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Abstract—In an era where medicine and technology are closely 

intertwined, sources of patient-generated data such as social 

media content are being explored to extract important 

information for the study of public health and patient trajectories. 

Drug related mentions present in Twitter posts are a particular 

use case, as the process of automatically extracting drug related 

mentions from tweets can provide novel relevant information for 

pharmacoepidemiologic studies. In this paper, we describe the 

system developed by the BIT.UA team from the University of 

Aveiro during the participation in BioCreative VII Track 3 on 

automatic extraction of medication names in tweets. The system 

consists of an end-to-end deep learning architecture based on 

transformers, and was used in all three submitted runs for the 

challenge. Run 1 obtained the best results on strict evaluation (F1-

score of 0.6810) whereas Run 3 performed better on overlapping 

evaluation (F1-score of 0.7700). 
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I. INTRODUCTION 

The field of medicine has been the subject of much evolution 
during past years, benefiting from key progresses in other fields 
such as that of technology. With the increased growth in medical 
data, information availability and patient awareness, patient-
generated data has become a valuable asset in the study of 
population health and patient trajectories by providing important 
unique information. Social media content such as Twitter posts 
is an example of patient-generated data that has already been 
explored for health research purposes, with existing applications 
leveraging Twitter data to study public health (1) or depression 
(2).  

In recent years, international challenges have been created to 
foster research in this particular field, for instance Social Media 
Mining for Health Applications (#SMM4H) has organized 
several shared tasks focused on exploring tweets for different 
purposes. In the 2018 and 2020 editions (3,4), #SMM4H 
organized tracks on medication detection and extraction from 
tweets in an effort to improve the process of automatically 
extracting drug related information from tweets, as this data can be 
very important for pharmacoepidemiologic research. Even 
though both challenge tracks (3,4) provided valuable datasets 
and a venue for benchmarking solutions developed by 

researchers, the unrealistic equal distribution between relevant 
and irrelevant tweets limited the practicality of these resources. 

Since the real scenario is closer to a “needle in a haystack” 
problem, as described in (5), where the number of tweets 
without entities of interest vastly outnumbers the amount of 
tweets effectively containing medication mentions, it is 
important to prepare and develop solutions capable of coping 
with such pronounced class imbalance. In fact, #SMM4H’20 
track organizers developed a system which was evaluated on a 
class-balanced (50-50) and an imbalanced Twitter dataset, 
obtaining F1-scores of 93.7% and 78.8% in these two corpora, 
respectively, clearly demonstrating the impact of an incorrect 
representation of the real scenario on the resulting system 
performance (6). Considering these concerns and following-up 
on the #SMM4H’20 shared task, 2021 BioCreative VII held a 
challenge track on automatic extraction of medication names in 
tweets (Track 3) where the provided dataset represented a more 
realistic scenario with high class imbalance. Although the 
dataset was also prepared for a Named Entity Normalization 
(NEN) task, the challenge was solely focused on the Named 
Entity Recognition (NER) component of extracting medication 
mentions. 

In this paper, we describe the system developed by BIT.UA 
under the scope of BioCreative VII Track 3, which was used to 
submit three participating runs. The resulting end-to-end system 
explored the potential of transformer based architectures in 
natural language problems.  

II. METHODS 

The system herein presented makes use of Deep Learning 
techniques to perform NER on Twitter data, retrieving detected 
medication and dietary supplement mentions along with the 
corresponding spans within the tweet. In this section, we provide 
more information on the used dataset, language model and 
model architecture, processing mechanisms and tests that were 
performed during the challenge. 
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A. Data 

Task organizers provided a corpora containing tweets from 
212 pregnant women, with the training set consisting of 
approximately 89,000 tweets (218 tweets mentioned at least one 
drug), the validation set containing almost 39,000 tweets (93 
tweets mentioned at least one drug), and the test set holding 
nearly 54,000 tweets.  

Dataset distribution was purposefully highly imbalanced 
(only approximately 0.2% of the tweets contained medication 
mentions) so as to capture the real scenario where relevant 
tweets are scarce among all existing tweets. The training and 
validations datasets were provided along with gold standard 
annotations, comprising medication entities and their 
corresponding textual span within the tweet. 

Despite also having a normalized form for each annotated 
medication, since the focus of this challenge was not on NEN 
but on NER we did not explore this information in our solution. 
Additionally, a supplementary dataset was provided consisting 
of the training dataset from #SMM4H’18 shared tasks, which 
contained nearly 10,000 tweets. This dataset had a balanced 
distribution, with around 50% of the tweets having medication 
mentions. Since the objective of this challenge was precisely to 
develop practical solutions for the existing imbalanced real 
scenario, we opted to not explore this dataset in our solution. 

B. Model Architecture and Configurations 

The model used in this work (Fig. 1) has a simple 
architecture consisting of a language model, a Multilayer 
Perceptron (MLP) containing two Fully-Connected Layers 
(FCN), and a Conditional Random Field (CRF) layer. Regarding 
the language model, we opted for publicly available RoBERTa 
models which were already pretrained on Twitter. Despite 
initially intending to use the BERTweet model1, this model had 
implementation problems regarding span retrieval during the 
tokenization procedure, which was a severe handicap for our 
solution. As an alternative, we used the base RoBERTa model 
for Twitter from Cardiff NLP2. In the MLP, the first FCN uses 
the Mish (7) activation function and has 128 hidden units, 
whereas both the second FCN and CRF layer have a size of N 
where N corresponds to the number of possible tags (in this case 
we used N=4). 

Concerning model training, only the MLP and CRF were 
trained, and a weighted sample loss scheme was used to 
compensate for the imbalanced class distribution in the dataset, 
where negative samples (i.e. tweets where no “B” or “I” tag was 
detected) have their loss reduced by 60%, thus reducing their 
importance. Model performance was evaluated based on strict 
F1-scores, where detected spans and entity text must exactly 
match the gold standard annotations. 

C. Pre and Post-processing Mechanisms 

Although it has been shown that the integration of heuristics 
mechanisms can play an important role in system performance 
for the present task (5), in this work we did not focus on 

 
1 https://huggingface.co/vinai/bertweet-base 
2 https://huggingface.co/cardiffnlp/twitter-roberta-base 

developing a robust heuristics component but instead distributed 
our efforts on the system as a whole due to timing limitations. 
Nonetheless, some simple pre and post-processing heuristics 
were created and integrated in the system, as described next. 

The first processing step implemented in the system was a 
post-processing mechanism regarding the reconstruction of 
predicted entities. Since we used a modified BIO (Beginning, 
Inside, Outside) tagging schema, where a fourth tag named PAD 
was introduced to represent padding tokens, and a BERT 
(Bidirectional Encoder Representations from Transformers) 
derived language model which splits some words in several 
subtokens, there may exist situations where the model predicts 
only part of the “medication entity” as the actual entity (e.g. 
tagging “xiety meds” as entity instead of “anti-anxiety meds”, 
as shown in Fig. 1), which results in a positive match when using 
approximate evaluation but in a miss if using a strict evaluation. 
In our solution all models were validated using a strict 
evaluation, thus we implemented a reconstructor that checks for 
incomplete entity spans and adds the missing subtokens so that 
only full tokens are considered. Additionally, the reconstructor 
also corrects some of the non-entity tokens (e.g. punctuation, 
emoji derived tokens) that are wrongfully tagged as entities by 
resetting their tag to O.  

The implementation of the entity reconstructing heuristic 
faced some technical problems due to the presence of emojis in 
the tweets, which is frequent as emojis are widely used in social 
media communication such as Twitter posts. Due to the 
language model used in this work, the tokenization process 
resulted in emojis being split into numerous “dummy” 
subtokens with special characters, which had to be disregarded 
in the entity reconstructing heuristic. Three possible approaches 
were defined to address the problem of emojis: 1) convert emojis 
to their corresponding text variant, 2) replace emojis with a 
punctuation char, and 3) maintain emojis and compile a list of 
all possible “dummy” subtokens originated from emoji 
tokenization, using the resulting compiled list in the entity 

 

Fig. 1. Overview of the model architecture (BERT-MLP-CRF) demonstrating 

the functioning of the reconstructing sequence decoder. 



reconstructor. Even though emojis can be easily converted to 
text using the emoji Python package, this package does not cover 
all existing emojis in the corpus. Furthermore, converting emojis 
to text affects final sentence span, which must be factored in 
when computing the entity spans for the predicted annotations. 
Owing to both reasons, method 1) for emoji handling was side-
lined. The second method is more straightforward as the 
sentence maintains its span intact, and was tested using the “.” 
and “_” punctuation characters. However, models trained using 
this pre-processing approach had worse performance 
comparatively to using sentences with the emojis, showing that 
emojis might actually provide relevant information to the model 
(e.g. emojis can be representative of human sentimental state, 
being an important feature for sentiment analysis tasks). Due to 
the previously mentioned problems of approaches 1) and 2), we 
selected the third approach for the emoji pre-processing 
mechanism as it does not affect sentence spans nor remove 
emoji information, whilst allowing the use of the token 
reconstruction procedure. 

Finally, in an attempt to filter out some “irrelevant” tweets 
(e.g. tweets containing only emojis) and feed the deep learning 
model with cleaner input data, an additional pre-processing step 
was introduced consisting of two simple rules: 1) remove tweets 
with less than four subtokens and 2) remove tweets where less 
than 40% of the characters are alphanumeric. The use of this 
simple heuristic mechanism resulted in the removal of 2,084 
tweets out of nearly 128,000 tweets (training and validation 
datasets combined). Since the dataset already contains a scarce 
amount of true positives, it is important to ensure that none are 
removed during this procedure. After checking the list of 
removed tweets we verified that no true positive was incorrectly 
eliminated with this mechanism.  

D. Submitted Runs 

The described system was empirically tested with several 
modifications, resulting in the three final submitted runs which will 

be further detailed next. The models were implemented using 

TensorFlow and trained using the log-likelihood loss function and 
the AdamW optimizer. All models were executed on a machine 

with 20 CPU cores, 126GB of memory and an Nvidia Tesla K80 

GPU. Model performance was evaluated using strict F1-score. 

 

• Run 1 

For the first run, which we defined as our baseline, the model 
was trained on the training dataset, validated on the validation 
dataset, and used the normal sequence decoder to evaluate 
model performance. The model checkpoint that attained the 
highest F1-score in the validation dataset was selected to be used 
for inference in test time, resulting in the submitted prediction 
for run 1. 

• Run 2 

The second run was similar to the baseline, differing in the 
sequence decoder selected to be used during evaluation. Here, 
the reconstructing sequence decoder was used to evaluate model 
performance in the validation dataset. The model checkpoint 
that attained the highest “reconstructed” F1-score in the 
validation dataset was selected for inference in the test dataset, 
resulting in the submitted prediction for run 2. 

• Run 3 

Since the use of the reconstructing sequence decoder led to 
performance improvements during the training phase, for the 
last run we decided to maintain the reconstructing sequence 
decoder but train the model on a combined dataset containing 
both the training and validation splits of the corpus. Here, the 
model saved in the last checkpoint (end of model training) was 
used for inference in the test dataset. 

III. RESULTS AND DISCUSSION 

Herein we report some of the results obtained while 
performing experiments with the model, as well as the official 
test results from our challenge submissions. 

Table I presents model performances during development 
time, and provides a comparison between using the normal 
sequence decoder and the reconstructing sequence decoder to 
evaluate model performance. In runs 1 and 2, the models were 
trained on the training dataset and evaluated on the validation 
dataset. Therefore, the reported values correspond to the 
evaluation metrics obtained on the validation dataset. As 
observable in the results from runs 1 and 2, using the additional 
post-processing mechanism to reconstruct entity predictions 
resulted in a performance improvement in every configuration 
during model training. 

Since during our tests the reconstructing sequence decoder 
seemed to constantly improve model performance, a first system 
setting (test run 1) with normal sequence decoder was selected 
to be used as a baseline. Then, to directly assess the impact of 
this post-processing mechanism, the second system 
configuration (test run 2) used the reconstructing sequence 
decoder. Finally, we were interested in evaluating the impact of 
training the model using more data. As no external data was used 
in the present work, in the third scenario (test run 3) the model 
was trained in the training and validation datasets, at the cost of 
having no data left to evaluate model performance and select the 
optimal model checkpoint. Hence, in run 3 we used the last 
model which is saved after the training procedure ends. 

In Table II it is possible to observe 1) official results from 
the three submitted test runs, and 2) some official benchmarking 
metrics provided by track organizers, which they computed 
using only the best submission from each participating team (16 
teams participated in the challenge). Highlighted in bold are the 
best results (only for the 3 submitted runs) for each metric per 
type of evaluation (strict and overlapping). Surprisingly, run 1 
obtained the best performance concerning strict evaluation by a 
margin of 4 percentage points to the second best (run 3), and run 
2 obtained the worst performance in the test dataset, showing a 
completely opposed behavior from that observed during 
development time (Table I). This best submission (run 1) had 
below average performance in the challenge as it is below both 
the mean and median challenge performances. 

On the other hand, when analyzing results regarding 
overlapping evaluation, run 2 was closer but still worse than run 
1, and run 3 improved significantly with a higher recall than run 
1. Comparing obtained results with the overall challenge 
metrics, run 3 had a system performance higher than the median  



TABLE I.  RESULTS OBTAINED IN DEVELOPMENT TIME WITH THE NORMAL SEQUENCE DECODER (LEFT) AND WITH THE RECONSTRUCTING SEQUENCE 

DECODER (RIGHT). NO RESULTS ARE REPORTED FOR RUN 3 AS IT WAS TRAINED BOTH IN THE TRAINING AND VALIDATION DATASETS. 

Runs 
Strict Evaluation – No Reconstruction Strict Evaluation - Reconstruction 

Precision Recall F1-score Precision Recall F1-score 

Run 1 0.7684 0.6952 0.7300 0.7766 0.6952 0.7337 

Run 2 0.7604 0.6952 0.7264 0.7708 0.7048 0.7363 

Run 3 — — — — — —  

TABLE II.  RESULTS OBTAINED IN TEST TIME AND AGGREGATED  CHALLENGE STATISTICS COMPUTED BY THE ORGANIZERS ON THE BEST SUBMISSIONS FOR 

ALL PARTICIPANTS. 

Runs 
Strict Evaluation Overlapping Evaluation 

Precision Recall F1-score Precision Recall F1-score 

Run 1 0.7380 0.6330 0.6810 0.8100 0.6940 0.7470 

Run 2 0.6670 0.5990 0.6310 0.7670 0.6940 0.7290 

Run 3 0.6720 0.6120 0.6410 0.8010 0.7410 0.7700 

Mean - Challenge 0.7544 0.6583 0.6960 0.8105 0.7088 0.7491 

Std - Challenge — — 0.0720 — — 0.0596 

Median - Challenge — — 0.6970 — — 0.7585 

 

and mean values for the challenge. Despite attaining a basic 
insight on how the different system configurations are 
performing, more experiments are required to correctly 
evaluate the impact of using pre and post-processing 
mechanisms such as the reconstructing sequence decoder. 
After a quick error analysis it was found that the 
reconstruction mechanism is not working optimally, which 
negatively impacted on test performances.  

IV. CONCLUSION 

In this work we performed medication identification in a 
highly imbalanced Twitter corpus. The best performing run 
under strict evaluation obtained an F1-score of 0.6810, 
whereas the top run in overlapping evaluation attained 0.7700 
F1-score. Overall challenge statistics demonstrate that there is 
much margin for improvement, but also show positive signs 
considering our best overlapping evaluation score. 

Regarding future work, there are several aspects that can 

be improved. Firstly, due to the high class imbalance, it 

would be advantageous to have an efficient triage system 

(e.g. heuristics-based) capable of reducing the number of 

irrelevant tweets being forwarded through the model. Next, a 

more elaborated pre-processing stage could be used to assess 

the impact of using a more “digested” input text. Finally, the 

reconstructing sequence decoder should be revised to enable 

better support for emoji handling without harming the correct 

reconstruction of actual medication entities, as a brief error 

analysis posterior to the challenge revealed that this 

negatively impacted on model performance. 
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