
Text Mining Drug-Protein Interactions using an

Ensemble of BERT, Sentence BERT and T5 models

Xin Sui, Wanjing Wang, Jinfeng Zhang

Department of Statistics, Florida State University, Tallahassee, Florida, United States

Abstract— In this work, we trained an ensemble model for

predicting drug-protein interactions within a sentence based on

only its semantics. Our ensembled model was built using three

separate models: 1) a classification model using a fine-tuned

BERT model; 2) a fine-tuned sentence BERT model that embeds

every sentence into a vector; and 3) another classification model

using a fine-tuned T5 model. In all models, we further improved

performance using data augmentation. For model 2, we predicted

the label of a sentence using k-nearest neighbors with its

embedded vector. We also explored ways to ensemble these 3

models: a) we used the majority vote method to ensemble these 3

models; and b) based on the HDBSCAN clustering algorithm, we

trained another ensemble model using features from all the

models to make decisions. Our best model achieved an F-1 score

of 0.753 on the BioCreative VII Track 1 test dataset.

Keywords—text mining, BERT, sentence BERT, T5, ensemble,

relation extraction, clustering

I. INTRODUCTION

Drug-protein interactions play an important role in biology.
A great volume of articles on this topic are published every
year, but only a few are manually annotated. It is thus
important to develop an automated annotation system for these
interactions in biomedical text.

The previous BioCreative challenge hosted a similar
chemical-protein interaction track (1) where participants were
asked to classify these interactions into various categories. The
best system developed by (2) was able to achieve an F-1 score
of 0.641. Recent advancements in text mining, especially the
emergence of transformer based models, have improved the
result significantly. The authors of Pubmed BERT (3) for
example, reported an F-1 score of 0.772 in their work.

II. METHODS

A. Data Processing

1) The DrugProt Corpus for BioCreative VII Track 1
In the DrugProt Corpus (4), domain experts manually

annotated the followings in the titles and abstracts of selected
PubMed articles: i) all chemical and gene mentions; and ii) all
relations between them corresponding to a set of 13 relation
types. Their annotation criteria are available online.

The corpus is split into 3 subsets: training, development,
and test. The test set contains 750 golden standard records
where entities and relations are annotated manually, as well as
another 10,000 background records with automatic annotations.
The introduction of such huge background records, as the

organizers wrote on their website, is for the following 3
purposes: i) to prevent participants from manually correcting
predictions; ii) to generate a silver standard predicted relations;
and iii) to test the capabilities of participating models on
handling larger datasets. The organizers also released a large-
scale test data with millions of abstracts and entities to further
test the scalability of participating models. Table 1 shows the
statistics of the above 4 datasets.

TABLE I. DRUGPROT DATASET STATISTICS

In this article, we use (PMID, chem_arg, gene_arg) to
reference the interaction between a chemical with label
chem_arg and a gene with label gene_arg, in the PubMed
article with PMID. We call such triplet an instance. When
showing the text of an instance in this paper, we use italic and
wrap the chemical and gene mentions of our interest with **
and $$ respectively. For example: **AG1478** inhibited
EGF-induced $$MMP-9$$ expression.

 We discovered several interesting patterns in the dataset.
First, while most annotated relation types are unique, there are
some cases where a pair of gene and chemical entities in an
article is annotated with multiple relation types. For example,
(23064031, T6, T26): **NFD** suppressed EGF-mediated
protein levels of c-Jun and c-Fos, and reduced $$MMP-
9$$ expression and activity, concomitantly with a marked
inhibition on cell migration and invasion without obvious
cellular cytotoxicity. The instance above is labeled with both
INDIRECT-DOWNREGULATOR and INHIBITOR. Of the
17288 true relations in the training set, 430 have multiple
labels. We discovered further that 28 of the 430 duplicates
have the same interaction type. These are basically the same
entry recorded twice in the dataset. Due to the small size of
such occurrences, we do not consider the classification task as
multi-label and proceed with training classifiers that predict
only 1 class for each instance.

Second, we found 5697 overlapping entities in the training
dataset. We say a pair of entities is overlapping when an entity
is part of the other entity in a sentence. Note that his definition
excludes entity pairs that have partial overlapping. We found
only 5 instances that have a true interaction. In the 7th negative

Dataset Abstracts Entities Relations

Training 3500 89529 17288

Develop 750 18858 3765

Test 10750 310805 Unknown

Large 2.36M 54.0M Unknown

rule concerning CEMs (Chemical Entity Mentions) that are
part of a GPRO (Gene and Protein Related Object) mention in
the official ChemProt annotation guideline (1), the organizers
stated that these relations should not be annotated unless “there
is an independent, separate mention of the same CEM in the
same sentence, where it is explicitly mentioned that this CEM
acts as a substrate of the GPRO.” Based on our observation of
the data and this annotation rule, we ignore chemical-protein
pairs that are overlapping when we process the data.

2) Processing Pipeline
Our data processing pipeline consists of the following steps.

a) Step 1: Sentence tokenization.

Sentence tokenization is the process of splitting a paragraph,
an abstract in our application, into sentences. We use the
NLTK tokenizer (5) fine-tuned with extra abbreviations and
entities that should not be split. The extra info was first
gathered by our previous team (6) in the BioCreative VI
challenge and augmented this time by analyzing the
tokenization results on the training dataset.

b) Step 2: Making false cases.

While true interactions were annotated in the provided
dataset, false ones were not. To generate false cases for each
sentence, we first collected all the gene and chemical mentions.
Then for each combination of gene and chemical we assign a
“NOT” label to it if its relation is not annotated in the dataset.
The underlying assumption is that the relation annotation is
complete: all the interacting pairs were already annotated in the
dataset.

c) Step 3: Entity name masking.

Since we were training a classifier that predicts relation
type based on the semantics of the sentences, we masked the
chemical and gene names of all instances with special tokens:
chem_name and gene_name respectively. This is to prevent the
model from taking a short path and learn their relation type
based on the names instead of the sentence semantics. We also
tried masking the names of other named entities in the
sentences but found the difference of model performance was
negligible.

d) Step 4 Splitting dataset.

During our internal testing, we split the provided training
set into training and validation sets using a 4:1 split with 80%
of the articles in the training set and the remaining 20% in the
validation. Note that such split is based on articles, not
instances, to prevent information leak. Were we to split the
dataset based on instances, some instances that are from the
same sentence would be split into different subsets, which
would leak information and reduce the model’s generalizability
when predicting the labels for new articles.

After testing internally using our own splits, we re-trained
our models to submit results using the following 2 splits: i)
using a 4:1 split on the training set as training and validation
set; and ii) using a 4:1 split on the combination of training and
development set as training and validation set.

e) Step 5 Data Augmentation.

After training the BERT model, we obtained a subset of
training data that the trained model predicted wrong. For every
sentence, we used StanfordNLP to get the shortest path
between chem_name and gene_name, and then randomly
deleted one word not in the path. We labeled them the same as
the originals, and augmented training datasets with these
sentences in all our models.

B. Models

In this work we used 3 models: i) BERT, ii) sentence
BERT, and iii) T5. All these models are based on transformers.
In this section, we briefly introduce the architectures, pre-
trained models we used, post-processing steps if any, and the
optimal hyper-parameters we used after fine-tuning the models.

1) BERT model
The BERT model (7) is a transformer encoder model that

stacks multiple layers of transformers on top of one another.
We refer the readers to the original BERT paper (7) for details.
For each sentence, we took the output of the classification
token [CLS] from the last layer and passed it through a linear
layer and a 𝑡𝑎𝑛ℎ activation function for the pooler output. We
then applied a dropout layer and another linear layer to obtain
the logits of each class. Finally, we used a sigmoid function to
obtain the class probabilities.

Since the introduction of the BERT model, there have been
multiple pre-trained BERT models in the biomedical domain,
including BioBERT (8) and PubMedBERT (3). BioBERT is a
continual pretraining from the original BERT and they share
the same vocabulary. PubMedBERT however, pretrains
everything from scratch including the vocabulary and thus
performs better in downstream tasks for PubMed documents.
We also observed during our experiments that PubMedBERT
performed better than BioBERT. Specifically, the
PubMedBERT version that is pre-trained on both the abstracts
and full-text articles performed the best.

The BERT model was fine-tuned for 10 epochs with early
stopping using the cross-entropy loss and the AdamW
optimizer with a learning rate of 6𝑒−6. These parameters were
tuned on the validation set to optimize the F-1 score.

2) Sentence BERT model
The sentence BERT model (7) we used has the same model

architecture as the BERT model for generating token
embeddings. After using the average over all token
embeddings (mean pooling) to calculate sentence embedding,
we transformed it by using a fully connected layer with 256
output dimensions and a 𝑡𝑎𝑛ℎ activation function to generate
our final sentence embedding.

We used the same pre-trained weights as the BERT model
as the initial values, and pre-trained our model for 10 epochs
with early stopping to fine-tune the model. The model was
fine-tuned with the AdamW optimizer with a 2𝑒−5 learning
rate with the batch hard triplet loss.

After fine-tuning the sentence embeddings, we used the
HDBSCAN (9) algorithm to cluster training data and used the
k-nearest neighbor for classification.

TABLE II. PERFORMANCE METRICS OF OUR SUBMITTED MODELS AGAINST THE AVERAGE

TABLE III. DETAILED GRANULAR RESULTS BY RELATION TYPE OF THE MAJORITY VOTE ENSEMBLE

3) T5 model
The T5 model (10), short for Text-to-text Transfer

Transformer, is a transformer encoder-decoder model that
outputs text for every text input. It can deal with various tasks
in one model, such as sentence translation, question answering,
and classification. In our application, we considered all
relations as texts and fine-tune the model to predict them for all
sentences. We refer readers to the original paper for the model
architecture, pre-training objectives, and model performance
on downstream tasks.

We used SciFive-Large (11), a T5 model pre-trained on
large biomedical corpora as our initial weights. We then
trained the model for 10 epochs with early stopping, using the
cross entropy loss and the AdaFactor optimizer with a learning
rate of 0.001. The AdaFactor optimizer is known to be memory
efficient, and it enables us to train the large model on a cluster
of 2 GPUs with 12 GB memory each after splitting the model
evenly.

C. Ensemble Methods

In addition to training all the models individually, we also
experimented with various ideas of training ensembles of them.

The first and simplest idea is using the majority vote of the
three models. When all the three models predict differently, we
use the result from the one that yields the highest F-1 score in
the training data.

We also experimented with the idea of training ensemble
models based on the clustering results from the Sentence
BERT model and HDBSCAN. If the performances of the
models vary from cluster to cluster, such ensemble methods
can learn this pattern and adjust the weights of the models

dynamically according to the cluster of any given sentence.
Inspired by this idea, we implemented two ensemble models: i)
simple ensemble, and ii) trained ensemble.

 For the simple ensemble method, we assigned each cluster
a model, which yielded the best accuracy over all the sentences
in the cluster for the training data. We found using the accuracy
metric instead of the F1 score to select models yielded the
better result in our experiments. When making predictions,
we first predicted the cluster of the sentence and then used the
model assigned to that cluster to make the final prediction.

 For the trained ensemble method, we extracted the
following features from our models (because the T5 model was
added in the last week of the competition, we did not have
enough time to incorporate its results into the ensemble
method): i) last layer features of the BERT model; ii) class
probabilities of the BERT model; iii) cluster ID from the
HDBSCAN; and iv) class label from k-NN classification. We
trained an ensemble model of i) XGBoost (11); ii) Logistic
regression; iii) Extra Trees classifier; and iv) Random Forest
classifier, to predict one among the following four scenarios: i)
both BERT and Sentence BERT predicted wrong; ii) Only
BERT predicted the label right; iii) Only Sentence BERT
predicted the label right; and iv) both models predicted the
label right. During inference, for sentences that fall into the
first scenario, we used the predicted label from the model that
yielded the better F-1 score overall.

Figure 1 shows the diagram of our submitted models.

Submission Precision Recall F1-validation F1-test

1. Bert Split 1 0.702 0.786 0.721 0.742

2. Bert Split 2 0.659 0.824 0.747 0.732

3. T5 0.719 0.760 0.748 0.739

4. Majority Vote 0.754 0.751 0.764 0.753

5. Trained Ensemble 0.633 0.633 0.753 0.633

All Participants (mean ± std) 0.643±0.196 0.629±0.247 0.620±0.232

Relation-Type Precision Recall F1score

ACTIVATOR 0.808642 0.784431 0.796353

AGONIST 0.755319 0.70297 0.728205

AGONIST-INHIBITOR 0 0 0

ANTAGONIST 0.86875 0.908497 0.888179

DIRECT-REGULATOR 0.767908 0.624709 0.688946

INDIRECT-DOWNREGULATOR 0.724551 0.796053 0.758621

INDIRECT-UPREGULATOR 0.711744 0.722022 0.716846

INHIBITOR 0.848309 0.835395 0.841802

PART-OF 0.573826 0.75 0.65019

PRODUCT-OF 0.591346 0.679558 0.632391

SUBSTRATE 0.679389 0.637232 0.657635

SUBSTRATE_PRODUCT-OF 0 0 0

AGONIST-ACTIVATOR 0 0 0

Fig. 1. Diagram of Submitted Models

D. Software

We implemented the BERT, sentence BERT and T5
models using transformers (12), sbert (13), and both both
transformers and TensorFlow (14) respectively, and ensemble
models using scikit-learn (15). Our code is available at
github.com/luckynozomi/ChemProt-BioCreative

III. RESULTS

A. Main Track

Besides the first run we submitted predictions from the
model trained with 80% of training set and validated with the
remaining 20% (the first train-validation split), all the others
are trained with 80% of the combined training and validation
sets and validated with the remaining 20% (the second train-
validation split). We also trained a Sentence BERT model with
the second split but did not include it in the submission because
we could only submit 5 results. We also did not submit the
result from the simple averaging ensemble because it was
inferior to the majority vote method on the validation set.

The five runs we submitted are: 1. BERT model with the
first train-validation split; 2. BERT model with the second
train-validation split; 3. T5 model with the same train-
validation split as Run 2; 4. Majority Vote of the BERT,
Sentence BERT and T5 models; and 5. Trained ensemble of
the BERT and Sentence BERT models. The results are in
Table 2. Table 3 lists the detailed granular results by relation
type.

B. Large Scale

Shown in Table 1, the large-scale dataset contains millions
of abstracts and entities to predict. We started running
predictions on September 23, 5 days before the submission

deadline. We finished running the Sentence BERT model and
submitted the result using 2 GPUs, while the BERT and T5
models required an extra day and did not finish.

 Adapting our system to the large-scale dataset was
straightforward. All we did was splitting the whole dataset into
100 slices, then run the whole pipeline on each of them. With 2
GPUs available, we let each run 50 slices. After obtaining
prediction results on all 100 slices, we aggregated them into
one single file and submitted it.

Our Sentence BERT model achieved a precision, recall and
F-1 score of 0.71, 0.73 and 0.72, respectively.

IV. DISCUSSIONS

A. Trained Ensemble Result

We believe there is a bug when submitting the trained
ensemble result. In our validation set, it achieved a F-1 score of
0.753. Despite being inferior to the majority vote ensemble
which had an F-1 score of 0.764, an F-1 score of 0.633 on the
test dataset seems unlikely. However, due to the limitation of
time, we have not located the problem yet.

B. Analysis by Relation Types

Table 4 shows the confusion matrix of our best model, the
majority vote model, on the validation set. The (i,j)th entry
shows the number of entries with true label i and predicted as j.
Due to the limitation of space, we only show the first 3 letters
of each label. The bottom three rows are the precision, recall
and F-1 score for each class.

Class AGONIST-ACTIVATOR, AGONIST-INHIBITOR
and SUBSTRATE_PRODUCT-OF have 0 F-1 scores because
the numbers of samples in the dataset are very small. In fact,
only 67 of 17288 instances have one of these labels. The lack
of such instances makes it hard for the models to predict such
cases. In fact, none of the instances in our validation set was
predicted as any of these labels.

From the confusion matrix, we observed that there are not
major confounding pairs among the true labels (all labels
except NOT). Most of prediction errors occur between a true
label and the NOT label. The most significant class of such
mispredictions is PART-OF. We also observed this pattern in
our clustering result. Of all the thirteen clusters, when we
predicted the labels of all the validation data, PART-OF only
appeared in one cluster. In that cluster, the only extra label is
NOT. We infer that the Sentence BERT model, our sentence
embedding algorithm, failed to separate these two classes.

We examined instances with PART-OF labels and none of
the 10 nearest neighbors have the right prediction. We found
several cases that are mislabeled. i) (18439678, T2, T20):
Both porcine $$TLR7$$ and TLR8 proteins were expressed in
cell lines and were **N**-glycosylated. ii) (10702256, T2,
T11): Removal of **N-** and O-linked oligosaccharides
reduces the M(r) to approximately 160,000, suggesting that
approximately 60% of the mass of SPACRCAN is
$$carbohydrate$$.

TABLE IV. CONFUSION MATRIX OF THE MAJORITY VOTE ENSEMBLE ON VALIDATION DATASET

REFERENCES

1. Krallinger, M., Rabal, O., Akhondi, S.A., et al. (2017) Overview of the
BioCreative VI chemical-protein interaction Track. Proceedings of
BioCreative VI workshop.

2. Peng, Y., Rios, A., Kavuluru, R., et al. (2018) Extracting chemical-protein
relations with ensembles of SVM and deep learning models. Database, 2018.

3. Gu, Y., Tinn, R., Cheng, H., et al. (2020) Domain-Specific Language
Model Pretraining for Biomedical Natural Language Processing. 1, 1–24.

4. Miranda, A., Mehryary, F., Luoma, J., et al. (2021) Overview of DrugProt
BioCreative VII track: quality evaluation and large scale text mining of drug-
gene/protein relations. Proceedings of the seventh BioCreative challenge
evaluation workshop.

5. Wagner, W. (2010) Steven Bird, Ewan Klein and Edward Loper: Natural
Language Processing with Python, Analyzing Text with the Natural Language
Toolkit. Language Resources and Evaluation, 44.

6. Lung, P.Y., He, Z., Zhao, T., et al. (2019) Extracting chemical-protein
interactions from literature using sentence structure analysis and feature
engineering. Database, 2019.

7. Devlin, J., Chang, M.-W., Lee, K., et al. (2018) BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding. .

8. Lee, J., Yoon, W., Kim, S., et al. (2019) BioBERT : a pre-trained
biomedical language representation model for biomedical text mining. 1–8.

9. McInnes, L., Healy, J. and Astels, S. (2017) hdbscan: Hierarchical density
based clustering. The Journal of Open Source Software, 2.

10. Raffel, C., Shazeer, N., Roberts, A., et al. (2020) Exploring the limits of
transfer learning with a unified text-to-text transformer. Journal of Machine
Learning Research, 21.

11. Phan, L.N., Anibal, J.T., Tran, H., et al. (2021) SciFive: a text-to-text
transformer model for biomedical literature. CoRR, abs/2106.0.

12. Wolf, T., Debut, L., Sanh, V., et al. (2020) Transformers: State-of-the-Art
Natural Language Processing. .

13. Reimers, N. and Gurevych, I. (2020) Sentence-BERT: Sentence
embeddings using siamese BERT-networks. EMNLP-IJCNLP 2019 - 2019
Conference on Empirical Methods in Natural Language Processing and 9th
International Joint Conference on Natural Language Processing, Proceedings
of the Conference.

14. Abadi, M., Barham, P., Chen, J., et al. (2016) TensorFlow: A system for
large-scale machine learning. Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2016.

15. Pedregosa, F., Varoquaux, G., Gramfort, A., et al. (2011) Scikit-learn:
Machine Learning in Python. Journal of Machine Learning Research, 12,
2825–2830.

ACT AGO AGO-

ACT
AGO-
INH

ANT DIR-
REG

IND-
DOW

IND-
UPR

INH PAR-
OF

PRO-
OF

SUB SUB_
PRO

NOT

ACT 220 0 0 0 0 2 0 18 6 0 0 0 0 67

AGO 1 91 0 0 0 8 0 0 6 0 0 0 0 16

AGO-ACT 0 3 0 0 0 0 0 0 0 0 0 0 0 0

AGO-INH 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ANT 1 0 0 0 126 2 0 0 0 0 0 0 0 24

DIR-REG 2 0 0 0 0 344 1 0 20 7 1 5 0 102

IND-DOW 0 0 0 0 0 0 228 3 25 0 0 1 0 31

IND-UPR 7 0 0 0 0 0 11 181 5 0 0 1 0 63

INH 2 0 0 0 4 3 20 2 1240 0 0 4 0 141

PAR-OF 0 0 0 0 0 1 0 0 0 121 1 1 0 27

PRO-OF 0 0 0 0 0 0 0 0 0 0 145 12 0 29

SUB 0 0 0 0 0 2 0 0 5 1 5 317 0 72

SUB_PRO 0 0 0 0 0 0 0 0 0 0 1 5 0 0

NOT 71 14 0 0 17 155 71 46 183 89 70 157 0 8392

F 0.71 0.79 0.00 0.00 0.84 0.69 0.74 0.70 0.85 0.66 0.71 0.70 0.00 0.92

