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Abstract—We present a modular model that leverages
knowledge sources including specialized gazetteer lists,
morphological information, and contextualized language models
for the task of medication name extraction from tweets. The
proposed system demonstrates high recall (.81) and low precision
(.68). We explain the low precision score and show a simple
workaround in post-competition evaluation.
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I. INTRODUCTION

BioCreative VII Track 3 concerns the extraction of text
spans that mention a medication or dietary supplement in
tweets. The training dataset comprises around 89,000 tweets,
and is extremely imbalanced (only 213 tweets include any
drug mention), which makes the task very challenging. When
positive samples are rare it is more likely that deep learning
models may not perform well due to the terms of the test set
not being foreshadowed sufficiently in the training data, i.e.
coverage becomes a bottleneck.

To address this problem, external knowledge sources such as
gazetteer lists of drug names can be used. Weissenbacher et al.
(6) proposed a two stage system where a BERT-based model
makes predictions which are filtered using a drug lexicon.

Here, we integrate outside lexical resources with deep
learning in a unified model, enabling both to inform on one
another and to act in synergy. For extraction of medication
names from tweets we leverage different knowledge sources
such as gazetteer lists, word embeddings, morphological infor-
mation, etc. using the multi-input RIM architecture (1). Each
knowledge source provides input to an independent module
which occasionally interacts with other modules.

II. PROPOSED SYSTEM

A. Multi-input RIM

We use the multi-input RIM (mi-RIM) architecture (1),
encompassing M independent, yet interacting recurrent mod-
ules. At each time step, the number of active modules is
controlled by a parameter k, which can force competition
among modules. As argued by (3), this competition can lead
to specialization on subproblems.

a) Input selection: Each module R,, augments the token
input " to X" = xi" ®© 0, where 0 is an all-zero vector and
@ denotes row-level concatenation. Then, using an attention
mechanism, unit R,, selects input:
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where R\ Wa4ery is the query, K,, = X"WkeY is the key,
and V,,, = Xth,’l“l is the value in the attention mechanism. If
the input x; is relevant to the task, the attention mechanism in
Equation 1 assigns more weight to it (selects it). The so ftmax
values of Equation 1 determine a subset S; of the & highest
ranked units. Among M units, those with the least attention
on the null input are the active units. The selected input A"
the is used to calculate a temporary hidden state h}* for the
active units:

hi* = Ry (b1, AYY) m € S 2)
where R,,(h}",, A7) denotes one iteration of updating the
recurrent unit R, based on the previous state h;”; and the

current input A7*. The hidden states of the inactive units R,,
(m ¢ Sp) remain unchanged (h]* = hj*; m ¢ Sy).

b) Interaction: To obtain the actual hidden states h}*,
the active units communicate using an attention mechanism:
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B. Knowledge sources

a) Word embeddings: Word embeddings provide a mean-
ing representation based on co-occurrence statistics. To embed
tokens, we use the representations provided by the last layer
of ClinicalBERT (7).



b) Morphology: Drug names often have a specific mor-
phology, favoring certain prefixes, suffixes, etc. The suffix -
statin, for instance, is observed in drug names of this type,
including torvastatin, lovastatin, and pravastatin. Following
(9) we use a character level Convolutional Neural Network
to obtain a morphological representation for each token. We
use multiple convolution filters /; with the range of lengths
I € {2,3,4,5}. The different filter sizes provide represen-
tations that capture character bi-grams, tri-grams, 4-grams
and 5-grams, simultaneously. The resulting character-based
representations are in a 100-dimensional space.

c) POS: Part-of-speech tags are the most widely used
linguistic features and are available from many standard NLP
environments. POS tags provide useful information such as
types of pronouns and tense for verbs, important clues for
sequence labeling. Following (2), we pre-train POS tags using
Word2Vec (8) to initialize an embedding layer. We apply
ANNIE tweet POS tagger on the training sets of SMM4H
2018 (all tasks) (10), SMM4H 2019 (Tasks 1 and 4) (11),
SMM4H 2020 (Task 5) (12), SMM4H 2021 (13) (all tasks
except Task 7), and BioCreative VII Track 3, and pre-train
the POS embeddings.

d) Gazetteer lists: To encode gazetteer annotations, we
use an embedding layer Ey,, € RG+1)>20 Each row in Ey,.
embeds one of the following three gazetteer lists. A fourth
row encodes lack of gazetteer matches.

Drug: DrugBank (5) includes commercial drug names as well
as the scientific names of their active ingredients.

Anatomy: Body part mentions are important evidence for drug
mention detection. Drug mentions often contain the body part
that hurts and for which a drug is consumed. For instance,
muscle relaxer in Example 1 is a drug mention. Relevant
anatomy terms are extracted from sub-tree A of MeSH (4)
into a gazetteer list.

Example 1:

Just took my first muscle relaxer to help with my
back pain

Disease: Many drug mentions refer to the disease, which
the drug attacks (see Example 2). A gazetteer was compiled
from subtree C in MeSH which includes terms for infections,
wounds, injuries, pain, etc.

Example 2:

The whooping cough injection site has killed my arm. =

In addition to external knowledge sources, we automatically
extract a black list and a white list during the training of our
model.

e) Black- and white-list: A black list of forbidden terms
and a white list of acceptable terms are automatically complied
during training. The black-list collects terms that occur in false
positives, intended to improve the precision of the system. The
white-list collects terms from false negatives and intends to
improve recall. Several examples from black and white lists
are provided in Table L.

TABLE I
SAMPLE TERMS IN BLACK AND WHITE LISTS

BlackList

lol, lollol, vodafone, xoxo,
perrin, virgo, texans, atro-
phy, alrilyic, preggo, le-
bron, pumpkin, ...

WhiteList

narcotics, vitamins, pill,
pills, opioids, meds, medi-
cation ...

C. Training paradigm

We partition the training set into two sub-sets D; and Ds.
D, is used to train the model during the first epoch. At the
end of the first epoch the model demonstrates a high recall
and low precision. We use this model to make predictions on
D,. All false positive predictions are added to the black-list
and all false-negative predictions are added to white-list. We
continue the training on the original training data (D; and Ds)
for another 3 epochs. Note that we keep the black and white
lists fixed during Epochs 2—4.

We implement the proposed system using the PyTorch
library and optimize it using Adam optimizer with Ir = .1e—5

ITI. RESULTS
A. Development phase

1) Numerical results: To evaluate the effectiveness of each
module, we perform an ablation study. Table II presents the
results on the development set provided by the organizers'.
We compare to ClinicalBERT as the baseline (first row in
Table II).

Weissenbacher et al. (6) show that a lexicon-based approach
for drug mention detection results in a high recall and low
precision. Table II shows, in contrast, that our Drug and
Disease gazetteers achieve rather balanced precision and recall
and that both modules independently improve F1.

The Morphology module and the White list, as expected,
each improve recall considerably, but lower precision. Nev-
ertheless, the gain in recall (4.08), outweighs the loss in
precision (—.02, —.04) and F'1 improves by .02, .03.

The Anatomy module provides only marginal improvements.
Further analysis of the development set revealed that there are
only 6 drug mentions that include a disease name or the name
of a body part. The fact that this module shows improvement
on a sample size this small is noteworthy.

The POS embeddings module is precision oriented; these
results confirm the observations in (2).

Ithe evaluation is preformed using the script provided by the organizers



TABLE II
PERFORMANCES ON DEVELOPMENT DATA

Modules k

ClinBERT (Bascline) -
ClinBERT, POS 2
ClinBERT, Drug 2
ClinBERT, Disease 2
ClinBERT, Anatomy 2
ClinBERT, Morph 2
ClinBERT, White 2 . .
ClinBERT, Black 2 .85 .63 .74
3
4
5
6
3

P R Fl
71 .70 .70

ClinBERT, Black, White

ClinBERT, AllGaz, Black, White

ClinBERT, Morph, AllGaz, Black, White
ClinBERT, Morph, AllGaz, Black, White, POS
ClinBERT, Morph, AllGaz, Black, White, POS

2) Error analysis: Here we provide an analysis for some
error cases and investigate how each knowledge source affects
the predictions:

a) Morphology: The morphology module is devised to
capture the drug mentions that are not observed in the training
data, are not present in a drug list, or have typographical errors.
Example 3 includes a mention of the drug Vistaril*> that has a
typo. The Morphology module, however, was able to capture
this mention that was not recognized by ClinicalBERT.

Example 3: (true positive)

... My doctor Put me On Vastaril to Help settle them
down. It helps a bit.

Example 4 provides another example of a true positive
prediction (Hydrocodone bitartrate) in the presence of the
morphology module.

Example 4: (true positive)

Hydrocodone bitartrate & Celebrex QO /' s0 ser

The Morphology module is recall-oriented, thus the module
makes false positive predictions, two of which are provided in
Examples 5 and 6:

Example 5: (false positive)

@USER #HuaweiplOonVodafone would love to be so

lucky!

Example 6: (false positive)

@USER have you tried viva vegeria? It’s on Nogalitos
by the HEB.

Note that we use a hashtag tokenizer and the hashtag
#Huaweip10onVodafone (Example 5) is segmented into [#
Huaweipl0, on, Vodafone].

2ak.a Hydroxyzine

b) BlackList: To counteract false positives, the BlackList
module collects a list of forbidden terms, automatically com-
piled from false positives in the first epoch. The BlackList
module improves precision for instance by compensating for
the false positive prediction in Example 5, when the term
Vodafone occurs already in the BlackList. The BlackList how-
ever does not contain vegeria (Example 6) and consequently
fails to prevent that false positive error.

¢) Drug gazetteer: Example 7 shows a drug mention that
has not been observed in the training data. The Drug module
injects this drug mention for a true positive prediction.
Example 7: (true positive)
fentanyl is where it’s at!!!! J Goodbye pain, Paige feels
wasted

d) Disease gazetteer: A true positive prediction enabled
by the Disease gazetteer is whooping cough injection:
Example 8: (true positive)

Got my whooping cough vaccine yesterday and now my
arm is sore.

B. Evaluation phase

Table III reports our competition results. The recall scores
for all three runs are on a par with their corresponding runs
on the development set. On the other hand, significant drops
in precision scores were unexpected. Adding the Morphology
module for Run 2 marginally improves recall over Run 1 and
marginally lowers precision. It is interesting to see that this
small drop in precision compensated when adding the POS
module in Run 3.

All these differences between our three runs are, however
small and dwarfed by the unexpected unbalanced nature of
our precision and recall scores.

TABLE III
OFFICIAL COMPETITION RESULTS
Run Modules k P R Fl
1 ClinBERT, AllGaz, Black, White 4 .65 .79 .72
2 ClinBERT, Morph, AllGaz, Black, White 5 .64 81 .71

3 ClinBERT, Morph, AllGaz, Black, White, POS 3 .68 .81 .73

Competition mean .81 .70 .74
Competition std - - .07

Note that in all three submission runs, the recall-oriented
WhiteList module is included (in fact a late addition to our
competition runs).

In post-competition experiments, we excluded the WhiteList
module. The results in Table IV show balanced precision and
recall scores commensurate with our results on development
data (and, in fact, above mean F'1).

The striking difference may be explained by the fact that the
test data was manually corrected for some annotation errors
just before competition closed, but the training data was not.



This is an important reminder that devices like white lists are
very unstable and do not transfer. It is intuitive that the black
list did not suffer if we assume that the errors were commission
errors. If the corrected errors had been predominantly omission
errors, the black list could have backfired.

TABLE IV
POST-COMPETITION RESULTS EXCLUDING WHITELIST
Modules k P R F1
ClinBERT, AllGaz, Black 3 .78 .78 .78
ClinBERT, Morph, AllGaz, Black, 4 76 19 .77
ClinBERT, Morph, AllGaz, Black, POS 3 .77 .80 .78

IV. CONCLUSION

For detection of medication names in tweets we submitted
three runs of a modular model that leverages external knowl-
edge sources including specialized gazetteer lists, morpholog-
ical information, and automatically compiled word lists.

Our systems showed balanced precision and recall during
development, supported by white and black lists compiled
during the first epoch of training.

The competition runs did not follow this pattern. While
recall was substantially above the mean, precision was (more)
substantially below the mean.

In post-competition experiments we determined that the
WhiteList module was the cause for the drop in precision.

This shows that unlike the other modules that provided
generalization for the system, the greedily compiled white
and black lists can lead to overfitting. We conclude that such
resources have to be further counterbalanced.
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