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Abstract— In this work, we trained an ensemble model for 

predicting drug-protein interactions within a sentence based on 

only its semantics. Our ensembled model was built using three 

separate models: 1) a classification model using a fine-tuned 

BERT model; 2) a fine-tuned sentence BERT model that embeds 

every sentence into a vector; and 3) another classification model 

using a fine-tuned T5 model. In all models, we further improved 

performance using data augmentation. For model 2, we predicted 

the label of a sentence using k-nearest neighbors with its 

embedded vector. We also explored ways to ensemble these 3 

models: a) we used the majority vote method to ensemble these 3 

models; and b) based on the HDBSCAN clustering algorithm, we 

trained another ensemble model using features from all the 

models to make decisions. Our best model achieved an F-1 score 

of 0.753 on the BioCreative VII Track 1 test dataset.  

Keywords—text mining, BERT, sentence BERT, T5, ensemble, 

relation extraction, clustering 

I. INTRODUCTION 

Drug-protein interactions play an important role in biology. 
A great volume of articles on this topic are published every 
year, but only a few are manually annotated. It is thus 
important to develop an automated annotation system for these 
interactions in biomedical text. 

The previous BioCreative challenge hosted a similar 
chemical-protein interaction track (1) where participants were 
asked to classify these interactions into various categories. The 
best system developed by (2) was able to achieve an F-1 score 
of 0.641. Recent advancements in text mining, especially the 
emergence of transformer based models, have improved the 
result significantly. The authors of Pubmed BERT (3) for 
example, reported an F-1 score of 0.772 in their work. 

II. METHODS 

A. Data Processing 

1) The DrugProt Corpus for BioCreative VII Track 1 
In the DrugProt Corpus (4), domain experts manually 

annotated the followings in the titles and abstracts of selected 
PubMed articles: i) all chemical and gene mentions; and ii) all 
relations between them corresponding to a set of 13 relation 
types. Their annotation criteria are available online. 

The corpus is split into 3 subsets: training, development, 
and test. The test set contains 750 golden standard records 
where entities and relations are annotated manually, as well as 
another 10,000 background records with automatic annotations. 
The introduction of such huge background records, as the 

organizers wrote on their website, is for the following 3 
purposes: i) to prevent participants from manually correcting 
predictions; ii) to generate a silver standard predicted relations; 
and iii) to test the capabilities of participating models on 
handling larger datasets. The organizers also released a large-
scale test data with millions of abstracts and entities to further 
test the scalability of participating models. Table 1 shows the 
statistics of the above 4 datasets. 

TABLE I.  DRUGPROT DATASET STATISTICS 

In this article, we use (PMID, chem_arg, gene_arg) to 
reference the interaction between a chemical with label 
chem_arg and a gene with label gene_arg, in the PubMed 
article with PMID. We call such triplet an instance. When 
showing the text of an instance in this paper, we use italic and 
wrap the chemical and gene mentions of our interest with ** 
and $$ respectively. For example: **AG1478** inhibited 
EGF-induced $$MMP-9$$ expression. 

 We discovered several interesting patterns in the dataset. 
First, while most annotated relation types are unique, there are 
some cases where a pair of gene and chemical entities in an 
article is annotated with multiple relation types. For example, 
(23064031, T6, T26): **NFD** suppressed EGF-mediated 
protein levels of c-Jun and c-Fos, and reduced $$MMP-
9$$ expression and activity, concomitantly with a marked 
inhibition on cell migration and invasion without obvious 
cellular cytotoxicity. The instance above is labeled with both 
INDIRECT-DOWNREGULATOR and INHIBITOR. Of the 
17288 true relations in the training set, 430 have multiple 
labels. We discovered further that 28 of the 430 duplicates 
have the same interaction type. These are basically the same 
entry recorded twice in the dataset. Due to the small size of 
such occurrences, we do not consider the classification task as 
multi-label and proceed with training classifiers that predict 
only 1 class for each instance.  

Second, we found 5697 overlapping entities in the training 
dataset. We say a pair of entities is overlapping when an entity 
is part of the other entity in a sentence. Note that his definition 
excludes entity pairs that have partial overlapping. We found 
only 5 instances that have a true interaction. In the 7th negative 

Dataset Abstracts Entities Relations 

Training 3500 89529 17288 

Develop 750 18858 3765 

Test 10750 310805 Unknown 

Large 2.36M 54.0M Unknown 



rule concerning CEMs (Chemical Entity Mentions) that are 
part of a GPRO (Gene and Protein Related Object) mention in 
the official ChemProt annotation guideline (1), the organizers 
stated that these relations should not be annotated unless “there 
is an independent, separate mention of the same CEM in the 
same sentence, where it is explicitly mentioned that this CEM 
acts as a substrate of the GPRO.” Based on our observation of 
the data and this annotation rule, we ignore chemical-protein 
pairs that are overlapping when we process the data. 

2) Processing Pipeline 
Our data processing pipeline consists of the following steps. 

a) Step 1: Sentence tokenization.  

Sentence tokenization is the process of splitting a paragraph, 
an abstract in our application, into sentences. We use the 
NLTK tokenizer (5) fine-tuned with extra abbreviations and 
entities that should not be split. The extra info was first 
gathered by our previous team (6) in the BioCreative VI 
challenge and augmented this time by analyzing the 
tokenization results on the training dataset. 

b) Step 2: Making false cases.  

While true interactions were annotated in the provided 
dataset, false ones were not. To generate false cases for each 
sentence, we first collected all the gene and chemical mentions. 
Then for each combination of gene and chemical we assign a 
“NOT” label to it if its relation is not annotated in the dataset. 
The underlying assumption is that the relation annotation is 
complete: all the interacting pairs were already annotated in the 
dataset. 

c) Step 3: Entity name masking. 

Since we were training a classifier that predicts relation 
type based on the semantics of the sentences, we masked the 
chemical and gene names of all instances with special tokens: 
chem_name and gene_name respectively. This is to prevent the 
model from taking a short path and learn their relation type 
based on the names instead of the sentence semantics. We also 
tried masking the names of other named entities in the 
sentences but found the difference of model performance was 
negligible. 

d) Step 4 Splitting dataset.  

During our internal testing, we split the provided training 
set into training and validation sets using a 4:1 split with 80% 
of the articles in the training set and the remaining 20% in the 
validation. Note that such split is based on articles, not 
instances, to prevent information leak. Were we to split the 
dataset based on instances, some instances that are from the 
same sentence would be split into different subsets, which 
would leak information and reduce the model’s generalizability 
when predicting the labels for new articles.  

After testing internally using our own splits, we re-trained 
our models to submit results using the following 2 splits: i) 
using a 4:1 split on the training set as training and validation 
set; and ii) using a 4:1 split on the combination of training and 
development set as training and validation set. 

 

e) Step 5 Data Augmentation.  

After training the BERT model, we obtained a subset of 
training data that the trained model predicted wrong. For every 
sentence, we used StanfordNLP to get the shortest path 
between chem_name and gene_name, and then randomly 
deleted one word not in the path. We labeled them the same as 
the originals, and augmented training datasets with these 
sentences in all our models. 

B. Models 

In this work we used 3 models: i) BERT, ii) sentence 
BERT, and iii) T5. All these models are based on transformers. 
In this section, we briefly introduce the architectures, pre-
trained models we used, post-processing steps if any, and the 
optimal hyper-parameters we used after fine-tuning the models.  

1) BERT model 
The BERT model (7) is a transformer encoder model that 

stacks multiple layers of transformers on top of one another. 
We refer the readers to the original BERT paper (7) for details. 
For each sentence, we took the output of the classification 
token [CLS] from the last layer and passed it through a linear 
layer and a 𝑡𝑎𝑛ℎ activation function for the pooler output. We 
then applied a dropout layer and another linear layer to obtain 
the logits of each class. Finally, we used a sigmoid function to 
obtain the class probabilities. 

Since the introduction of the BERT model, there have been 
multiple pre-trained BERT models in the biomedical domain, 
including BioBERT (8) and PubMedBERT (3). BioBERT is a 
continual pretraining from the original BERT and they share 
the same vocabulary. PubMedBERT however, pretrains 
everything from scratch including the vocabulary and thus 
performs better in downstream tasks for PubMed documents. 
We also observed during our experiments that PubMedBERT 
performed better than BioBERT. Specifically, the 
PubMedBERT version that is pre-trained on both the abstracts 
and full-text articles performed the best. 

The BERT model was fine-tuned for 10 epochs with early 
stopping using the cross-entropy loss and the AdamW 
optimizer with a learning rate of 6𝑒−6. These parameters were 
tuned on the validation set to optimize the F-1 score. 

2) Sentence BERT model 
The sentence BERT model (7) we used has the same model 

architecture as the BERT model for generating token 
embeddings. After using the average over all token 
embeddings (mean pooling) to calculate sentence embedding, 
we transformed it by using a fully connected layer with 256 
output dimensions and a 𝑡𝑎𝑛ℎ activation function to generate 
our final sentence embedding.  

We used the same pre-trained weights as the BERT model 
as the initial values, and pre-trained our model for 10 epochs 
with early stopping to fine-tune the model. The model was 
fine-tuned with the AdamW optimizer with a 2𝑒−5  learning 
rate with the batch hard triplet loss. 

After fine-tuning the sentence embeddings, we used the 
HDBSCAN (9) algorithm to cluster training data and used the 
k-nearest neighbor for classification. 



TABLE II.  PERFORMANCE METRICS OF OUR SUBMITTED MODELS AGAINST THE AVERAGE 

TABLE III.  DETAILED GRANULAR RESULTS BY RELATION TYPE OF THE MAJORITY VOTE ENSEMBLE 

3) T5 model 
The T5 model (10), short for Text-to-text Transfer 

Transformer, is a transformer encoder-decoder model that 
outputs text for every text input. It can deal with various tasks 
in one model, such as sentence translation, question answering, 
and classification. In our application, we considered all 
relations as texts and fine-tune the model to predict them for all 
sentences. We refer readers to the original paper for the model 
architecture, pre-training objectives, and model performance 
on downstream tasks. 

We used SciFive-Large (11), a T5 model pre-trained on 
large biomedical corpora as our initial weights. We then 
trained the model for 10 epochs with early stopping, using the 
cross entropy loss and the AdaFactor optimizer with a learning 
rate of 0.001. The AdaFactor optimizer is known to be memory 
efficient, and it enables us to train the large model on a cluster 
of 2 GPUs with 12 GB memory each after splitting the model 
evenly. 

C. Ensemble Methods 

In addition to training all the models individually, we also 
experimented with various ideas of training ensembles of them.  

The first and simplest idea is using the majority vote of the 
three models. When all the three models predict differently, we 
use the result from the one that yields the highest F-1 score in 
the training data. 

We also experimented with the idea of training ensemble 
models based on the clustering results from the Sentence 
BERT model and HDBSCAN. If the performances of the 
models vary from cluster to cluster, such ensemble methods 
can learn this pattern and adjust the weights of the models 

dynamically according to the cluster of any given sentence. 
Inspired by this idea, we implemented two ensemble models: i) 
simple ensemble, and ii) trained ensemble. 

 For the simple ensemble method, we assigned each cluster 
a model, which yielded the best accuracy over all the sentences 
in the cluster for the training data. We found using the accuracy 
metric instead of the F1 score to select models yielded the 
better result in our experiments.    When making predictions, 
we first predicted the cluster of the sentence and then used the 
model assigned to that cluster to make the final prediction. 

 For the trained ensemble method, we extracted the 
following features from our models (because the T5 model was 
added in the last week of the competition, we did not have 
enough time to incorporate its results into the ensemble 
method): i) last layer features of the BERT model; ii) class 
probabilities of the BERT model; iii) cluster ID from the 
HDBSCAN; and iv) class label from k-NN classification. We 
trained an ensemble model of i) XGBoost (11); ii) Logistic 
regression; iii) Extra Trees classifier; and iv) Random Forest 
classifier, to predict one among the following four scenarios: i) 
both BERT and Sentence BERT predicted wrong; ii) Only 
BERT predicted the label right; iii) Only Sentence BERT 
predicted the label right; and iv) both models predicted the 
label right. During inference, for sentences that fall into the 
first scenario, we used the predicted label from the model that 
yielded the better F-1 score overall.  

Figure 1 shows the diagram of our submitted models. 

 

Submission Precision Recall F1-validation F1-test 

1. Bert Split 1 0.702 0.786 0.721 0.742 

2. Bert Split 2 0.659 0.824 0.747 0.732 

3. T5 0.719 0.760 0.748 0.739 

4. Majority Vote 0.754 0.751 0.764 0.753 

5. Trained Ensemble 0.633 0.633 0.753 0.633 

All Participants (mean ± std) 0.643±0.196 0.629±0.247  0.620±0.232 

Relation-Type Precision Recall F1score 

ACTIVATOR 0.808642 0.784431 0.796353 

AGONIST 0.755319 0.70297 0.728205 

AGONIST-INHIBITOR 0 0 0 

ANTAGONIST 0.86875 0.908497 0.888179 

DIRECT-REGULATOR 0.767908 0.624709 0.688946 

INDIRECT-DOWNREGULATOR 0.724551 0.796053 0.758621 

INDIRECT-UPREGULATOR 0.711744 0.722022 0.716846 

INHIBITOR 0.848309 0.835395 0.841802 

PART-OF 0.573826 0.75 0.65019 

PRODUCT-OF 0.591346 0.679558 0.632391 

SUBSTRATE 0.679389 0.637232 0.657635 

SUBSTRATE_PRODUCT-OF 0 0 0 

AGONIST-ACTIVATOR 0 0 0 



 

Fig. 1. Diagram of Submitted Models 

D. Software 

We implemented the BERT, sentence BERT and T5 
models using transformers (12), sbert (13), and both both 
transformers and TensorFlow (14) respectively, and ensemble 
models using scikit-learn (15). Our code is available at 
github.com/luckynozomi/ChemProt-BioCreative 

III. RESULTS 

A. Main Track 

Besides the first run we submitted predictions from the 
model trained with 80% of training set and validated with the 
remaining 20% (the first train-validation split), all the others 
are trained with 80% of the combined training and validation 
sets and validated with the remaining 20% (the second train-
validation split). We also trained a Sentence BERT model with 
the second split but did not include it in the submission because 
we could only submit 5 results. We also did not submit the 
result from the simple averaging ensemble because it was 
inferior to the majority vote method on the validation set. 

The five runs we submitted are: 1. BERT model with the 
first train-validation split; 2. BERT model with the second 
train-validation split; 3. T5 model with the same train-
validation split as Run 2; 4. Majority Vote of the BERT, 
Sentence BERT and T5 models; and 5. Trained ensemble of 
the BERT and Sentence BERT models. The results are in 
Table 2. Table 3 lists the detailed granular results by relation 
type. 

B. Large Scale 

Shown in Table 1, the large-scale dataset contains millions 
of abstracts and entities to predict. We started running 
predictions on September 23, 5 days before the submission 

deadline. We finished running the Sentence BERT model and 
submitted the result using 2 GPUs, while the BERT and T5 
models required an extra day and did not finish.  

 Adapting our system to the large-scale dataset was 
straightforward. All we did was splitting the whole dataset into 
100 slices, then run the whole pipeline on each of them. With 2 
GPUs available, we let each run 50 slices. After obtaining 
prediction results on all 100 slices, we aggregated them into 
one single file and submitted it. 

Our Sentence BERT model achieved a precision, recall and 
F-1 score of 0.71, 0.73 and 0.72, respectively. 

IV. DISCUSSIONS 

A. Trained Ensemble Result 

We believe there is a bug when submitting the trained 
ensemble result. In our validation set, it achieved a F-1 score of 
0.753. Despite being inferior to the majority vote ensemble 
which had an F-1 score of 0.764, an F-1 score of 0.633 on the 
test dataset seems unlikely. However, due to the limitation of 
time, we have not located the problem yet. 

B. Analysis by Relation Types 

Table 4 shows the confusion matrix of our best model, the 
majority vote model, on the validation set.  The (i,j)th entry 
shows the number of entries with true label i and predicted as j. 
Due to the limitation of space, we only show the first 3 letters 
of each label. The bottom three rows are the precision, recall 
and F-1 score for each class. 

Class AGONIST-ACTIVATOR, AGONIST-INHIBITOR 
and SUBSTRATE_PRODUCT-OF have 0 F-1 scores because 
the numbers of samples in the dataset are very small. In fact, 
only 67 of 17288 instances have one of these labels. The lack 
of such instances makes it hard for the models to predict such 
cases. In fact, none of the instances in our validation set was 
predicted as any of these labels. 

From the confusion matrix, we observed that there are not 
major confounding pairs among the true labels (all labels 
except NOT). Most of prediction errors occur between a true 
label and the NOT label. The most significant class of such 
mispredictions is PART-OF.    We also observed this pattern in 
our clustering result. Of all the thirteen clusters, when we 
predicted the labels of all the validation data, PART-OF only 
appeared in one cluster. In that cluster, the only extra label is 
NOT. We infer that the Sentence BERT model, our sentence 
embedding algorithm, failed to separate these two classes. 

We examined instances with PART-OF labels and none of 
the 10 nearest neighbors have the right prediction. We found 
several cases that are mislabeled. i) (18439678, T2, T20):   
Both porcine $$TLR7$$ and TLR8 proteins were expressed in 
cell lines and were **N**-glycosylated. ii) (10702256, T2, 
T11): Removal of **N-** and O-linked oligosaccharides 
reduces the M(r) to approximately 160,000, suggesting that 
approximately 60% of the mass of SPACRCAN is 
$$carbohydrate$$. 



 

TABLE IV.  CONFUSION MATRIX OF THE MAJORITY VOTE ENSEMBLE ON VALIDATION DATASET 
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ACT AGO AGO-

ACT 
AGO-
INH 

ANT DIR-
REG 

IND-
DOW 

IND-
UPR 

INH PAR-
OF 

PRO-
OF 

SUB SUB_
PRO 

NOT 

ACT 220 0 0 0 0 2 0 18 6 0 0 0 0 67 

AGO 1 91 0 0 0 8 0 0 6 0 0 0 0 16 

AGO-ACT 0 3 0 0 0 0 0 0 0 0 0 0 0 0 

AGO-INH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

ANT 1 0 0 0 126 2 0 0 0 0 0 0 0 24 

DIR-REG 2 0 0 0 0 344 1 0 20 7 1 5 0 102 

IND-DOW 0 0 0 0 0 0 228 3 25 0 0 1 0 31 

IND-UPR 7 0 0 0 0 0 11 181 5 0 0 1 0 63 

INH 2 0 0 0 4 3 20 2 1240 0 0 4 0 141 

PAR-OF 0 0 0 0 0 1 0 0 0 121 1 1 0 27 

PRO-OF 0 0 0 0 0 0 0 0 0 0 145 12 0 29 

SUB 0 0 0 0 0 2 0 0 5 1 5 317 0 72 

SUB_PRO 0 0 0 0 0 0 0 0 0 0 1 5 0 0 

NOT 71 14 0 0 17 155 71 46 183 89 70 157 0 8392 

F 0.71 0.79 0.00 0.00 0.84 0.69 0.74 0.70 0.85 0.66 0.71 0.70 0.00 0.92 


