_init, PubMedBERT 
(16)  is used as the text encoder. Adam is used as the 
optimization method, and the model was trained with a batch 
size of 32. Optuna (17) is used to adjust the learning rate, weight 
decay, and dropout rate of hyperparameters. During the semi-
supervised training of the denoiser, the top 500 distant 
supervision data in each epoch were added to the training data. 
In addition, a classification score of 0.999 was set as the 
threshold for denoiser classification.  

V. RESULTS 

 We evaluated the performance of proposed models on the 
development set and test set in Table II. Regarding the method 
using the description and structure information of the database, 

the F-score is improved in the development data set in both the 
case where the description information and the structure 
information is used individually, compared with the baseline 
BioBERT-Large model. Furthermore, the model 1-desc_struct, 
which uses both description and structure information, further 
improved the F-score from the baseline model. 

 Comparing PubMedBERT to 5-ds_pretrain_init, the F-
score did not change much, and no performance improvement 
was obtained by utilizing the distant supervision data. On the 
contrary, 4-ds_pretrain showed a significant decrease in 
performance. Table III shows the F-score for each interaction 
type. For most of the classes of F-scores and a micro average, 5-
ds_pretrain_init showed better performance than 4-
ds_pretrain. On the other hand, for AGONIST-ACTIVATOR 
and AGONIST-INHIBITOR with less training data, 4-
ds_pretrain, which initializes all weights pre-trained on distant 
supervision data, showed higher performance. 

As for the ensembled models, The model 2-ds_desc_struct, 
the ensemble of 1-desc_struct and 4-ds_pretrain, showed 
slightly higher performance than the model 1-desc_struct and 
showed the highest F-score on the development data set. 
However, the performance of the model of the ensemble is 
slightly degraded from the original model.  

VI. CONCLUSION 

 We propose two BERT-based drug-protein interaction 
extraction methods, utilizing entities description and structure 
information, and constructing distant supervision data set for 
more effective model training. We show that the model with 
constructed distant supervision data set does not improve overall 
performance, but improves F-scores for some interaction labels. 
The model utilizing entity description and structure information 
shows higher performance from the baseline model, and we 
think these results show the importance of considering various 
information about entities for the drug-protein interaction 
extraction task. 

As future work, we would like to investigate the effective 
approach to construct and utilize distant supervision data set. In 
addition, we will discover useful database information other 
than description and structural information for drug-protein 
interaction extraction.  

 



   

 

   

 

 
Fig. 1. The model with description and structure information 

 

 

 
Fig. 2. The flow of the creation of the distant supervision data 
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